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Preface

“What is the use of a book,” thought Alice, “without pictures or
conversations?”
—Lewis Carroll

This book exists for two main reasons: (i) graph coloring is home to some of the most
beautiful results, proofs, and techniques in all of mathematics and (ii) I want to help you learn
about them in a way that is as easy and fun as possible. Both of these views shape this book.

The book is about ideas, those that are elegant, powerful, and repeated frequently through-
out the history of our subject. Each chapter focuses on a single tool, so that you can see lots of
examples and develop an intuition for where each technique may be useful in the future.

This books differs from most textbooks in multiple ways. Many of these aim to capture
the benefits of an illuminating lecture. We begin most sections with a high-level overview.
We also use lots of pictures and worked examples (more than 180 throughout the book). For
longer proofs, we break them up into a series of lemmas; usually each lemma and its proof is
longer than a page. These convenient “save points” allow you to read the proofs in bite-sized
pieces. Reading just the statements of the lemmas provides an outline of the proof. Between
the statement of a lemma and its proof, we often include an informal proof sketch. (This sort of
intuition is frequently provided in lectures, but is omitted from most papers and many books.
The present book is written so that this intuition can be skipped, if you like, and the proofs will
still be complete, though perhaps terse.)

To focus attention wholly on techniques, we defer most discussion to a Notes section at
the end of each chapter. This contains history and related work, as well as who proved which
theorem originally and whose proof we have presented.

This book is about graph coloring, one of the most popular and widely-studied areas of
discrete mathematics. The intended reader is a graduate student or early career researcher,
although it should be useful for readers who are both less and more experienced. The reader
may find it useful to have taken a 1-semester course in graph theory, but this is not strictly
necessary. My goal as the author is to help you understand, internalize, and add to (if you like)
central results in many areas of graph coloring. This does not mean an exhaustive survey, but

vii



viii PREFACE

rather a curated tour through many areas that are currently flourishing. We focus on topics
that have seen significant progress over the past 30 years, emphasizing key techniques that are
likely to bear more fruit in the future.

You really should start with Chapter 1, since it introduces many definitions and techniques
that are used repeatedly throughout the book. After that, chapters are largely independent.
They are organized roughly in order of increasing difficulty, as are the sections within each
chapter. In most chapters, a section near the end is marked in the Table of Contents with an
x, to indicate that its material is more advanced and can be safely skipped on a first reading
without missing prerequisites for other sections.

This book is designed for a topics course, although it is also well-suited for self-study. On
a first reading, I recommend covering some subset of Sections 1.1-1.4, 2.1-2.5, 3.1, 3.3, 4.1, 4.3,
5.1-5.2, 6.1, 6.3, 7.1-7.3, 8.1, 8.4-8.6, 9.1-9.2, 10.1-10.3, 11.1-11.3, 12.1-12.3. This selection omits
most of the hardest proofs, but is still too much material for a single semester. To choose further
from among those topics listed, you should simply follow your interests. With all that in mind,
feel free to just skim until something catches your eye and start there!

The heart of any thriving research area is not its answers, but its questions. Furthermore,
its tools and techniques, since these give us the best hope for future progress answering these
questions. This book is less about what exactly we know (although that is important) and more
about how we know it.

-DWC



Chapter 1

Greedy Coloring

... greed—for lack of a better word—is good.
—Gordon Gecko, Wall Street

“Greedy, greedy” makes a hungry puppy.
—Aesop’s fables (paraphrased)

In this book we study how to partition a set into subsets that satisfy certain constraints. This
question arises in contexts as diverse as designing circuits, allocating registers when compiling
computer code, solving Sudoku puzzles, and scheduling flight crews. All these problems can
be described in the language of graph coloring, where each color represents a subset in the
partition, and our goal is to minimize the number of colors.

The general graph coloring problem has no easy answer. More precisely, it is NP-hard’} So
it is unlikely that we will find an efficient algorithm to optimally solve the coloring problem
on an arbitrary input graph. This fundamental hardness result casts a long shadow across the
landscape of graph coloring.

In contrast to many problems on spanning trees, connectivity, and matchings (for which we
have efficient algorithms that give optimal solutions), for graph coloring we mainly focus on
proving upper and lower bounds. We also pay attention to the graph’s structure, concentrating
on planar graphs and other classes of graphs that exhibit some notion of sparseness.

A natural idea is to consider elements of the set one-by-one, assigning each to the first part
of the partition that is not forbidden by some element already assigned there. This greedy
approach can perform quite well, or quite badly, depending on the order in which we consider
the elements. In this chapter, we search for good orders, and study what bounds they yield for
the minimum number of colors needed to solve the coloring problem.

'We give a formal definition in Section
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2 CHAPTER 1. GREEDY COLORING

1.1 Degeneracy, Discharging, and Brooks’ Theorem

1.1.1  Key Ideas and Definitions

Definition 1.1. A graph G consists of a vertex set and an edge set, where each edge is an unordered
pair of vertices, called the edge’s endpoints. (In the problem above, the vertices are the elements
of the partition, and the edges are the pairs of vertices forbidden from appearing in the same
part.) Two vertices are adjacent if they form an edge. For a graph G, we write |G| to denote
the size of its vertex set and || G|| for the size of its edge set. A path P in a graph is a sequence
of edges eq, ..., eg such that each pair e; and e;, 1 have a shared endpoint, and no other edge
ej has that endpoint. (We allow the possibility that s = 1 or even s = 0, so P is edgeless.) The
endpoints of a path are the vertices that are endpoints only of e; and e;. A cycle is formed from
a path with endpoints vy and v, by adding an edge vyvo. The length of a path or cycle is its
number of edges. A graph G is connected if, for all v, w € V(G), some path in G has endpoints
v and w. A graph is acyclic if no subset of its edges form a cycle. A connected acyclic graph is a
tree, and a disjoint union of trees is a forest. Unless stated otherwise, all graphs are undirected
and have no loops and no parallel edges. Such a graph is simple.

As a first example, the graph G in Figure [1.1] (shown twice, with distinct colorings, which
we will get to soon) is simple with |G| = 8 and ||G|| = 12. It is connected, but far from acyclic;
thus, it is neither a tree nor a forest. It contains many paths of lengths o to 7 and many cycles
of lengths 4 to 8 (but no paths or cycles with other lengths).

A proper coloring (or simply coloring) of a graph assigns each vertex a color so that adjacent
vertices get distinct colors. We denote colors by positive integers. A k-coloring is a proper
coloring using at most k colors. A graph G is k-colorable if it has a k-coloring. The chromatic
number, x(G), of G is the smallest k such that G is k-colorable. A coloring of G using x(G)
colors is an optimal coloring. A simple way to color a graph is to consider its vertices one at a
time, in some vertex order o, and color each vertex with the smallest color not already used on
one of its neighbors. This is a greedy coloring using o. Figure [1.1/shows two greedy colorings of
the same graph using different vertex orders o.

In this book we focus on the existence of colorings, rather than on algorithms to produce
them, so we typically leave vertex orders ¢ implicit, as in the proof of our first proposition.
However, we briefly discuss converting existence proofs into efficient algorithms near the end
of Section[1.1.3] (For nearly all of our proofs, we can do this.)

For every graph G, there exists a vertex order o such that coloring G greedily using o
produces an optimal coloring. (Given an optimal coloring, form o by starting with all vertices
colored 1, followed by those colored 2, etc.) But this observation does not yield an efficient
algorithm since each graph G has |G|! possible vertex orders—far too many to try them all.
Even for the class of graphs with chromatic number 2, some vertex orders do arbitrarily badly
(see Exercise[t). Fortunately, we can often use the structure of G to quickly find an order o that
is good, though perhaps not optimal.

Proposition 1.2. If G is a forest, then x(G) < 2.
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Figure 1.1: Left: Coloring greedily along the bold path uses 3 colors, which is optimal. Right:
Coloring greedily along the bold path uses 4 colors. (The order for a greedy coloring need not
necessarily follow a path, as shown in Figure )

Proof. Suppose the proposition is false, and let G be a counterexample with fewest vertices.
Since G is a forest, it contains a vertex v of degree at most /| Lef}| G’ := G — v. Since G is
also a forest, and G’ has fewer vertices than G, a smallest counterexample, the theorem is true
for G’. That is, G’ has a 2-coloring ¢’. Since ¢’ uses at most one color on a neighbor of v, we
can greedily extend the coloring ¢’ to G. So G is not a counterexample after all. O

Remark 1.3. The proof of Proposition [1.2|is simple, but it illustrates a template that we will
see often. The proof breaks into three steps: (i) show that G has a vertex v of degree at most
1, (ii) show that G — v has a 2-coloring, and (iii) show that every 2-coloring of G — v extends
to a 2-coloring of G. Step (i) is unavoidability. Step (iii) is reducibility, because proving the
theorem for G reduces to the (easier) problem of proving the theorem for G —v. We call v a
reducible configuration, or simply reducible, for the problem of 2-coloring. Step (ii) seems to
come for free. Subgraph G — v cannot be a counterexample, since we chose G to be a smallest
counterexample, and G — v is smaller.

Step (ii) implicitly uses that G — v is again a forest, so it satisfies the hypothesis of the
theorem. In fact, this proof is by induction on |G|. (To construct o explicitly, we unpack the,
recursively constructed, vertex order ¢’ for G/, and append v.) Since the theorem is trivially
true for an isolated vertex, we omit the details of the base case, by choosing G to be a smallest
counterexample, also called a minimal counterexample. When we color G — v by the induction

2Suppose, to the contrary, that each vertex has degree at least 2. Starting from an arbitrary vertex, we walk
arbitrarily, never following the same edge twice in immediate succession. Since G is finite, we eventually return to
a vertex previously visited. Thus, G contains a cycle, a contradiction.

3Throughout the book, we write “:=” for assighment. So “Let G’ := G — v” can be read as “Let G’ be defined as
G —Vv”. In contrast “2 + 2 = 4” should be read as “2 + 2 equals 4”.

unavoidability
reducibility

reducible
configuration

minimal
counterexample
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hypothesis, for short we write that we color G — v by minimality.

The proof of Proposition [1.2| has only a single reducible configuration, a vertex of degree at
most 1. But in general, our proofs may have many. When proving a coloring theorem for a graph
class G, we show that each configuration is reducible (independent of the others), and that every
graph G in G contains at least one of these reducible configurations, so G cannot be a minimal
counterexample to our theorem. To prove more results with this unavoidability/reducibility
template, we use the following definitions, many of which we illustrate in Figure

Definition 1.4. For a graph G, we write V(G) and E(G) for its vertex and edge sets. A subgraph
of G is formed from G by possibly deleting some of its edges and possibly deleting some of
its vertices. For W C V(G), the subgraph of G induced by W has vertex set W and edge set
{fww :v,w € Wandvw € E(G)}. We denote this subgraph by G[W]. A graph class G is
hereditary if G € G implies H € § for every induced subgraph H of G.

The degree of a vertex is the number of edges containing it. The length of a face is the
number of edges on a walk along its boundary. We write d(v) and {(f) for the degree of vertex
v and the length of face f, and d(G) for the average degree of G. The maximum and minimum
degrees of G are A(G) and 6(G). We often write A for A(G).

Vertices v and w are adjacent if vw € E(G). In this case v and w are neighbors and they are
the endpoints of edge vw. The neighborhood of v, denoted N(v), is the set of all of its neighbors.
A k-vertex is a vertex of degree k. A k™ -vertex or a k™ -vertex is one, respectively, of degree at
least k or at most k. A k-neighbor is an adjacent k-vertex, and k™ -neighbors and k™ -neighbors
are defined similarly. A graph is planar if it can be embedded in the plane (with edges shown
as contiguous curves between their endpoints) so that no edges intersect, except possibly at
their endpoints. Such an embedding is a plane graph. A face of a plane graph G is a maximal
connected region of the plane that contains no vertex or edge of G. For plane graphs we define
k-face, k" -face, and k™ -face analogously. The girth of a graph is the length of its shortest cycle.
If the graph is acyclic, then the girth is infinite. When we forbid loops and parallel edges, as
we usually do, our girth is always at least 3.

The maximum average degree of G, denoted mad(G), is the maximum, over all subgraphs H
of G, of d(H). Formally, mad(G) := maxycg 2||H||/IH|. Note that this maximum is attained
by an induced subgraph, since including more edges in a subgraph increases its average degree.
The degeneracy of a graph G is the maximum over all subgraphs H of 5(H). If G has degeneracy
at most d, then G is d-degenerate. Finally, the coloring number of G, denoted col(G), is 1 plus
its degeneracy. A vertex order o witnesses, or shows, that col(G) < k + 1 if each vertex in ¢ has
at most k neighbors earlier in 0. When col(G) is bounded by some constant, we often work
with a vertex order witnessing this bound.

Figure [1.2{ shows a plane graph with every face of length 3, except for the outer face, which
has length 8. Here N(v1) = {vs,v11} and N(v12) = {v3, V4, Vs, Ve, V7, Vg, Vg, V1g}. Finally, the
degeneracy is 3. That it is at most 3 is witnessed by the order {vq, vs,...,v12}. That it is at least
3 is shown by the subgraph induced by {vs, v, ..., Vv12}, which has minimum degree 3. The
graph G on the left in Figure [1.3/has A(G) = 3 and 6(G) = 2 and girth 8. Each 3-vertex has
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Vi Vi V2
o
® 0 ®
Ve V7 Vs Vo
Vs (3 2 3 2 3 2) V1o
3 (-
© O, ®
V3 Vi2 V4
Figure 1.2: The order vy,...,vi, witnesses that G is 3-degenerate. So,
coloring greedily using v1s, ..., v; is guaranteed to use at most 4 colors. In

fact, it uses only 3 colors.

three 2-neighbors and lies on three 8-faces. We can easily check that d(G) = 12/5. In fact,
mad(G) = d(G). Finally, x(G) = 2 and col(G) = 3, since G has degeneracy 2.

We study col(G) because x(G) < col(G), as we see in our next proposition (and col(G) is
also easy to compute efficiently, as we prove in Lemma [1.23). Specifically, col(G) is the best
bound on x(G) that we can prove by coloring greedily, when we remember which vertices are
already colored, but forget which colors we used where. A graph is 1-degenerate precisely
when it is a forest. All planar graphs are 5-degenerate and triangle-free planar graphs are
3-degenerate, as we see in Proposition For each integer k, the class of k-degenerate
graphs is hereditary. Likewise, for each ¢ > 0, the class of graphs with mad(G) < ¢ is
hereditary. Hereditary classes are convenient to study, since they facilitate proofs by minimal
counterexample, as illustrated by the proofs of Propositions 1.2 and

Proposition 1.5. Every graph G satisfies x(G) < col(G) < A+ 1.

Proof. The second inequality follows from the definition of col(G); now we prove the first.
Suppose the proposition is false, and let G be a minimal counterexample. Choose a vertex v of
minimum degree. By definition d(v) < col(G) — 1. By minimality, x(G —v) < col(G —v) and
col(G — v) < col(G), so G — v has a coloring ¢ using at most col(G) colors. Since ¢ uses at
most col(G) — 1 colors on neighbors of v, we can extend ¢ by coloring v greedily. So G is not
a counterexample. Thus, the proposition is true. O

Unfortunately, the difference col(G) — x(G) can be arbitrarily large. For example, when G
is the complete bipartite graph Ky, » we get X(G) = 2, but col(G) = n + 1. This phenomenon
is unsurprising, since we can compute col(G) efficiently (as we do in Lemma , but it is
NP-hard to even approximate x(G) within a constant factor.

We often prove coloring results for planar graphs (possibly with girth at least some constant
g), as in Corollary[1.7} In these proofs, the bound below on maximum average degree helps us
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Q L O
[ ] [ ]
G L O

Figure 1.3: When g is a multiple of 3, 4, or 5, the bound on ||G|| in Lemma can hold
with equalityff]| We form G from a platonic solid by dividing each edge the same number
of times. Vertices of the platonic solid are white and vertices newly created are black.

show that each graph contains some reducible configuration; this is the “unavoidability” step
that we discussed in Remark [1.3]

Lemma 1.6. Let G be a simple planar graph with girth at least g. Now mad(G) < %. If also
|G| = g, then ||G|| < (IG] —2)%2. In particular, every simple planar G with at least three vertices
has ||G|| < 3|G| — 6 and mad?G) < 6. (Figure[1.3|shows two examples.)

Proof. For each statement, we assume G is connected; otherwise we add edges to form a
connected graph G’, and proving the statement for G’ also proves it for G. The final statement
follows from the first two, when g = 3. So we must prove these first two.

For the first statement, note that planar graphs with girth at least g form a hereditary class.

So it suffices to show that % < gl_%. If |G| < g, then G has no cycle; since G is connected,
G is a tree. Thus, 2“(?'” = 2(‘%?1) <2< %, as desired. If |G| = g, then the bound follows

from the second statement, which we prove below.

Now we prove the second statement; assume that |G| = g. Recall Euler’s formula: If G is a
connected planar graph with |G| vertices, |G| edges, and |F| faces, then |G| — ||G|| + [F| = 2.
By summing the lengths of walks along each face boundary, we count each edge twice, so
2||G|| = g[F| (since each face boundary contains a cycle, which has length at least g). Now

substituting for [F| and solving for ||G|| shows that |G| < (|G| — Z)ﬁ. O

We also get the following easy corollary.

Corollary 1.7. If mad(G) < k, then col(G) < [k]. In particular, col(G) < 6 (resp. 4, 3) when G
is planar with girth at least 3 (resp. 4, 6).

Proof. By Pigeonhole, if mad(G) < k, then 6(H) < [k] — 1, for every subgraph H, so col(G) <
[k]. Taking g € {3, 4, 6} in Lemma [1.6| gives the stated values of col(G). O

4In fact, the bound on ||G|| can hold with equality whenever g = 3. See Exercise@
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1.1.2 Coloring Graphs on Surfaces: Heawood’s Bound

The 4 Color Theorem asserts that every graph embeddable in the plane has a 4-coloring. This
bound is sharp, since K4 is planar and needs four colors. A variation on this problem fixes a
surface 8, and asks for the maximum chromatic number, x(8), of graphs that can be embedded
in 8. For the plane P, showing that x(P) > 4 is trivial, while proving that x(P) < 4 is a
monumental task. For almost every other surface §, the opposite is true: determining a sharp
upper bound on x(8) is easy, but giving a matching lower bound is harder. The goal of this
section is to prove Theorem which gives this upper bound on x(8). To do so, we need a
few definitions, which we will only use in the present section.

Definition 1.8. To add a handle to a surface S, we cut from 8 two unit disks, and add a cylinder,
identifying the boundary of each of its ends with the boundary of one of the disks. To add a
crosscap to 8, we cut from § a single disk and add a disk with each pair of antipodal points on
its boundary identified. Adding h handles to the sphere gives S, and adding k crosscaps gives
Ny. (Theorem implies that adding a combination of handles and crosscaps is equivalent to
either adding only handles or only crosscaps.) A 2-cell embedding of a graph G in a surface 8 is
a drawing of G in 8, with no edges crossing, so that each face can be continuously contracted
to a single point. If G has a 2-cell embedding in a surface 8, then G is embeddable in S.

To prove Theorem|t.11}, we need a well-known classification of surfaces, given in Theorem[t.9]
A proof can be found in Thomassen [375]] or Mohar and Thomassen [304, Section 3.1], but we
omit it, since it is mainly topological, and thus strays from our study of coloring. We also use
a generalization to arbitrary surfaces of the edge bound for planar graphs in Lemma We
leave the proof to Exercise

Theorem 1.9 (Classification of Surfaces). Every surface can be formed from the sphere by either
repeatedly adding handles or repeatedly adding crosscaps. More precisely, every surface & is
homeomorphic to exactly one Sy, (with h 2 Q) or one Ny (with k = 1).

Figure 1.4: A 2-cell embedding of K; on the torus, S;.

handle

crosscap

Sh, Nk
2-cell embedding

embeddable
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To unify results for the orientable surfaces Sy, and the nonorientable surfaces Ny, we define
the Euler genus, eg(8), of a surface 8. The Euler genus of Sy, is 2h, twice the number of handles,
and the Euler genus of Ny is simply k, the number of crosscaps.

Lemma 1.10. If G has a 2-cell embedding in surface S, then ||G|| < 3 |G|+ 3eg(8) — 6.

A good intuition for Lemma is that each handle allows 6 extra edges. Let H be a
maximal plane subgraph of G and let G’ be a plane triangulation with H as a subgraph and
|G’| = |H|. Each time that we add a handle from the interior of one triangular face of G’ to
another, the handle can accommodate 6 more edges. So ||G|| < ||G’|| +6h < 3|G’'|—6+ 6h =
3|G| + 3eg(8) — 6.

Theorem 1.11. For every surface 8 with eg(8) > 0, every graph G embeddable in S satisfies

col(G) < r—'— Y 1—}2—24eg(8)J . (1.1)

Proof. Fix a surface S. Choose a positive integer k and a graph G that is embeddable in S such
that col(G) = k; among such graphs, choose G to minimize ||G||. We will show that k is at most
the right side of inequality (1.1). For every proper subgraph H, the minimality of G implies
that col(H) < k. So col(G) =1+ 8(G) < 1+ 2||G||/IG| < 1+ (2(3|G| + 3eg(8) — 6))/IG| =
7 + (6eg(8) — 12)/|G|; the second inequality uses Lemma Clearly, col(G) < |G|, so
col(G) < min{|G|, 7 + (6eg(8) — 12)/|G]}.

When eg(8) > 2, the second argument in the minimum above decreases as |G| increases;
so this minimum is maximized when its arguments are equal. Solving the resulting quadratic
in |G| gives (L.1)), since col(G) is an integer. When eg(8) = 2, the minimum is 7 whenever
|G| = 7; this agrees with Theorem When eg(8) = 1, the second argument is always less
than 7, so the floor of the minimum never exceeds 6, which again agrees with (1.1)). O

Ringel and Youngs [343] showed that inequality is sharp, for every surface S except
the plane and Ng, which is the Klein bottle. To do so, they embedded in § a complete graph
K¢ with t equal to the right side of (L.1)). Figure [1.4 shows K7 embedded in the torus, S.

1.1.3 The Discharging Method and Efficient Coloring Algorithms

Most proofs in this book are more subtle than simply computing col(G). One reason is that
by choosing colors for more than one vertex at a time, we can often prove stronger bounds on
X(G). Another reason is that for some types of coloring, such as injective coloring, low degree
vertices are not always reducible [

5Still another reason is that otherwise the book would be far shorter.
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Definition 1.12. An injective coloring, ¢, of a graph G assigns colors to its vertices so that v and
w get distinct colors whenever they have a common neighbor (but ¢ need not be proper)ﬂ
The injective chromatic number, x*(G), is the smallest k such that G has an injective coloring

with at most k colors. The neighboring graph, G2, has V(G2)) = V(G) and E(G?)) =
{vw such that v # w and v and w have a common neighbor in G}. So x*(G) = x(G2)).

Our next proof illustrates an important idea: multiple reducible configurations.

Ll |
o .

Figure 1.5: Theorem configurations (i)—(iv) in clockwise order from top right.

Theorem 1.13. If mad(G) < 36/13 and A < 3, then col(G(2)) < 5; thus, x*(G) < 5.

Proof. The second statement follows from the first, since col(G(2)) > x(G(?)) = x}(G). Note
that graphs satisfying the hypotheses form a hereditary class. So assume the first statement is
false and let G be a minimal counterexample. We show that G contains none of the following
four configurations, shown in Figure since each is reducible: (i) a 1~ -vertex, (ii) adjacent
2-vertices, (iii) a 3-vertex adjacent to at least two 2-vertices, and (iv) adjacent 3-vertices, each
adjacent to a 2-vertex. (The label of each configuration matches its number of vertices.)

In each case, we denote the configuration by H. Let o be a vertex order for G — H showing
that col((G — H)(?)) < 5; such an order o exists since G is a minimal counterexample, and
G — H is smaller than G. In each of cases (i)-(iii), we simply append to ¢ the vertices of H,
in any order. This approach succeeds because every pair of vertices adjacent in G(2) that is
not adjacent in (G — H)(2) contains a vertex in H. In Case (iv), let v; and v, denote adjacent
3-vertices, and let wy and wy denote their 2-neighbor{’] Now we append to o the order vy,
V2, W1, Wa; we can check that each vertex has at most 4 neighbors in G(2) earlier in 0. This
finishes the proof of reducibility.

To prove unavoidability, we use a counting argument. We show that if A(G) < 3 and G has
none of configurations (i)—(iv) then d(G) = 36,13, which contradicts the hypothesis. A charge
is simply a number. We assign to each vertex a charge, equal to its degree. We redistribute
charge using the following two discharging rules.

®Injective coloring is less central to graph coloring than many topics we will study. However, it provides a setting

for some easy examples: Theorems and
7We allow the possibility that the 3-vertices have the same 2-neighbor.

injective coloring

injective chromatic
number

neighboring graph

charge

discharging rules
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(R1) Each 2-vertex gets 3/13 from each 3-neighbor.
(R2) Each 2-vertex gets 1/13 from each 3-vertex at distance 2, via each length 2 path.

Consider the final charges after applying (R1) and (R2) everywhere possible, simultaneously.
Note that 5(G) = 2, by the absence of (i). Since (iii) and (iv) are forbidden, each 3-vertex
loses at most max{3/13,3(1/13)} = 3/13, so ends with at least 36/13. Since (ii), (iii), and
(iv) are forbidden, each 2-vertex v gains exactly 2(3/13) + 4(1/13) = 10/13, from its two
3-neighbors and (up to) four 3-vertices at distance two. So v ends with 36/13. Each vertex
has final charge at least 36/13, so the average is at least 36/13. Since the total charge was
preserved by discharging, the average initial charge, which is the average degree, is also at
least 36/13. This contradicts the hypothesis mad(G) < 36/13, which finishes the proof. O

Example 1.14. Now we show that Theorem [1.13is sharp. The Heawood graph, H, is 3-regular
and |H| = 14 (see Figure . Further, H is vertex-transitive and bipartite, and has girth 6.
Form Hg from H by deleting a single vertex. Now A(Hg) = 3, d(Hp) = 36/13, and x}(Ho) = 6,
since the six vertices in the smaller part need distinct colors. In fact, it is easy to check that
mad(Ho) = 36/13; see Exercise [ Thus Theorem [1.13]is sharp. O

Figure 1.6: The Heawood graph H, and a bipartite drawing of H — v.

Remark 1.15. The proof of Theorem illustrates a new key idea. For the first time we have
multiple reducible configurations, here (i)-(iv), rather than just a single one. A configuration
is an induced subgraph H, along with specified values d,,, such that dg(v) < d, for each v €
V(H). Our counting argument, used to prove unavoidability, is an example of the discharging
method. Whenever we have a hypothesis mad(G) < ¢, we assume that G contains no reducible
configuration, and we follow the same general 3-step framework. (1) Assign each vertex an
initial charge equal to its degree. (2) Redistribute charge, maintaining its sum, by a set of
discharging rules. (3) Prove that each vertex finishes with charge at least ¢, which contradicts
the hypothesis mad(G) < ¢. This final step uses the fact that each reducible configuration is
forbidden. (If a vertex v lacks the high degree neighbors needed to give it sufficient charge, then
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we try to prove that v appears in some reducible configuration, which yields a contradiction.)
Once we settle on our reducible configurations and initial charges, picking discharging rules is
often easy, as we discuss below in Example

When G is a plane graph, we can also assign charge to its faces, which allows more flexibility
in our choice of initial charges. Lemma gives three options for initial charge functions that
yield negative sums. When we use one of these initial charge functions, we change step (3) in
the previous paragraph, to require that each vertex finishes with charge at least 0. Otherwise,
the blueprint is the same. When a vertex or face x ends with the desired charge, we say that x
ends happy. So to reach a contradiction, we must show that every vertex and face ends happy.

Lemma 1.16. Let G be a plane graph. Assign charges to all vertices and faces using one of the
following initial charge functions (i) ch(v) := d(v)—6 and ch(f) := 2{(f)—6, (ii) ch(v) := d(v)—4
and ch(f) := £(f) — 4, or (iii) ch(v) := 2d(v) — 6 and ch(f) := {(f) — 6. In each case, the sum of
the initial charges is negative. For easy reference, we refer to the charges in (i), (ii), and (iii) as
vertex charging, balanced charging, and face chargingﬁ

Proof. The proofs for each of parts (i), (i), and (iii) are nearly identical. In each case, the
crucial step is rewriting the sum of the initial charges using Euler’s formula. We provide the
details for (i) and leave those for (ii) and (iii) to Exercise 4. Let V and F denote the sets of G’s
vertices and faces.

D ch(v)+) ch(f)= ) (dv)—6)+ ) (20(f)—6)
vev feF vev feF
= (2/|G[| - 61VI) + (4] G| — 6[FI)
= —6(IF = [IGI| + V]
= —12. O

Assigning initial charges is generally easy. (If G is planar, then we use face charging,
balanced charging, or vertex charging. Otherwise, we typically use ch(v) := d(v).) But how
do we choose discharging rules? There is no easy answer, but an example will be useful.

Example 1.17. How did we choose the discharging rules we used to prove Theorem|[1.13P Since
2-vertices start with less charge than 3-vertices, the former should take charge from the latter.
A natural choice is to have 2-vertices take charge from their 3-neighbors. If each 2-vertex takes
1/3 from each 3-neighbor, then the reducibility of configurations (i), (i), and (iii) implies the
result when mad(G) < 8/3.

To take advantage of (iv), we need 2-vertices to also take charge from 3-vertices at distance
2. So suppose we try the rules (R1) Each 2-vertex takes a from each 3-neighbor and (R2)
Each 2-vertex takes b from each 3-vertex at distance 2. Now only the values a and b remain
undetermined. As in the proof of Theorem each 3-vertex loses at most max{a, 3b}. Each

8If G is a triangulation, then each face has charge 0 under (i). Similarly, if G is 3-regular, then each vertex has
charge 0 under (iii). This is the source of the names vertex charging and face charging.

ends happy

vertex charging
balanced charging
face charging
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2-vertex gains a from each of two neighbors, and b from each of four vertices at distance 2,
for a total of 2 + 2a + 4b. (As we write out the details, we notice that a 2-vertex v could have
two paths of length 2 that lead to the same 3-vertex w. To ensure that v receives enough,
we modify (R2) so that w sends b along each of these paths.) Thus, we should maximize the
minimum of the quantities 3 — a, 3 —3b, and 2 + 2a + 4b. We set these three quantities equal,
and solve for a and b. This yields the optimum 36/13, when a = 3/13 and b = 1/13. &

To generalize the previous example, suppose we fix ¢ > 0 and are proving an upper
bound on some coloring parameter for every graph G with mad(G) < ¢. Say we fix a set of
reducible configurations and a set of discharging rules, but with the amount sent in each rule
undetermined. We can often optimize our threshold on mad(G) by solving a linear program
to determine the amount to send in each rule. (Typically, this LP is simple enough that we
can solve it by hand.) So our focus when presenting such proofs is primarily on how to prove
reducibility. However, unavoidability plays a crucial supporting role and, more often than not,
relies on the discharging method. We discuss this technique further in the Notes.

Definition 1.18. The square, G2, of a graph G is formed from G by adding an edge vw whenever
v and w are distance 2 in G. Let N?(v) denote the neighbors of v in G2.

Clearly, x(G?) = A(G) + 1, since in G? each vertex v and its neighbors in G form a clique.
We can easily check that A(G?) < A(G)?, so Proposition 1.5/ implies that x(G?) < col(G?) <
A(G?) +1 < A(G)? + 1. This bound can be sharp, such as when G is the 5-cycle or the
Petersen graph. But often we can improve the bound significantly. Wegner conjectured that if
G is planar and A > 8, then x(G?) < 1+ L%AJ , and he constructed graphs to show this is best
possible; see Exercise 2 As a warmup, we prove an upper bound on col(G?) for all graphs
with col(G) < k 4 1. For k = 5, this includes planar graphs.

Lemma 1.19. If col(G) < k+ 1 and A(G)> k — 1, then col(G?) < (2k — 1)A(G) — k® + k + 1.

Proof. The class of graphs with A = k — 1 is not hereditary. However, if A < k — 2, then
Proposition 1.5 gives col(G?) < A(G?)+1 < (k—2)2+1 = k> — 4k + 5. Thus, for all
graphs with col(G) < k 4+ 1 (which is a hereditary class), we prove the more general bound
col(G?) < max{k? — 4k + 5, (2k — 1)A(G) — k? + k + 1}. This bound implies the stated result,
since when A = k — 1 (and A # 0), this maximum is attained by the second argument.

It suffices to prove the bound when A > k — 1, since otherwise it holds trivially, as shown
above. Let 0 be a vertex order witnessing that col(G) < k + 1. We show that o also witnesses
that col(G2) < (2k — 1)A(G) — k? + k + 1. Consider a vertex v in o. Each neighbor of v
in G? either (i) is a neighbor of v in G or (ii) shares a common neighbor w with v in G.
Each neighbor w of v that precedes v in o serves as a common neighbor for v and at most
A(G) — 1 other vertices. Thus, w is responsible for at most A neighbors of v in G2 (including
w) that precede v in 0. Each neighbor w that follows v in ¢ may also serve as a common
neighbor for v and up to A(G) — 1 other vertices, but at most k — 1 of these precede v in o.
So, when A(G) > k — 1, the number of neighbors of v in G2 that precede v in o is at most
KA(G) + (A(G) = k)(k—1) = (2k — 1)A(G) — kK® + k. O
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By Corollary 1.7} every planar graph G has col(G) < 6. So, if A(G) > 4, then Lemma[1.19
implies col(G2) < 9A(G) — 19. To strengthen this bound when A is large, we first prove
a structural lemma, which encapsulates the unavoidability step. The reducibility step comes
within the proof of Theorem 1.22

Lemma 1.20. Every planar graph contains a 5~ -vertex with at most two 12" -neighbors.

The idea of the proof is simple. We assume G is planar and each 5~ -vertex v has three
“big” neighbors (v exists, by Lemma [1.6). We use vertex charging, and let each 5~ -vertex take
its needed charge equally from each of its big neighbors. Finally, we set the degree threshold
for big vertices to be as small as possible, so that each big vertex ends happy.

Proof. Suppose the lemma is false and let G be a counterexample. Adding edges cannot give
any vertex fewer 12" -neighbors, so assume that G is a triangulation. We use vertex charging:
each vertex v has initial charge d(v)—6. By Lemma (i), the sum of these charges is negative.
(Since G is a triangulation, each face gets charge 0, so we can safely ignore the face charges.)
We use the following discharging rule; see Figure

d(v)

(R) Each 5 -vertex v takes i 3 from each 12" -neighbor.

Because G is a counterexample, each 5~ -vertex v gets charge from three or more neighbors, so
v ends happy, as defined in Rernark Each vertex v with 6 < d(v) < 11 loses no charge, so
again v ends happy.

Consider a 12" -vertex v. Since G is a triangulation, the neighbors of v induce a cycle C,
possibly with chords. Let H denote the subgraph of C induced by 5~ -vertices (excluding any
chords of C that may exist in G). Since each 5~ -vertex w has at least three 12" -neighbors,
dy(w) < dg(w) — 3 < 2 for each vertex w in H. If H is a cycle, then each of its vertices is a
5-vertex, so v is happy, since d(v) — 6 — d(v)/3 > 0 when d(v) = 12. Otherwise H is a proper
subgraph of a cycle, so H is a disjoint union of paths, which we handle below.

For each path P of H containing j vertices, we compute the average sent from v to vertices
of P and the next vertex of C, which receives no charge. When j = 1, this average is at most
(1+0)/2 =1/2. When j = 2, it is at most (2(2/3) + 0)/3 < 1/2. And when j = 3, the
average is smaller, since each internal vertex of P is a 5-vertex, which takes only 1/3 from v.
So v is happy, since d(v) — 6 — d(v)/2 = 0 when d(v) = 12. O

Figure 1.7: Lernma Three examples of big vertices and paths in H. The arrow —»>>
denotes that the tail gives the head 3/3. Likewise, —»> and —— denote 2/3 and 1/3.

&) @
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Earlier we discussed how to optimize a hypothesis bounding mad(G), given a set of reducible
configurations. Lemma presents a complementary problem. What is the smallest value of
k for which the lemma is true, with “k*-neighbors” in place of “12" -neighbors”? Note that we
only used k = 12 in the final line of the proof. In fact, the value k = 12 comes directly from
solving the inequality k — 6 — k/2 = 0. The lemma also remains true when k = 11, although
the discharging argument for that proof is more complicated, as we discuss briefly in the Notes.
The version with k = 11 is best possible, as shown by the following example.

Example 1.21. Form H from an icosahedron by adding a new vertex, v, inside each face, f, and
making v adjacent to all vertices on the boundary of f (see Figure . The only 5~ -vertices in
H are these new 3-vertices. Each neighbor of a 3-vertex is now a 10-vertex. So each 3-vertex
has three 10-neighbors. Thus, Lemma becomes false if we replace 12 by 10. The same
construction also works if, rather than starting from an icosahedron, we begin with any plane
triangulation with minimum degree 5. &

When G is planar, we can use Lemma to strengthen our bound on col(G?).

Figure 1.8: The icosahedron with bold edges and white vertices, with a new
vertex (black) added inside each face, adjacent to all vertices of that face, as in
Example This witnesses that Lemma [t.20]is nearly sharp.
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Theorem 1.22. Every planar graph G satisfies col(G?) < 2A(G) + 72.

Let v be a vertex guaranteed by Lemma We might naturally try to bound col(G?) by
getting a vertex order ¢ witnessing the bound for col((G — v)?), and appending v to . But
this approach fails, since vertices with v as their common neighbor in G may be non-adjacent
in (G —v)2. To sidestep this obstacle, rather than deleting v, we form H by contracting an edge
e incident to v. (Here we use that the class of planar graphs is closed under edge contraction.)
Note that all vertex pairs that are adjacent in G2, but do not include v, are also adjacent in H2.
However, we must choose edge e carefully, to ensure that A(H) < A(G).

Proof. Assume the theorem is false, and let G be a minimal counterexample. When A(G) < 3,
Proposition gives col(G?) < A(G?) + 1 < 10. Since G is planar, col(G) < 6. So when
4 < A(G) <13, Lemmaimplies that col(G?) < 9A(G) — 19 < 2A(G) + 72. Thus, we
assume that A(G) = 14.

Let v be a vertex guaranteed by Lemma and note that N?(v) < 2A(G) + 3(11). If
d(v) = 3, then form H from G by contracting edge vw, where w is some 11~ -neighbor of v.
Otherwise, form H by contracting any edge vw incident to v. (In each case v is “merged into”
w, so we still call the new vertex w.) Now A(H) < max{A(G),5+ 11 — 2} = A(G). So by
minimality there exists a vertex order o witnessing the bound for H2. To get a vertex order for
G2, we simply append v to o. O

This book is not primarily about algorithms. But since our proofs are typically constructive,
they do immediately yield coloring algorithms. We explore this idea in the next lemma and the
discussion that follows.

Lemma 1.23. If d(v) = 8(G), then col(G) = max{1 + d(v), col(G — v)}. Further, we can color G
with col(G) colors in time O(A - |G]).

Proof. In Deﬁnition we let col(G) := 1 +maxycg 0(H), but it is easy to check that we can
restrict this maximum to be taken over all induced subgraphs H. Choose v such that d(v) = 6(G)
and let t := max{1+d(v), col(G—v)}. By definition col(G) = col(H) for every induced subgraph
H of G. Also, col(G) = 1+ (G), so col(G) = t. Conversely, col(G) < t, since if H C G and
v € V(H), then 6(H) < dy(v) < dg(v); and if v ¢ V(H), then 1 + 6(H) < col(G — v). This
proves the first statement.

Given a vertex order o showing that col(G) < k, we can k-color G by coloring greedily,
using the reverse of 0. So coloring G efficiently reduces to efficiently constructing o.

To convert our structural statement into an algorithm to construct o, we unpack the re-
cursion. So col(G) = 1 + max;<i<|g| 8(H;), where H; := G and each other H; is formed
from H;_1 by deleting a vertex of minimum degree. This statement does imply a polynomial
time algorithm, but to improve the running time we need a more general statement. In fact,
col(G) = 1+max;<i<|g| d(Hi), whenever each H; is formed from H;_; by deleting any vertex
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with degree at most max};% 8(H;). The proof is essentially the same; we just note that deleting
such a vertex will never increase the maximum over the whole sequence.

Now we analyze the running time. We assume a data structure that stores, for each vertex
v, both the degree of v and a doubly linked list of its neighbors. We begin with a preprocessing
phase, in which we determine the minimum degree § of G, and also form a list of all vertices
of degree §; call this the candidate list. Now we begin a loop in which we delete a vertex v in
the candidate list, and update the degrees and neighbor lists of each of its neighbors. If any
neighbor w of v now has degree at most §, then we add w to the candidate list. This finishes
an iteration of the loop. Since d(v) < A, each iteration of the loop takes time O(A). We repeat
the loop until either (i) all vertices are deleted or (ii) the candidate list is empty.

When (i) holds, we are done. So instead assume (ii) holds. Now we repeat the preprocessing
phase, increasing 4 to the current minimum degree. Since  can increase at most A times, we run
the preprocessing phase at most A times. Since each preprocessing phase runs in time O(|G|),
together they run in time O(A|G|). We iterate the loop O(|G|) times, and each iteration runs
in time O(A), for a total running time of O(A|G|). O

Most coloring theorems proved by discharging translate into coloring algorithms using the
approach above. First, we repeatedly delete reducible configurations, until we reach the empty
graph. Next, we reassemble the graph, adding back one configuration at a time. At each point,
we can extend our coloring to the new configuration H, precisely because H is reducible. The
proof of unavoidability guarantees that the candidate list will never be empty. As a result,
the preprocessing phase runs only once, at the start. This approach works easily when each
reducible configuration H has bounded size, and each vertex of H has bounded degree. In
Section 1.3} we introduce reducible configurations of unbounded size, which play a key role in
many of our proofs. Translating such proofs into algorithms is still typically simple, although
the running times are often longer.

As a final remark on algorithms, we note that it is straightforward to compute mad(G)
in polynomial time. One method is to phrase the question as a network flow problem. This
problem can be solved efficiently by the Max-flow/Min-cut algorithm. In Exercise[7]lwe consider
an alternate formulation.

1.1.4 Brooks’ Theorem

By Proposition|1.5] every graph G satisfies x(G) < A+ 1. Brooks refined this result by showing
that if G is connected, then equality holds only when G is an odd cycle or a complete graph
Ka+1. We can prove Brooks’ Theorem in many ways. Here we mainly use greedy coloring.
But at one crucial point we specifically color one vertex with a color used on a certain other
vertex. And at two points we are able to finish because the final vertex to be colored has two
neighbors using the same color. These extra wrinkles are inevitable, since col(G) = A + 1 for
every A-regular graph G.
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Theorem 1.24 (Brooks’ Theorem). Let G be a connected graph. If G is neither an odd cycle nor
a complete graph, then x(G) < A. Otherwise, x(G) = A+ 1.

Proof. The theorem holds if G is a path, a cycle (either odd or even), or a complete graph, so
assume it is none of these. Thus, A = 3. We often implicitly use the following observation.
Coloring greedily, with some order o, uses no color larger than A on each vertex that has a
neighbor later in ¢. Similarly, if a vertex has two neighbors with a common color, then coloring
it greedily (even if all its neighbors are colored) uses no color larger than A.

Case 1: Some vertex v has d(v) < A. Let o be an order of the vertices by non-increasing
distance from v. Now coloring G greedily by o uses at most A colors.

Below we assume that G is regular. Since G is A-regular, but not Ka1, G contains a vertex
vy with neighbors v, and v that are non-adjacent. Let v1 - - - v+ be a maximal path starting with
v1vovs. That is, vy has all its neighbors among v1, ..., Vr_1.

Case 2: T = |G|. Since d(v2) = A, there exists j > 3 such that vov; € E(G). Color greedily

in the order v1,Vv3,V4,...,Vj—1, V|G V|G|—15- - - » Vj> V2.
Case 3: T < |G|. Let v; denote the neighbor of v, that comes earliest among v1, ..., V;.
Note that vy, ..., v, induce a cycle, with one or more chords. Let H := G[{vi,...,Vv.}]; see

Figure Recall that V(G) \ V(H) # 0, since v < |G|. Since G is connected, some vertex
in H has a neighbor outside H. But all neighbors of v, are in H. Fix v; such that v;_; has a
neighbor w outside H but vj has all neighbors in H. Let o be a vertex order of V(G) \ V(H)
by non-increasing distance in G from H. First, color G — V(H) greedily using 0. Now color v;

Figure 1.9: A 3-coloring of the icosahedron as in Case 3 of the proof of Brooks’
Theorem. Subgraph H is shown in bold, with j := 4 and w := wy;. The vertex
order o of G — V(H) is denoted by wy, ..., w,.



choice number
paint number
Alon-Tarsi number

x¢(G), xp(G)
AT(G)

list assignment
L-coloring
list-coloring

f-choosable
k-assignment
degree-choosable
k-choosable

choice number

18 CHAPTER 1. GREEDY COLORING

with the same color used on w. (This is possible since Ng(v;j) € V(H), so no neighbor of v is
colored.) Finally, finish by coloring greedily using the order vj 1, Vjy2,...,Vr,V1,...,Vj—1. O

1.2 Choice, Paint, and Alon-Tarsi Numbers

When we prove a coloring result by induction, we often delete some configuration H, color G—H
by minimality, and find colors for V(H). We usually do not know which colors are available
for vertices of H; instead we have only a lower bound on the number of colors available. This
approach naturally leads to list-coloring, the main topic of this section. We also study two
further generalizations.

1.2.1 Definitions and Basic Inequalities

Here we introduce three variations on chromatic number (all defined below). In order of
increasing generality, these are choice number (also called list-chromatic number), denoted
X¢(G), paint number, denoted X, (G), and Alon-Tarsi number, denoted AT(G). We compare
these parameters with those of the previous section, chromatic number and coloring number.
The focus of this section is the following theorem, which summarizes the relationships among
these five parameters.

Theorem 1.25. Every graph G satisfies
X(G) < x¢(G) < xp(G) SAT(G) < col(G).

Further, ifwelet G := Ky, n andn — oo, then each of the differences x¢(G)—x(G), Xp (G)—xe(G),
AT(G) — Xp(G), and col(G) — AT(G) is unbounded.

Below we define these new terms and sketch a proof of Theorem [1.25

Definition 1.26. For a graph G, a list assignment L assigns to each vertex v a list L(v) of
allowable colors. An L-coloring of G, also called a list-coloring, is a proper coloring ¢ such that
@(v) € L(v) for each vertex v. For a positive integer-valued function f, an f-assignment is a
list assignment L such that |L(v)| = f(v) for each vertex v. If G has an L-coloring for every
f-assignment L, then G is f-choosable (or f-list-colorable). If |L(v)| = k for some constant k
and all v € V(G), then L is a k-assignment. If |L(v)| = d(v) for each v, then L is a degree-
assignment. If G has an L-coloring for every degree-assignment L, then G is degree-choosable.
If G has an L-coloring for every k-assignment L, then G is k-choosable (or k-list-colorable). The
choice number, x¢(G), (or list-chromatic number) is the smallest k such that G is k-choosable.

Clearly x(G) < x¢(G) for every graph G, since the lists for all vertices might be identical.
However the difference x¢(G) — x(G) may be arbitrarily large, even for bipartite graphs.

Proposition 1.27. Let k be a positive integer, and let n .= (Zklzl). Now X¢(Knn) > k. Thus, the
difference x¢(Knn) — X(Kn,n) is unbounded as n — oo.
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Proof. Let G := Ky, . See Figure[i.10} Let L assign to the vertices of each part of G the distinct
k-element subsets OIE] [2k—1]. Suppose that G has an L-coloring ¢. Now ¢ uses at least k colors
on each part, since if ¢ avoids some set of size k on a part, then some vertex in that part must
be uncolored. Since @ uses at least k colors on each part, and 2(k) > 2k — 1 = | U, cv L(V)],
some color is used on both parts. So ¢ is not proper, which is a contradiction. O

12 13 23 123 124 125 134 135 145 234 235 245 345

12 13 23 123 124 125 134 135 145 234 235 245 345

Figure 1.10: Left: A list assignment showing that Kz 3 is not 2-choosable. Right: A list assignment
showing that K 19 is not 3-choosable.

To translate Propositioninto a lower bound on x¢(Ky, ) in terms of n, we use Stirling’s
approximation, which shows thatn = (> ') < 2\‘}%. This implies that k > (140(1))1 logn.
Erdés, Rubin, and Taylor [152] improved this bound to X¢(Knn) = (1 + o(1))logn, which is
sharp. The following short probabilistic argument proves a matching upper bound.

Let U and W be the parts of Ky, . Given a (1 + [logn])-assignment L, we designate each
color in Uy cv ()L (V) to be used on either U or W, each with probability % It is straightforward
to check that with positive probability each vertex v has some color in L(v) designated for use
on its part. Thus, G has an L-coloring. (In the proof of Lemma [1.32| we reformulate this proof,
and provide a few more details.)

Definition 1.28. Fix f : V(G) — Z™. The f-painting game is played by two players, Lister and
Painter. Initially, all vertices are unpainted. On each round Lister lists some of the unpainted
vertices, and Painter paints some independent subset of these. If Lister lists any vertex v on
f(v) rounds without Painter painting v, then Lister wins the game. Otherwise Painter wins. If
Painter can always win the f-painting game, then G is f-paintable. The k-painting game is the
case when f(v) = k for some constant k, and k-paintable is defined analogously. The smallest
integer k such that G is k-paintable is the paint number of G, which we denote by x, (G).

Proposition 1.29. Every graph G satisfies x¢(G) < xp(G).

Proof. Fix a graph G and integer k < x¢(G), and let L be a k-assignment such that G is not
L-colorable. By symmetry among the colors, we can assume that U,,cy(g)L(v) = [s] for some
integer s. Now Lister has a winning strategy in the k-painting game, by listing on each round
i every vertex with color 1 in its list that is not yet painted. Lister wins precisely because G has
no L-coloring. This proves the proposition. O

9Here, and throughout the book, for each positive integer a we let [a] :={1,..., a}.

f-painting game

Lister, Painter

f-paintable
k-paintable

paint number
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So xp(G) = x¢(G). But can Xp(G) — x¢(G) be arbitrarily large? For many years it
was unknown whether this difference ever exceeds 1. We saw above that x¢(Knn) = (1 +
0(1))logn. But more refined arguments show that x¢(Knn) = logn — (% + 0(1))loglogn.
With this in mind, Duraj, Gutowski, and Kozik [126] showed that X, (K, ) = logn + O(1).
Together with the refined bound on x¢ (K ), their result implies that x;, (Kn n) —X¢(Knn) 2

(3 +0(1))loglogn.

Definition 1.30. For an orientation D of a graph G, a subdigraph H of D is a circulation if
in H the indegree equals the outdegree at each vertex, that is, d;(v) = dﬁ (v) for all v. An
Alon-Tarsi orientation D is one in which the number of circulations H with ||H|| even differs
from the number with ||H| odd; see Figure We denote these numbers of circulations by
EE and OE (for “even” and “odd”; the second E is for “eulerian” graph, which is a synonym for
circulation). An Alon-Tarsi orientation D is f-Alon-Tarsi, or f-AT for short, if f(v) > dﬁ (v) for
each vertex v. A graph G is k-AT if it is f-AT, when f(v) = k for all v. The Alon-Tarsi number,
AT(G), is the smallest k such that G is k-AT.

Alon and Tarsi [20] used algebraic methods to show that if G is f-AT, then G is f-choosable.
This implies that x¢(G) < AT(G) for every G. Schauz later gave a constructive proof, showing
that if G is f-AT, then G is f-paintable. In particular, X, (G) < AT(G) for every G. In Chapter
we extensively study Alon-Tarsi orientations. There we give a short proof that x¢(G) < AT(G),
and a longer proof that x,(G) < AT(G). For the present, we only prove the easy bound
AT(G) < col(G), and that the differences AT(Ky 1) —Xp (Kn,n) and col(Kyn ) — AT(Ky, ) are
both unbounded.

Proposition 1.31. Every graph G satisfies AT(G) < col(G).

Proof. Let G have degeneracy k, and choose order o where each vertex has at most k neighbors
earlier in 0. Form orientation D from G by directing each edge towards its endpoint that comes
earlier in 0. So D is Alon-Tarsi, since it is acyclic, and thus its only circulation is the edgeless
digraph. Further, d* (v) < k for every vertex v. So D witnesses AT(G) < k+ 1 =col(G). O

Q 0O Q 0O

C O G O

Figure 1.11: Left: Each vertex has outdegree at most 2 and EE = 3 while OE = 4. So
the underlying graph is 3-AT. Right: The left center vertex, call it w, has outdegree 3
and all others have outdegree 2. Now EE = 30 and OE = 28. So the underlying graph
is f-AT, where f(w) = 4 and f(v) = 3 for each other vertex v.
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Proposition 1.32. As n — oo, the differences (i) AT(Knn) — Xp(Knn) and (i) col(Knn) —
AT(Kn n) are both unbounded.

Proof. (i) By Pigeonhole, every orientation of K, , has a vertex with outdegree at least
[IGII/IGI] = [5]. So, to prove that AT(Ky 1) — Xp(Knn) is unbounded, it suffices to show
that x,(Knn) < logn + O(1). The proof below is similar to that for list-coloring, which
we presented above (after Proposition [1.27). Our key new idea here is to derandomize that
probabilistic argument.

Let A and B denote the parts of Ky, ,,, and let k := 2+ [log n|; we show that x, (K n) < k.
For each vertex v, let the danger of v equal O if v is already painted, and equal 2'~* if v has
been listed t times but never painted. On each round, Painter paints all of the vertices listed
in either A or B. Consider the sum of the dangers of vertices in A and of vertices in B, and
how these sums increase when Lister lists the vertices for round 1i. If the sum of dangers for A
increases more than the sum for B, then Painter paints all the vertices listed in A; otherwise,
he paints the vertices in B. Note that the potential increase of dangers in A, if Painter does
not paint its listed vertices, is exactly equal to the decrease if Painter does paint them. So,
after each round, the sum of dangers in the whole graph has not increased. The initial sum of
dangers is |G| 27% < 2n(272logn) = % If Lister ever wins, then the sum of dangers is at least
1. Thus, Painter always wins.

(i) Now we consider col(Ky n,) — AT(Kyn). Given a subgraph H of a graph G and an
orientation D of G, by Pigeonhole some vertex of H has outdegree at least ||H||/[H|. Thus
AT(G) =21+ [%mad(Gﬂ. For Ky, n, this bound holds with equality. Denote by U and W the
parts of Ky nn, withxy,...,xn € Uand yy,...,yn € W. Let S = {xl,...,x[%w,yl,...,y(%w},

andlet T := V(K n)\S. When an edge e has both endpoints in S, or both endpoints in T, direct
e toward U. Otherwise, direct e toward W. The resulting orientation D has df;(v) < [%1
for all v. Since K, ,, is bipartite, every directed cycle is even. Every circulation H of D is an
edge-disjoint union of directed cycles, so ||H|| even. Thus, AT(G) = 1+ [ %], because D has
OE = 0 and EE > 1. In contrast, col(Ky ) = n+ 1, since in every vertex order the final vertex

has n earlier neighbors. Hence, col(Kn n) — AT(Knn) = L%J O

For the rest of this chapter, we mainly focus on x¢(G). But often our arguments also
prove analogous bounds for x;,(G) and AT(G). We elaborate on this point in Section m
The kernel method, which we study in Chapter |5, works wonderfully for x,(G), but not for
AT(G). In Chapter |8, we prove the Alon-Tarsi Theorem, and apply it to the problem of edge-
choosability. In contrast, the recoloring technique used in Chapter [3| (Kempe swaps) already
fails for choosability.

1.2.2 2-Choosable Graphs and Degree-Choosable Graphs

For each k at least 3, it is NP-hard to decide if an input graph G is k-colorable. Not surprisingly,
the same is true for k-choosable. In contrast, a graph is 2-colorable precisely when it has no
odd cycle. The problem of 2-choosability is a bit harder, but not much.

danger of v
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Definition 1.33. The trunk of a graph is what results when we repeatedly delete its leaves. More
formally, the trunk is the maximum subgraph H with 6(H) = 2. A 6-graph, 04 c, is formed
by subdividing three parallel edges, so that the resulting three edge-disjoint paths joining the
3-vertices have lengths a, b, and c. When vertices v and w are adjacent, we write v <> w;
otherwise v ¢4 w.

Lemma 1.34. A connected graph G is 2-choosable if its trunk is 022 2, Cap, or the empty graph.

Proof. Let G be a graph and L be a 2-assignment for G. If v is a 1~ -vertex of G, then we can
extend any L-coloring of G — v to an L-coloring of G. So it suffices to prove the lemma when
5(G) = 2 (or when G is the empty graph, for which the lemma is trivial). Our proof primarily
uses greedy coloring, but we consider a few possible vertex orders, depending on L. We also
may specify colors non-greedily for one or two vertices.

Suppose G is an even cycle[| If all lists are identical, then G is L-colorable, since x(G) = 2.
So assume not, and let v and w be adjacent vertices with distinct lists. Color w from L(w)\L(v),
and proceed around the cycle away from v, coloring greedily and ending with v. Thus, G is
L-colorable. This finishes the case that G is an even cycle.

Suppose instead that G is 023 2p, as in Figure Let v and v, denote the 3-vertices, let
x1 and x, denote the 2-vertices adjacent to both v; and vy, and let wy, ..., wa, 1 denote the
vertices of the longer path, with wy <> v;. We color (almost) greedily, but the vertex order we
use depends on L. Once we have colored a vertex z, we denote its color by ¢(z).

Case 1: All path vertices w; have identical lists. If v; and v, have a common available
color o, then we use « on both of them and color greedily in the order x1,x2, w1, ..., Wap 1.
The resulting coloring is proper, since the path vertices alternate colors, so @(wap_1) =
©(w1) # @(v1) = @(v2). Assume instead that v; and v, have no common color. Now
Pigeonhole implies that one 3-vertex, say vi; by symmetry, has a color « € L(v;) that is
available for at most one of its neighbors, say either wy or x;. If & € L(x1), then we use o
on vi, and color greedily in the order xi, v2, X2, W2p_1,...,W1. Otherwise, « is available
for no neighbor of v; other than w;. So now we use « on v, and color greedily in the order
Wi,... ,W2p—1, Va2, X1, X2.

Case 2: Vertices w; and wj; have distinct lists, for some i € [2p — 1]. Let 07 be
the vertex order wi, ..., W1, V1,X1,X2,V2, Wap_1, ..., Wi41, and let o, be the reverse of 07.
We color by either o7 or oy, with each vertex colored greedily, except for wi, x1,xy in o7
and wji1,X1, X2 in 03. Suppose we color w; with « € L(w;) \ L(wiy1), and try to color
greedily by o1, but we fail. We must fail at v, since every other vertex (except for wi, 1) has
only a single neighbor colored before it. So, after coloring w; through v; by o7, we cannot
extend the coloring to {x1, X2, Vo}. There must exist colors 3 and 'y such that L(vy) = {B, v},
L(x1) = {B,@(v1)} and L(x2) = {y, @(v1)}. Note that L(vy) N L(x1) N L(xz) = 0. Now we
abandon o7 and instead color by o5. Specifically, we color w;q from L(w;i,1) \ L(w;) and

*The 2-choosability of an even cycle, C,, ., is actually implied by the 2-choosabilty of a 0-graph, 05 ,,, since
Capi2a € 0222p. So we prove the first statement explicitly mainly as a gentle introduction to the ideas used to prove
the second.
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Vi
Wy
X1 O
) Wap_1
V2

Figure 1.12: The 0-graph 0,5 5p.

color greedily by o3, except that we choose colors for x; and x, so that we can still color v;.
Since L(vy) N L(x1) N L(x2) = (0, we must succeed. O

The converse of Lemmal1.34]is also true. A connected graph is 2-choosable only if its trunk
is 022 2p, Cap, or the empty graph. Proving this requires showing that every other graph has a
subgraph that is an even subdivision of one of six specific graphs and, for each of these graphs H,
constructing a 2-assignment L such that H is not L-colorable. Constructing such 2-assignments
fits better into the context of Chapter[2} so we defer this lower bound to Exercises 2J6| and 27}

The proof of Brooks’ Theorem in Section does not immediately extend to list-coloring,
since it twice uses that a pair of vertices at distance two are colored with a common color, which
may be impossible if their lists are disjoint (however, with one more idea it can be extended;
see Exercise[12). But arguments similar to those used in that proof do yield the following partial
list-coloring analogue of Brooks’ Theorem.

Theorem 1.35. Let G be a connected graph and L be an assignment such that |L(v)| = d(v) for
all v. Now G has an L-coloring if either of the following holds.

@ |L(w)| > d(w) for some vertex w; or
(b) G is 2-connected and not all lists are identical.

Next we prove a full list-coloring analogue of Brooks’ Theorem. In fact, the same proof
works for Alon-Tarsi orientations (so also for paintability), but not for coloring number.

Definition 1.36. A cut-set in a connected graph G is S C V(G) such that G — S is disconnected.
A graph is k-connected if each cut-set has size at least k. A block of a graph G is a maximal
2-connected subgraph. The blocks of G partition its edge set (but not vertex set). A Gallai tree
is a connected graph in which each block is a complete graph or an odd cycle. In the example
Gallai tree in Figure the 15 blocks are, in order approximately from left to right: C7, Ks,
Ks, Ko, Ko, Ky, K3, Cs, Ks, Kg, Ks, K3z, Ky, Ko, Ko. Recall that L is a degree-assignment if
IL(v)| = d(v) for all v. A v, w-path is a path with vertices v and w as its endpoints.

cut-set

k-connected
block

Gallai tree

degree-assignment

v, w-path
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Figure 1.13: A Gallai tree with 15 blocks.

Theorem 1.37. If G is a connected graph, then G is degree-choosable if and only if G is not a Gallai
tree. So X¢(G) < A when G is connected and not a clique or an odd cycle.

To prove Theorem [1.37} the key is showing unavoidability, which we do in Lemma To
prove reducibility (of a configuration H), we L-color G — H by Theorem (a). This differs
from our examples so far, which have colored G — H recursively.

Lemma 1.38 (Rubin’s Block Lemma). If G is a 2-connected graph that is not a complete graph
or an odd cycle, then G contains an induced even cycle with at most one chord.

Proof. Since G is not complete, G has a minimal cut-set S. Because S is minimal, each vertex of
S has a neighbor in every component of G — S. Since G is 2-connected, |S| = 2. Pick v,w € S
and form a cycle C from the union of shortest v, w-paths through each of two components of
G — S, as on the left in Figure Since these paths are shortest, C has at most one chord,
vw. If C is even, then the lemma is true; so assume C is odd. Now one of the v, w-paths P in C
is odd; so if vw is present, then P + vw is a chordless even cycle, and again the lemma is true.
So we assume vw is absent. Thus, C is an induced odd cycle of length at least 5.

Since G is not an induced odd cycle, there exists x € V(G) \ V(C). First suppose that each
such x has at most one neighbor on C, and fix such an x. Let R be a shortest path containing
x and having both endpoints on C. Now C U R induces a subgraph consisting of two 3-vertices
joined by three vertex-disjoint paths. Since two of these paths have the same parity, their
vertices induce an even cycle with at most one chord, as desired.

So instead assume that some x € V(G) \ V(C) has at least two neighbors on C. Denote
these neighbors by vy, ..., vy, in order along C, as on the right in Figure[1.14] These v; partition
the edges of C into paths P;, each with endpoints v; and v 1. If any P; is even, then x U V(P;)
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Vi Vi

Figure 1.14: Left: Paths P; and P, induce a cycle C. Right: Vertex x is not on C, but has
neighbors on C.

induces a chordless even cycle; so assume each P; is odd. If k = 4, then x U V(P1) U V(P3)
induces an even cycle with one chord; so assume k < 3. Since each P; is odd and C is odd, we
must have k = 3. Since C has length at least 5, some P; has length at least 3; by symmetry, say
it is P3. Now again, x U V(P1) U V(P,) induces an even cycle with one chord. O

Proof of Theorem We can easily check that Gallai trees are not degree-choosable, by in-
duction on the number of blocks. We leave the details as Exercise 23

Let L be a degree-assignment for G. Since G is not a Gallai tree, G has a block B that is
neither a complete graph nor an odd cycle. By Lemmal[1.38] B has an induced even cycle with at
most one chord; call this cycle C. Let vw be an edge of C. By Theorem 1.35|@), we can L-color
G — vw, and this L-coloring induces an L-coloring ¢’ of G — V(C). If C is a chordless even
cycle, then we can extend ¢’ to an L-coloring of G, since C is 2-choosable, by Lemma[1.34] So
assume instead that C is a cycle with a chord. Let vy,..., v, denote its vertices; by symmetry
we assume the chord is incident with v;. Since d(v;) = 3 > d(v},), we can color v; with some
color not in L(vp). Now we can color greedily around the cycle, in order of increasing index,
ending with vp,. O

1.2.3 Reducibility for Paint Number and Alon-Tarsi Number

Definition 1.39. Fix a function f : V(G) — Z™. Recall that a graph G is f-paintable if Painter
can always win the f-painting game on G, as in Definition Similarly, a graph G is f-AT
if G has an Alon-Tarsi orientation D such that f(v) > dfg (v) for all v, as in Definition
A graph H is f-paint-reducible if H is f’-paintable, where f’(v) := f(v) — (dg(v) — dn(v)).
(Intuitively, this captures the idea that we can paint G — H “first” and paint H “second”.
But this intuition neglects the subtlety that by the time G — H is painted some vertices of H
might have no colors remaining.) Similarly, a graph H is f-AT-reducible if H is f’-AT, where
f’'(v) :== f(v) — (dg(v) — dn(v)). We define f-list-reducible analogously. When the context is
clear, we often say that H is f-reducible, or simply that H is reducible.

f-paintable
f-AT

f-paint-reducible

f-AT-reducible

f-list-reducible
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Our discussion of reducibility thus far has focused on f-list-reducibility. The point of Defi-
nition is that we can take the same approach for paintability and Alon-Tarsi orientations.
We formalize this intuition in the next lemma.

Lemma 1.40. Suppose we are proving a theorem of the form: (i) Every graph G in hereditary class
§ is f-paintable or (ii) Every graph G in G is f-AT. A hypothetical minimal counterexample to (i)
contains no induced subgraph that is f-paint-reducible; a hypothetical minimal counterexample to
(ii) contains no induced subgraph that is f-AT-reducible.

The analogous statement for list-coloring is trivial. If G contains an f’-reducible induced
subgraph H, then by minimality G — H has an f-list-coloring ¢’. Each v € V(H) loses to ¢’ at
most dg (v) —dp (v) colors used on its neighbors. So v has at least f(v) —(dg(v)—d (v)) colors
remaining. Thus, we can extend ¢’ to an L-coloring ¢, precisely because H is f-list-reducible.
Our approach in proving Lemma is similar, but the details are more numerous and more
technical, since we cannot simply paint H “after” we paint G — H.

Proof. (i) Suppose H is f-paint-reducible. By minimality, G — H is f-paintable; that is, Painter
has a winning strategy A for the f-painting game on the graph G — H. By hypothesis, H is
f’-paintable, with f’ as in Definition So Painter also has a winning strategy, B, for the
f’-painting game on the graph H.

Now we use A and B to show that Painter has a winning strategy for the f-painting game
on G, so G is not a counterexample. On each round 1, Lister lists a set of unpainted vertices, 8.
First painter plays strategy A on G—H, as if Lister listed 8; —H. Suppose A dictates that Painter
paints the subset T;. Next Painter plays strategy B on H, as if Lister listed §; — N[T;]. Say B
dictates W;. Altogether, Painter paints T; U W;. In the painting game that Painter simulates
on H, each vertex v is listed at least f(v) — (dg(v) — di(v)) times (or is painted before that).
Since Painter wins both the f-painting game on G — H and the simulated f’-painting game on
H, Painter wins the f-painting game on G.

(ii) By minimality, G — H is f-AT, so let D1 be an orientation of G — H witnessing this.
By hypothesis, H is f/-AT, so let D, be an orientation of H witnessing this. Now orient G by
directing edges of G — H and of H as in D; and D, and directing all remaining edges away
from V(H). Note that df;(v) < f(v) for all v. We show that D is Alon-Tarsi, that is, that the
number of circulations | of D with ||J|| even differs from the number with ||J|| odd. Let EE and
OE denote these numbers of circulations. Analogously, define EE; and OE4, for D1, and EE,
and OE,, for D».

Note that no circulation ] of D contains edges joining V(H) to V(G — H); if it did, then
in V(G — H) the sum of in-degrees would exceed the sum of out-degrees, a contradiction. So
each circulation of D is the disjoint union of a circulation of D; and a circulation of Dj. In
fact, EE = EE,EE; 4+ OE;OE; and OE = EE;OE; + EE;OE;. We must show that EE — OE # 0.
Since D1 and D are both AT, we know that EE; — OE; # 0 and EE; — OE; # 0. Thus, we have
EE — OF = (EE;EE; + OE;0OE,) — (EE;OF, + EE,OF; ) = (EE; — OF;)(EEy — OE,) #0. O
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1.3 Bigger Reducible Configurations: 3 Easy Applications

Here we present 3 applications that use degree-choosable graphs as reducible configurations. It
is straightforward to modify the proofs to get analogous results for paint number and also for
Alon-Tarsi number. (But that needlessly complicates the exposition, so we omit those details.)

1.3.1 More Injective Coloring

Recall the notion of injective coloring, from Definition Since xH(G) = x(G?)), we write
xk(G) to denote x¢(G(?)). We can also define x%,, AT', and col* analogously.

Theorem 1.41. If a graph G has A < 3 and mad(G) < %, then X%(G) < 4.

Proof. Suppose the theorem is false. Let G be a counterexample minimizing |G|, and let L be
a 4-assignment such that G has no injective L-coloring. Now G has no 1~ -vertex v; otherwise
G — v has an injective L-coloring ¢ by minimality, and we can extend ¢ to v. Similarly, G has
no adjacent 2-vertices, v and w. If so, then G — {v, w} has an injective L-coloring ¢, again by
minimality. Since v and w each have at most 3 neighbors in G(2), we can extend ¢ to v and w.

Let H be the subgraph of G induced by edges incident to 2-vertices. (When we write
k-vertex or k-neighbor, k denotes the degree in G, not in H.) Since adjacent 2-vertices are
forbidden in G, every edge in H has as its endpoints one 2-vertex and one 3-vertex. Note that
every vertex v with dy(v) = 1 is a 3-vertex. If a component H; of H has no cycles, then
it has more 3-vertices then 2-vertices, precisely because a tree has more vertices than edges.
Similarly, if H; has at most one cycle, then it has at least as many 3-vertices as 2-vertices, so

Figure 1.15: Left: ] is shown in bold, as a subgraph of G. Right: G®)[]] has two
components. The component containing w is a cycle, and the other component is a cycle
with a chord.
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|H711| 2 ven, da(v) = % Since d(G) < mad(G) < %, some component H; has more 2-vertices
than 3-vertices. So H; has a cycle C containing a 3-vertex w with dy, (w) = 3, as on the left
in Figure E} Let ] := V(C) U N(w). Since G is a minimal counterexample, G — | has an
injective L-coloring ¢. We must extend ¢ to an injective L-coloring of all of G. For each v € J,
form L’(v) from L(v) by deleting all colors forbidden on v by ¢.

Since C is even, G(2) [J] has two components. Let J; denote the component containing w,
and J, the other component. Each vertex v of J; has one neighbor outside J;, so ¢ forbids at
most 2 colors on v. Further, w has a 2-neighbor outside J;, so ¢ forbids only one color on
w. Thus [L'(v)| 2 2 = dj, (v) for all v € V(]1). Also, [L'(w)| = 3 > dj,(w). So J; has an
L’-coloring @1, by Theorem [1.35(@). Now consider J,. Since each 3-vertex of | other than w
has exactly two 2-neighbors in |, each vertex v of J,, except for the two neighbors of w, has
dy,(v) = 2 and at most two colors forbidden by ¢. The remaining two vertices of J, have
dy,(v) = 3 and at most one color forbidden by ¢. Thus, dy,(v) < [L’(v)| for each v € V(]2).
So ], has an L’-coloring @2, by Theorem (b). Together, ¢, @1, and @, give an injective
L-coloring of G, a contradiction. O

1.3.2 3-Choosability of Planar Graphs

Definition 1.42. In a planar graph, a 10-sun is a 10-face such that each incident vertex v has
d(v) = 3 and v is also incident to a 3-face; see the left of Figure It is easy to check that
10-suns are reducible for 3-choosability, as we do in the proof of Theorem .44} Our interest in
10-suns stems from Lemma [1.43]

Lemma 1.43. If G is a planar graph with 5(G) = 3 and with no cycles of lengths 4 to 9, then G
contains a 10-sun.

Before proving this lemma, we show how to apply it.

Theorem 1.44. If G is a planar graph with no cycles of lengths 4 to 9, then G is 3-choosable.

Proof. Assume the theorem is false. Let G be a minimal counterexample, and let L be a 3-
assignment such that G has no L-coloring. If G has a 2~ -vertex v, then G —v has an L-coloring
¢ by minimality. To extend ¢ to G, color v greedily. So assume 6(G) = 3. By Lemma
G contains a 10-sun f. By minimality, G — V/(f) has an L-coloring ¢. Each vertex v of f has
exactly one neighbor colored by ¢, so v has a list of two allowable colors. Thus, we can extend
@ to G since (by Lemma[1.34) the 10-cycle is 2-choosable. O

Proof of Lemma Assume the lemma is false and G is a counterexample. To get a contradic-
tion, we use balanced charging (as in Lemma[1.16), and the following three discharging rules.

(R1) Each vertex gives 1/3 to each incident 3-face.

(R2) Each 10" -face gives 2/3 to each incident 3-vertex that is incident to a 3-face.
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Figure 1.16: Left: A 10-sun, drawn in bold, has five other adjacent vertices on its five adjacent
3-faces. Right: A 10-face f gives charge to incident vertices via (R2) and (R3). The arrows
—>— and —>— denote, respectively, that f gives the vertices 1/3 and 2/3.

(R3) Each 10" -face f gives 1/3 to each (a) incident 3-vertex that is not incident to a 3-face, (b)
incident 4-vertex that is incident to two 3-faces, and (c) incident 4-vertex that is incident
to one 3-face that shares no edge with f.

Now we show that each vertex and face ends happy, which gives a contradiction. Recall
that ch(v) := d(v) — 4 and ch(f) := {(f) — 4 for all v and f. Note, since G has no 4-cycle, that
each vertex v is incident with at most d(v)/2 3-faces.

Case 1: d(v) = 3. If v is incident to a 3-face, then v gives 1/3 by (R1) and receives 2(2/3)
by (R2), so v ends happy since —1 — 1/3 + 2(2/3) = 0. If v is not incident to a 3-face, then v
receives 3(1/3) by (R3a), so v ends happy since —1 + 3(1/3) = 0.

Case 2: d(v) = 4. If v is incident to two 3-faces, then v ends happy by (R1) and (R3b),
since —2(1/3) + 2(1/3) = 0. If v is incident to one 3-face, then v ends happy by (R1) and
(R30), since —1/3 + 1/3 = 0. If v is incident to no 3-faces, then v clearly ends happy.

Case 3: d(v) =2 5. Now v has at most d(v)/2 incident 3-faces, since G has no 4-cycle. So
v ends happy, since d(v) — 4 — (d(v)/2)/3 = (5d(v) —24)/6 > 0.

Case 4: £(f) =3 or {(f) = 11. If {(f) = 3, then f ends happy by (R1), since —1+3(1/3) =
0. By (R2) and (R3), each face f gives at most 2/3 to each incident vertex. If {(f) > 12, then f
ends happy;, since £(f) —4 — 2£(f)/3 = ({(f) — 12)/3 = 0. If {(f) = 11, then by parity f cannot
give 2/3 to each incident vertex; some incident vertex receives at most 1/3 from f. So f ends
happy, since 11 —4 —10(2/3) —1/3 = 0.

Case 5: £(f) = 10. By assumption, f is not a 10-sun. If f gives 2/3 to at most 8 incident
vertices, then f ends happy, since 10 — 4 — 8(2/3) — 2(1/3) = 0. If f gives 2/3 to at least
9 incident vertices, then f is similar to a 10-sun, with at least one additional edge incident at
some vertex v. But now v gets no charge from f; so f ends happy, since 10—4—9(2/3) =0. O

ch(v), ch(f)
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Given the decision in the proof of Lemma to use balanced charging, our choice of
discharging rules is fairly straightforward. Each 3-face f has initial charge 3 — 4 = —1, so
f needs to receive total charge at least 1. It is natural to take charge for f from its incident
vertices, and the simplest option is to take equally from all 3 incident vertices. This motivates
(Ry). If a 3-vertex v is incident to a 3-face f, then after applying (R1), v has charge —4/3. The
remaining two faces incident to v, say f1 and f,, are both 10" -faces, so each such f; clearly has
extra charge. Again, it is simplest to have v take its needed charge equally from f; and f5; this
motivates (R2). Even after settling on (R1) and (R2), we still have a few types of 4~ -vertices
that need more charge. This motivates (R3). It is a bit more ad hoc, but not difficult to discover.

1.3.3 Planar Graphs with A > 9 are (A + 1)-Edge-choosable
<

In Section 3.1 we show that x’(G) < A + 1 for every graph G. Vizing conjectured the stronger
bound x;(G) < A+ 1. Our next theorem proves his conjecture for planar graphs with A > 9.

Theorem 1.45. If G is planar with A = 9, then xé(G) SA+1.

Each edge vw with d(v) +d(w) < A+2 s clearly reducible for Theorem[1.45| (as we show in
Claim 1). Our other reducible configurations are even cycles with degrees alternating between
3 and A. These are reducible precisely because even cycles are 2-choosable. The rest of the
proof is some clever counting and discharging (which we motivate further below).

Proof. Planar graphs with A = 9 do not form a hereditary class. So instead of Theorem [1.45|
we prove a more general result, which holds for a larger hereditary class: Every planar graph
G satisfies x;(G) < k, where we let k := max{10, A + 1}. Suppose this theorem is false. Let G
be a counterexample with fewest edges, and let L be an edge-k-assignment such that G has no
L-coloring. We prove two structural claims.

Claim 1. Every edge vw has d(v) + d(w) = k + 2. In particular, G has no 2~ -vertices, and if G
has 3-vertices, then A = 9.

Proof. Suppose vw has d(v) + d(w) < k + 1. By minimality G — vw has an L-coloring ¢. The
number of colors ¢ forbids on vw is at most d(v) + d(w) — 2 < k — 1. Since |[L(vw)| = k, we
can extend ¢ to vw, a contradiction. The first statement implies the second and third. &

Let H denote the subgraph induced by edges with an endpoint of degree 3. Clairn implies
that each edge vw of H has d(v) + d(w) = k 4 2. Let n3 denote the numbers of 3-vertices in
G and let na denote the number of A-vertices with a 3-neighbor.

Claim 2. Subgraph H is acyclic; furthermore, if H is non-empty, then 2ns < na.

Proof. When H is empty, the lemma holds trivially, so assume it is not. Suppose that H contains
some cycle C. Since H is bipartite, the degrees along C alternate 3, A, ..., 3, A. By minimality,
G — E(C) has an L-coloring ¢. For each e € E(C), form L’(e) from L(e) by deleting all colors
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forbidden on e by ¢. The number of edges incident to e and notin Cis 3+ A —2(2) = A—1.
Thus, we always have |[L’(e)] = k — (A — 1) > 2. Since even cycles are 2-choosable (so also
edge-2-choosable), we can color E(C) from L’. Together with ¢, this gives an edge-L-coloring
of G, a contradiction. Thus H is acyclic, so it has fewer edges than vertices. Now ||H|| = 3ns
and |H|| < [H| = n3 + na. So 3n3 < n3 + na, which implies the desired inequality. O

We show that every planar graph G violates either Claim 1 or [2| Fix a plane embedding
of G and let F denote its set of faces; we use balanced charging. We also use a “bank”, which
starts with charge 0. To reach a contradiction, we show that each vertex and face ends happy,
and the bank does too. We use two discharging rules, applied in succession.

(R1) Every A-vertex with a 3-neighbor sends 1/2 to a central bank, and every 3-vertex takes
1 from the bank.

(R2) Every 5T -vertex splits its charge after (R1) equally among all incident 3-faces.

Since 2n3 < n, by Claim[2] the bank ends happy. Each 3-vertex v gets 1 by (R1), so v ends
happy. Each 4-vertex starts and ends with 0. Each 5" -vertex ends happy, by (R2). Similarly,
each 41 -face starts and ends happy. So we only need to check that each 3-face ends happy.
The following claim is helpful.

Claim 3. By (R2), each 3-face gets at least 1/5 from each incident 5-vertex; at least 1/3 from each
6-vertex; at least 3/7 from each 7-vertex; and at least 1/2 from each 8 -vertex.

Proof. By Claim 1, every A-vertex with a 3-neighbor is a 9" -vertex. So for each p € {5, 6, 7, 8},
the charge f receives from a p-vertex is at least (p — 4)/p, as stated. For p = 9, the charge is
at least (p —4 — 1/2)/p. This expression equals 1/2 when p = 9, and it increases with p. <

Consider a 3-face f, and let p be the smallest degree of any vertex incident to f. Since f has
initial charge —1, it must receive at least 1; Figure shows two examples. By Claim |1, each
edge vw satisfies d(v) + d(w) = k+ 2 = 12. If p = 6, then f gets at least 3(1/3). If p = 5,
then f gets at least 1/5 + 2(3/7). If p € {3, 4}, then f has two incident 8 -vertices, so gets at
least 2(1/2). Thus we are done, since all faces, all vertices, and the bank end happy. O

1/3

Figure 1.17: Two examples of triangles that finish with charge 0.
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As is often the case, we can start writing the proof of the previous result before we know
what we will prove. More precisely, we know the whole statement of Theorem [1.45| except
for the lower bound on A, which we aim to minimize as we work out the details of the proof.
Below we provide more intuition about this process.

Similar to the proof of Lemma [1.43} once we choose balanced charging, we need to find
charge 1 for each 3-face and for each 3-vertex (Claim [1, which is typical for such proofs,
ensures that 6(G) = 3). A first attempt might be to have each 3-vertex take charge 1/3 from
each neighbor (which, by Claim1jmust be a A-vertex). However, with this approach, a A-vertex
v might lose as much as A/3 to 3-neighbors, which would compromise V’s ability to give charge
to 3-faces. However, here Claim [2| comes to our rescue; essentially, it says that each A-vertex
should need to sponsor (that is, supply the needed charge for) on average only half of one
3-vertex. (R1) is how we make this intuition formal. And (R2) is an obvious first try to get the
needed charge to 3-faces.

Having settled on (R1) and (R2), but not yet having formulated Claim |3| or the analysis
afterward, we can be confident that we will get a complete proof, at least when A is big
enough. Here’s why. As d(v) grows, the charge that v sends, by (R2), to each incident 3-face
tends to 1. By Claim each such f must have at least two (A/2) " -vertices. So when A is big
enough, we will win. (More formally, each 3-face receives total charge no less than arbitrarily
close to 2.) Claim3|and the analysis that follows simply calculates how big is big enough.

1.4 A Harder Application:
Squares of Planar Graphs with Girth at Least 6

In this section we prove that if G is planar with girth at least 6 and A > 295, thenx,(G?) < A+2.
This bound is best possible: For every D = 3, there exists a planar graph Gp with A = D and
girth 6, such that X(G%) = D +2, as we will see in Section The hypothesis bounding A can
be weakened significantly, as we discuss in the Notes. But we present the theorem as stated,
since it admits a simpler proof. As usual, we prove a more general result.

Theorem 1.46. If G is planar with girth at least 6, then x¢(G?) < max{295, A(G)} + 2.

The proof of this result uses discharging. Because it is longer than any we have seen yet,
we dedicate Section to reducibility, and Section to unavoidability. In both sections,
we use the following definitions.

Definition 1.47. Assume Theorem is false. Let G be a counterexample with the fewest
edges, let k := max{295,A(G)}, and let L be a (k + 2)-assignment such that G2 has no L-
coloring. Such a pair (G, L) is a minimal counterexample. Vertices v and w are weak neighbors
if they have a common 2-neighbor, but are not adjacent. Recall that N?(v) denotes the neighbors
of vin G2. An s-thread in G is a path with s internal vertices, each of which has degree 2 in G.
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1.4.1 Reducible Configurations

The following simple lemma is crucial. It implies that, for every edge in G, either an endpoint
has high degree or an endpoint has a neighbor with high degree. This suggests that low degree
vertices will have high degree vertices nearby, to give them enough charge to end happy.

Lemma 1.48. Let (G,L) be a minimal counterexample, and choose vw € E(G) such that
IN2(v)| < [N2(w)|. Now either [N2(v)| =k + 2 or [N?(w)| = k + 3.

Proof. Suppose the contrary. By minimality, (G — vw)? has an L-coloring. Uncolor v and w;
now greedily color w, followed by v. This gives an L-coloring of G2, a contradiction. O

Lemma 1.49. Let (G, L) be a minimal counterexample. Now (i) 6(G) = 2; (ii) G has no 3"-
thread, and every 2-thread has a k-vertex at each end; and (iii) the subgraph induced by 2-threads
is acyclic.

Proof. (i) If G has a 1~ -vertex v, then let H := G — v. By minimality, H? has an L-coloring
@, and we extend ¢ to G2 by coloring v greedily. (ii) Suppose G has either (a) a 37 -thread,
beginning with 2-vertices v and w or (b) a 2-thread with 2-vertices v and w, and w adjacent to
a (A — 1)~ -vertex. Let H := G — {v,w}. By minimality, we L-color H2. Now we greedily color
v followed by w. This gives an L-coloring of G2, a contradiction. (iii) Suppose to the contrary
that the subgraph induced by 2-threads has a cycle C. Form H from G by deleting all 2-vertices
on C. By minimality H? has an L-coloring ¢. The uncolored 2-vertices on C induce in G2 an
even cycle. Each 2-vertex has A colored neighbors in G2, so at least two available colors. Thus,
we can extend ¢ to an L-coloring of G2, precisely because even cycles are 2-choosable. O

We need one more important reducible configuration. To motivate it, we say a bit about
the initial charges and discharging rules. Initially, each vertex v has charge 2d(v) — 6 and each
face f has charge {(f) — 6. Intuitively, high degree vertices split their charge equally among
their neighbors. Since G has girth at least 6, each face is happy. Also, each 3" -vertex is happy.
So we just need to get more charge to 2-vertices. By Lemma G has fewer 2-threads than
A-vertices, so 2-vertices on 2-threads can receive charge from A-vertices without much trouble.
But G can also have many 2-vertices on 1-threads. Each such 2-vertex v needs charge 2, so
we want v to take 1 from each neighbor. Now consider a 3-vertex v with a A-neighbor and
two 2-neighbors (such as vs in Figure [1.18). Each 2-neighbor takes 1 from v. As A grows, the
amount that v gets from its A-neighbor approaches 2, but is always less. To end happy, v needs
a little extra charge from somewhere.

If vis on a 7" -face f, then v gets this charge from f. Often v can also get some charge from
an incident 6-face, if f got charge from incident vertices. But some 6-faces have no incident
vertices that can give them charge. A 6-face cannot give v charge if the degrees of its incident
vertices, in order, are A, 3, 2, 3, 2, 3, and each incident 3-vertex has a A-neighbor and two weak
neighbors of small degree, as is true of vertex vs in Figure Our final reducible configuration
shows that G has no 3-vertex incident to three such 6-faces. Thus, some incident face f will
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Yz Ws Ya

Figure 1.18: A reducible configuration for Theorem here a 3-vertex vj; lies on three 6-faces, each
of which has vertices with degrees 3, 2, 3, 2, 3, A, and none of these vertices has too many vertices at
distance two (except for possibly the A-vertices). More precisely, the label in each vertex denotes its
degree, and s stands for small, which means degree at most 59.

give charge to v whenever v is a 3-vertex with a A-neighbor and two weak 3-neighbors. The
particular amount of charge, ¢, that v gets from f is less important, as long as it is constant.
For each ¢ > 0, we can increase A until ZAAfé = 2 — ¢, which simplifies to A = % Of course,
as ¢ increases our hypothesis A > g becomes weaker, which yields a stronger result. In the
proof we will let ¢ := 1/10, which requires A = 60. So, in fact, the hypothesis A > 295 arises
elsewhere (specifically, in Case 3).

Lemma 1.50. The configuration in Figure is reducible for Theorem That is, it cannot
appear as an induced subgraph of G in a minimal counterexample (G, L).

Proof. Suppose instead that G contains this configuration. Form H from G by deleting every
2-vertex and 3-vertex in Figure By minimality, H? has an L-coloring . To extend ¢ to G2,
greedily color v3. Now the remaining uncolored 3-vertices (v, Wz, W4, vs) induce a 4-cycle in
G2. Each 3-vertex has at least two allowable colors; thus, we can color the 3-vertices, since the
4-cycle is 2-choosable. We now greedily color the remaining 2-vertices, since each has at most
59 + 3 neighbors in G2. O

1.4.2 Discharging

Definition 1.51. A vertex v is big if d(v) = 60 and is small if 59 = d(v) = 3. A 3-vertex is
special if it has at least two 2-neighbors.
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Lemma 1.52. Let (G,L) be a minimal counterexample. When we use face charging and the
following seven discharging rules, shown in Figure every vertex and face (and the bank) ends
happy. Thus, no minimal counterexample exists, so Theorem [1.46]is true.

(R1) Each 2-vertex on a 1-thread takes 1 from each neighbor. Each 2-vertex on a 2-thread takes
2 from the bank, and each A-vertex at the end of a 2-thread sends 4 to the bank.

(R2) Each special vertex takes 19/10 from each big neighbor, and each non-special small vertex
takes 3/2 from each big neighbor.

(R3) Each small vertex (possibly special) takes 9/10 from each big weak neighbor:
(R4) Each special vertex takes 1/10 from each small weak neighbor.

(R5) Each 3-vertex with a 2-neighbor and two small neighbors takes 1/20 from each small
neighbor.

(R6) Each special vertex takes 1/5 from each incident 7" -face.

(R7) Let f be a 6-face with incident big vertex v. Now f takes 1/5 from v unless both neighbors
of v along f are special, and f splits this 1/5 equally among incident special vertices.

Before analyzing final charges, we motivate some of these rules. Most of our work goes into
getting enough charge to 3-vertices, particularly special vertices. By Lemma Ghasno17-
vertex and no 3*-thread. Further, every 2-thread has A-vertices at its ends, and the subgraph
induced by the 2-threads is acyclic. Thus, G has fewer 2-threads than A-vertices ending those
2-threads. So (R1) ensures that all 2-vertices end happy and the bank ends happy, while each
A-vertex loses at most A + 4. Big vertices can afford to send in each direction 2(62376 = %.
Rules (R2)-(R4) send charge from big vertices to small vertices (including special vertices), and

from small vertices to special vertices. To get more charge to special vertices, we add (R5)-(R7).

Proof. First we show that the faces and bank end happy. By Lemmalt.49} G has fewer 2-threads
than A-vertices at the ends of these 2-threads. So the bank ends happy. Each 7" -face f has at
most %ﬁ(f) incident special vertices, since each special vertex has a 2-neighbor on each incident
face. Thus, each 7" -face f ends happy, since {(f) — 6 — %(%E(f)) = %B(f) —6 > 0. Each 6-face
starts with 0 and sends only what it receives, so ends happy.

Case 1: v is a big vertex. We show that the total v sends to its neighbors, weak neighbors,
and incident faces is at most %d(v). Consider a neighbor w of v. If w is special, then w
takes % by (R2). If w is small and non-special, then w takes %, by (R2), and the two faces
incident to vw each take at most %, by (R7), for a total of %. Finally, if w is a 2-vertex, then w
takes at most 1, by (R1), and the other neighbor of w takes at most 19—0 by (R3), again a total
of %. If v sends no charge to the bank, then v ends happy since 2d(v) — 6 = %d(v) when
d(v) = 60. If v does send charge to the bank, then let viwxy be a 2-thread starting at v. By
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Figure 1.19: Examples of (R1)-(R7) in Lemmam

applying Lemma [1.48| to edge wx, we see that max{|N?(w)|, [N?(x)[} = A+ 2 > k + 2 > 297;
so A = 295. Thus, v ends happy, since 2A — 6 — 4 = %A.

Case 2: v is a small 6 -vertex. By (R1), (R4), and (Rs) v sends at most 1 + {; in
each direction. If v has a 3" -neighbor w, then v sends w at most %, by (Rs5), so v ends
happy, since 2d(v) — 6 — (d(v) — 1)(1 + 1—10) — % = 1%d(v) — % = %(d(v) — 12—1) > 0.
Otherwise, v has only 2-neighbors. Applying Lemma to each edge incident to v shows
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that every weak neighbor w of v is big, so w sends % to v. Thus v ends happy, since
2d(v) —6—(1—F)d(v) = B(dv) — &) > 0.

Case 3: Vv is a 4-vertex or 5-vertex. Suppose thatv has a big neighbor w. By (R2), v takes %
from w. Now v sends at most 1+ % = % in the direction of each neighbor other than w, by (R1),
(R4), and (R5). Thus, v ends happy, since 2d(v) — 6 — %(d(v) —1)+ % = %d(v) — % > 0. So
suppose instead that v has no big neighbor. Now Nz(v)‘ < 59d(v) < 295 <k, so Lemma
implies that each weak neighbor of v is big. Thus, the net charge that v sends in each direction
is at most max{1 — 19—0, %} = 11—0, either by (R1) and (R3) or by (R5). So v ends happy, since
2d(v) — 6 —d(v)(15) > 0.

Case 4: v is a 3-vertex. Suppose v has no 2-neighbors. If v does not send charge by (Rs),
then v does not send any charge, so v ends happy. Now suppose v does send charge by (R5),
say to a 3-neighbor w. Since |[N3(w)| < k, Lemma implies that [N?(v)| > k = A, which
means that v has a big neighbor. So v ends happy, because 3(2) — 6 — 2(%) + % > 0.

Suppose v has exactly one 2-neighbor. If v has no big neighbor, then |N2(v)‘ < k, so
Lemma [1.48| implies that every neighbor of v has a big neighbor. Thus, v has a big weak
neighbor, w. Now v gets % from w, by (R3), and 2(%) from its 31 -neighbors, by (Rs5), so v
ends happy, since 2(3) —6—1 + 1% + 2(21—0) = 0. If v has a big neighbor w, then w sends % to
v by (R2). Thus, v ends happy, since 2(3) —6 — (1 + &) — & + 3 > 0.

Suppose v is special. We first consider the case that v has three 2-neighbors, since it is
easier. By Lemma [1.48], each weak neighbor of v is big, which implies that v gets charge from
each incident face f, by (R6) or (Ry). If {(f) = 7, then f sends % to v by (R6). Otherwise,
suppose £(f) = 6. Now f has at least two incident big vertices (neighbors of the 2-neighbors of
v along f), and each incident big vertex w has a non-special neighbor along f (its 2-neighbor in
common with v), so each w sends % to f. Further, f has exactly one incident special vertex, v,
so v gets at least % from f. Thus, v is happy, since 2(3) — 6 — 3(1) + 3(1—90) + 3min{%, %} > 0.

Finally, suppose that v has exactly two 2-neighbors. If v has a small neighbor, then both
weak neighbors of v must be big, by Lemma So each big weak neighbor sends 1% to v, by
(R3). As above, the face incident with v and its two weak neighbors sends at least % tov. Sov
ends happy, since 2(3) —6 —2(1) + 2(1%) + % = 0. Thus, we assume that v has a big neighbor.

If either weak neighbor, w, of v is non-special (either big or small), then w sends v at least
5, by (R3) or (R4). Now v ends happy, since 2(3) —6 — 2(1) + % + % = 0. (When special
vertices are weak neighbors, the charge they send each other by (R4) cancels.) So assume that
v has a big neighbor and two special weak neighbors. Suppose that v has a 2-neighbor w and
the other neighbor of w, call it x, is a special vertex without a big neighbor. Now edge wx
violates Lemma a contradiction. Thus each special weak neighbor of v has a big neighbor.

Ifvisona 7" -face f, then f sends v at least %, so v ends happy, since 2(3)—6—2(1)4—%—#% >
0. Thus, we conclude that v is on three 6-faces. By Lemma these three incident 6-faces
are not as shown in Figure with v in the role of v3. So at least one face f incident to v
receives % from an incident big vertex and sends at least % to v, by (R7). Again, v ends happy,
since 2(3) —6—2(1) + 2 + L =o0.

Case 5: v is a 2-vertex. Now v ends with 0, by (R1). O
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Notes

Proposition [1.5| and Lemma [1.23] are due to Szekeres and Wilf [369]]. Lemmas [1.6] and are
folklore. Injective coloring was introduced by Doyon, Hahn, and Raspaud [121]. Theorem [1.13]
and the sharpness example H—v are due to Cranston, Kim, and Yu [93]]; so is [94] Theorem|i.41

Theorem gives an easy upper bound on the maximum chromatic number of a graph
embeddable in an arbitrary surface S. This bound was proved by Heawood [212], who believed
(incorrectly) that he had also shown equality. Proving a matching lower bound reduces to
the problem of determining, for each n, the minimum Euler genus of a surface into which K,
embeds. This problem splits into 12 cases, depending on the value of n mod 12. Throughout
the 1960s, different groups contributed to the effort, and in 1968 Ringel and Youngs [343]]
announced a complete proof. Dirac [118] strengthened Heawood’s upper bound by showing
that if G satisfies inequality with equality, then G contains as a subgraph a complete graph
of order col(G). More precisely, Dirac proved this for all but a few exceptional surfaces. These
remaining cases were handled by Albertson and Hutchinson [g]]. This strengthening is clearly
false for the plane (as Dirac observed), and it is also false for the Klein bottle.

The Discharging Method is one of the most widely used techniques in graph coloring. For a
thorough treatment of this topic, we recommend “An Introduction to the Discharging Method
via Graph Coloring”, by the author and West [[105], as well as the extended version “A Guide to
the Discharging Method” [104]. As we mentioned in Section[1.1.3} discharging is used to prove
unavoidability. But to get our coloring theorems, we must also prove that each configuration
in our unavoidable set is reducible for the coloring problem of interest.

In the present book we group these results by the method used for reducibility, rather than
that used for unavoidability. As a consequence, this book has no chapter dedicated solely to
discharging. However, to the reader seeking one, we offer the following suggested reading list

which may comprise a “virtual chapter”. Introductory: Sections Theorem
Lemma Lemma Lemma Theorem Theorem Proof of Theorem [12.2]
(near the end of Section [12.1.1), Proof of Theorem (near the end of Section [12.2)), and
Section [12.3.2] Advanced: Section 1.4, Lemma[4.37, Section[12.5.1 and Section

Balogh, Kochol, Pluhar, and Yu [32] proved a stronger version of Lemma every planar
graph has a 5~ -vertex with at most two 117 -neighbors. This version is sharp, as shown by
Example The main difference in their proof is that if two 4-vertices are adjacent, then
each receives less charge from each high degree vertex that is a neighbor of both, and more
charge from each high degree neighbor that is not adjacent to the other 4-vertex. This result
was refined further by Harant and Jendrol [202], who strengthened the upper bounds on the
degrees of the neighbors of the 5 -vertex other than the two neighbors with largest degrees.

Wegner [411] conjectured that every planar graph G with A > 8 satisfies x(G2) < 1+ [%AJ
(This bound is best possible, as witnessed by the construction in Exercise 2J5]) Lemma/t.19]was
implicit in work of Jonas [232]. Theorem is due to van den Heuvel and McGuinness [397];
for every planar G, they showed that col(G?) < 2A + 25. Their main extra work, beyond what
we presented, was proving a more technical asymmetric version of Lemma and proving
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stronger lemmas when A is small. (This more technical asymmetric lemma was later subsumed
by the work of Harant and Jendrol mentioned in the previous paragraph.)

Agnarsson and Halldérsson [[3]] and Borodin, Broersma, Glebov, and van den Heuvel [53}[54]]
both showed that col(G?) < [%A] + 1 for A sufficiently large. Exercise [0l demonstrates that
this bound is sharp. Molloy and Salavatipour [308]] used a complicated discharging argument
to show that every planar G satisfies x(G?) < (%M + 78; this is the best progress towards
Wegner’s Conjecture (at least when A is not too big).

Asymptotically, Wegner’s conjecture was confirmed by Havet, van den Heuvel, McDiarmid,
and Reed [205]. They showed that if G is planar then x,(G?) = %A(l +0(1)). Suppose G is a
planar graph. Wegner also conjectured that x(G2?) < 7 when A = 3 and x(G?) < A + 5 when
4 < A < 7. Nearly 40 years after Wegner posed this problem, two groups confirmed the case
A = 3: Thomassen [384]] and Hartke, Jahanbekam, and Thomas [204]. The first paper used
a detailed structural analysis. In contrast, the second paper used a relatively straightforward
discharging argument (to prove unavoidability) with extensive computer case-checking (to
prove reducibility).

Brooks [74] proved his eponymous theorem in 1941, and it has frequently been reproved
and strengthened. We mainly follow Zajac [[426]], which in turn slightly simplifies Lovasz [[288]].
For numerous alternate proofs, see [99].

List-coloring was introduced by Vizing [402] (on one side of the Iron Curtain) and in-
dependently by Erdés, Rubin, and Taylor [152] (on the other side). The former paper proved
Theorem[i.35} and also Brooks’ Theorem for list-coloring. The latter characterized both degree-
choosable graphs, also done by Borodin [49]], and 2-choosable graphs; it also proved Proposi-
tion and determined the asymptotics of X¢(Kn n ). This paper was highly influential, due to
its wealth of ideas and open questions. The authors conjectured that (i) every planar graph is
5-choosable and (ii) some planar graph is not 4-choosable. They were right on both accounts.
Thomassen [|376]] proved (i), which we state as Theorem Voigt [403] confirmed (ii), which
is Theorem 2.3} Explaining the origin of the problem, Erdés, Rubin, and Taylor wrote:

It got started when we tried to solve Jeff Dinitz’s problem. .. Given a m x m array
of m-sets, is it always possible to choose one from each set, keeping the chosen
elements distinct in every row, and distinct in every column? To the best of our
knowledge Jeff Dinitz’s problem remains unsolved for m = 4.

A moment’s reflection shows that Dinitz was asking whether x (K, m) = m. In Theorem |s.11|
we will see more generally that x;(G) = A for every bipartite graph!

Rubin’s Block Lemma (Lemma appeared in [152], where it was was attributed to
Rubin. The proof given was a tedious case analysis, so a few years later Entringer [149] gave a
shorter proof. In 2010 Hladky, Kral, and Schauz [219] gave one that is even shorter; this is what
we presented. In fact, Rubin’s Block Lemma appeared as early as 1963 in work of Gallai [[169),
Theorem 1.9].

Alon and Tarsi [20] proved that x¢(G) < AT(G); we revisit the Alon-Tarsi Theorem in
Chapter (8| Paintability was introduced by Schauz [354] and by Zhu [435]]. Schauz modified
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the proof of Theorem to show that planar graphs are 5-paintable. He later strengthened
the Alon-Tarsi Theorem [355] to show that always x, (G) < AT(G). Zhu proved that x, (G) <
X(G)1g|G| 4 1 by generalizing the proof in Section that X, (K n) <lgn+ 2.

Grotzsch [185]] proved that triangle-free planar graphs are 3-colorable, which is Theo-
rem This result inspired many questions on 3-colorability of planar graphs without cycles
of certain lengths. Steinberg (see [7]) conjectured that a planar graph is 3-colorable when it
has neither 4-cycles nor 5-cycles. The question seemed hard, so Erdés generalized it: What is
the smallest integer k, if it exists, such that a planar graph is 3-colorable if it has no cycles of
lengths 4 to k? Abbot and Zhou [1] proved that k < 11. Theorem [1.44|shows that k < 9. The
result is due to Borodin [52] and also to Sanders and Zhao [351]. The current best bound is
k < 7, by Borodin, Glebov, Raspaud, and Salavatipour [59]]. Cohen-Addad, Hebdige, Kral’, Li,
and Salgado [89]] disproved Steinberg’s Conjecture; see Theorem Thus, k € {6, 7}.

Vizing [398},[399] proved that x’(G) < A+ 1 for every graph G; we will see three proofs in
Section He conjectured that also x;(G) < A+1. Theorem due to Borodin [50], verifies
this for planar graphs with A = 9. Our proof follows Cohen and Havet [[88]. Bonamy [43]
strengthened this result to include planar graphs with A = 8. Borodin [50]] also proved that
X¢(G) = A for planar graphs with A > 14, which we leave as Exercise Borodin, Kostochka,
and Woodall [69]] extended the result to planar graphs with A = 12; this is Theorem [5.24

Wang and Lih [409] conjectured that for each g = 5 there exists Dy such that X(GZ) =
A(G)+1 when G has girth at least g and A(G) = D. Borodin et al. [56]] proved this for g = 7
and disproved it for g € {5, 6}; these results were later extended to list-coloring [62], for which
it suffices to let D7 := 30.

For g = 6, Dvotdk, Kral’, Nejedly, and Skrekovski [132] showed that a single extra color
suffices, when A(G) is large enough. They proved Theorem with 8821 in place of 295
(they stated the result only for coloring, but their proof also works for list coloring). Our
presentation more closely follows Borodin and Ivanova [61]], who improved 8821 to 36.

All of these (upper bound) results in the previous two paragraphs were subsumed by work
of Bonamy, Lévéque, and Pinlou [47], who proved that x¢(G2?) < A(G) + 2 when A(G) > 17
and mad(G) < 3 (this includes all planar graphs of girth at least 6, by Lemma1.6). For planar
graphs with girth at least 5, Bonamy, Cranston, and Postle [45] showed that x;(G?) < A(G)+2
when A(G) is sufficiently large. These ideas were extended by Choi, Cranston, and Pierron [[83]]
to prove the same result for planar graphs with no 4-cycle.

Exercises
Most exercises have a hint provided in a Hints section near the end of the book["]

1.1. For each positive integer k, construct a tree T and vertex order o such that coloring T
greedily by o uses k colors.

"The absence of a link to the Hints section is intentional; it supports the aim of encouraging the reader to try to
solve the problem before reading the hint.
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1.2.

1.3.

1.4.

1.5.

1.6.

1.7.

1.8.

1.9.

1.13.

1.14.

1.15.

Recall from Example that the Heawood graph H is the incidence graph of the Fano
plane, so it is vertex-transitive. Show that mad(H —v) = 36/13.

(@) A graph is chordal if it has no induced chordless 4" -cycle. And a vertex is simplicial if
its neighborhood is a clique. Show that every chordal graph G contains a simplicial vertex.
Thus, col(G) = x(G) = w(G). (b) A graph is interval if each vertex can be represented
by an interval on the real line so that two vertices are adjacent precisely when their
intervals intersect. (Every interval graph is a chordal graph.) Given an interval graph
G, find a simple description of a vertex order o such that coloring G greedily using o
produces an optimal coloring.

Prove that x(G) + x(G) < |G| for every graph G. [[325]

Let G be a plane graph. Fix a constant g > 0. Assign to each face f charge {(f) — g and
to each vertex v charge %d(v) — g. Show that the sum of these charges is negative.
For a planar graph with girth at least g, show that this implies the result of Lemma 1.6}
that mad(G) < gi%.

For each g > 3 construct an infinite family of examples for which the bound on ||G|| in
Lemma [1.6| holds with equality. [97]

Construct an efficient algorithm that, given a graph G, computes mad(G). [229]
Prove Lemma

A graph G is k-critical if x(G) = k and x(H) < k for every proper subgraph H of G.
In particular, this implies 6(G) = k — 1. Prove that for every k = 8 and surface S, the
number of k-critical graphs embeddable in S is finite.

. For each k > 9, construct a planar graph Gy with A(Gy) =k and §(G2) = Pk]

5

. Provide the details needed to prove Theorem [1.35

. Extend the proof we gave for Theorem to prove the analogous result for list-

coloring. [426] (Essentially, the same proof works for correspondence coloring, which
we will study in Section[4.4])

Characterize degree-paintable graphs and degree-AT graphs. [219]]
Strengthen Theorem by requiring only mad(G) < 3. [94]

Give a more careful analysis of the proof of Lemmal|1.43] to show that if G is planar with
no cycles of lengths 4 to 9, then G contains at least twelve 10-suns. This is best possible,
as witnessed by the truncated dodecahedron.
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1.16

1.17.

1.18.

1.19.

1.20.

1.21.

CHAPTER 1. GREEDY COLORING

Give an alternate proof of Theorem by using face charging, rather than balanced
charging, as in the text. [[105, Lemma 3.10]

Let G be a graph with A > 4. Show that x}(G) < A + 1 when mad(G) < % and
x*(G) = A when mad(G) < %. 931

Modify the proof of Theorem to avoid using a bank. Instead, explicitly assign each
3-vertex two A-neighbors that it takes charge from, so that each A-vertex loses charge to
at most one 3-neighbor.

Prove that X{) (G) = A for every planar graph G with A > 14, by modifying the proof of
Theorem 501

A total coloring assigns colors to edges and vertices so that elements receive distinct colors
when they are adjacent or incident. The total chromatic number, x" (G), is the smallest
number of colors in a total coloring of G. Adapt the proofs of Theorem and the
previous exercise to prove that x;(G) = A+ 1 when G is planar with A > 14 and
x¢ (G) < A+ 2 when G is planar with A > 9. [50]

Are the upper bounds on x{a in Theorem and on X{, (G) in Exercise [19| also upper
bounds on AT’? Explain why or why not? Do the bounds on X/’ in the previous exercise
extend to AT"'?



Chapter 2

Gadgets:
Constructions for Lower Bounds

gadget: a small device or machine with a particular purpose
—Cambridge Dictionary

What is so brilliant about the gadgets is their simplicity.
—Desmond Llewelyn

In the previous chapter we proved upper bounds on x(G) and x¢(G) for all G in various
sparse graph classes. These included planar graphs, planar graphs with bounded girth, graphs
on surfaces, and graphs with bounded maximum average degree. To understand how strong
these upper bounds really are, we now seek lower bounds.

The simplest coloring lower bound is the fact that x(K;, ) = n. This is true because, among
the n vertices, each pair must get distinct colors. A gadget in a graph G is a subgraph that
ensures that every coloring of G satisfies some property, often that some specific set of vertices
are not colored in a prescribed way. In K,, the gadgets are edges, and each edge ensures
that its endpoints get distinct colors. Many constructions of lower bounds for coloring and
list-coloring problems are best understood from this viewpoint. Typically the graph classes that
we study impose sparseness conditions that forbid large cliques. This leads us to search for
more interesting gadgets.

2.1 Girth 6 Planar Graphs with x(G?2) > A(G) + 2

Since a A-vertex and its neighbors in G induce a clique in G2, every graph G satisfies x(G?2) =
A(G)+1. In Sectionwe proved that x¢(G2) < A(G) +2 for every planar graph G with girth

43

gadget
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at least 6 and A sufficiently large. It is natural to ask whether we can strengthen this upper
bound to match the trivial lower one. The answer is yes when G is planar with girth at least 7
and A = 30, as we mentioned in the Notes of Chapter [t} But for girth 6, our upper bound is
best possible, as we show next.

Theorem 2.1. For all k > 3, some planar graph Gy has girth 6, A=k, and x(G%) = k + 2.

Proof. Consider graph G;, on the leftin Figure where d(w) = k. Let w’ denote the neighbor
of v. For any (k + 1)-coloring ¢ of (G{<)2, we have @(v) # @(x), as follows. By symmetry,
assume that @(w) =1, @(w’) = k + 1 and the other k — 1 neighbors of w each get a distinct
color from {2,...,k}. So @(x) € {1,k + 1}, but ¢ (v) ¢ {1,k + 1}; thus, @(v) # @(x). Now
consider Gy, on the right in Figure Let S := {x1,...,Xk—1,V,Y,z}. Since S\ {v} induces
K41 in G2, if @ is a (k + 1)-coloring of G2, then @ (v) = @(x;) for some i € [k — 1]. But this
contradicts our earlier analysis of Gj,. Thus, x(G%) > k + 2. O

Figure 2.1: Left: In any (k 4 1)-coloring of (G} )2, the 1-vertex v and the (k — 1)-vertex x must receive
distinct colors. Right: Hence, no (k + 1)-coloring of G2 is possible; so x(G%) = k + 2.

In the proof of Theorem the gadgets are the copies of G;.. Each gadget ensures that
our coloring of G2 uses distinct colors on v and x;, for some specific value of i. Together, the
gadgets force the color on v to differ from the colors used on all vertices in S \ {v}.

2.2 Girth 6 Graphs with Arbitrary Chromatic Number

In the 1940s and 1950s, various authors constructed triangle-free graphs with chromatic number
arbitrarily large. But do there exist graphs with both chromatic number and girth arbitrarily
large? Erd6s answered this question affirmatively, using a probabilistic argument. However,
for many years no explicit construction was known.
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Figure 2.2: Each subset of S of size |G| has some perfect
matching to a copy of Gy.

Eventually, Lovasz did construct such graphs deterministically, and we will do so at the end
of this chapter. As a warmup, here we construct graphs with chromatic number arbitrarily large
and with girth 6.

Theorem 2.2. For each integer K, there is a graph Gy with girth at least 6 and x(Gy) > k.

Proof. We use induction on k, with base case G; = Ks. To form Gy 1, start with an independent
set I of size (k + 1) |Gy| — k and ((kH')GIf"‘I_k) disjoint copies of Gy. For each |Gy|-element
subset S of I, add any perfect matching between S and the vertex set of a distinct copy of Gy.

See Figure

First we check the girth of Gy, 1. By hypothesis, Gy has girth at least 6, so any short cycle
in Gy 1 must use vertices of I. Since I is independent, and each of its vertices has at most
one neighbor in each copy of Gy, every cycle C through I must visit at least two copies of Gy.
Each vertex not in I has exactly one neighbor in I, so C must use at least four edges incident to
vertices of I, and at least one edge within each of two copies of Gi. So, G has girth at least 6.

Now we check that x(Gyy1) > k + 1. Suppose instead that Gy, 1 has a (k + 1)-coloring
@. By Pigeonhole, some set of |G| vertices of I get the same color. Call such a set T. Now
consider a copy H of Gy that is matched into T. By hypothesis, x(H) = k + 1, so ¢ uses every
color in [k + 1] on H. However, the single color used on all vertices of T must not appear on H,
a contradiction. O

This proof uses a new idea: gadgets within gadgets. When we constructed Gy 1, each
gadget was a copy of Gy, together with a pendent edge at each vertex. Each gadget H ensured
that no (k + 1)-coloring of G could use the same color on all 1-vertices of H. The notion of
gadgets within gadgets reappears often in the rest of this chapter.

2.3 Non-4-Choosable Planar Graphs

When Erdés, Rubin, and Taylor introduced the notion of list-coloring [[152], they conjectured
that both (a) all planar graphs are 5-choosable and (b) some planar graphs are not 4-choosable.
We see the proof of (a) in Theorem [11.1} Below we prove (b).
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3,4,a,b
£

0
3,4,a,b

Figure 2.3: Gadget G; on the left and Gadget G, on the right.

Theorem 2.3. There exist planar graphs that are not 4-choosable.

Proof. Gadget G, on the left in Figure cannot be colored from its lists. This is because
the vertices on the outer face have only a single allowable coloring. Once we remove from the
remaining lists the colors used by vertices on the outer face, we have only a triangle in which
each vertex has the same list of size 2. Clearly, no coloring is possible.

Similarly, Gadget G2, on the right in Figure has no coloring from its lists. This is
because G is formed by identifying two vertices in two copies of G1; in the right copy (which
is rotated), color a is replaced by color b. So, if the top vertex is colored 3 and the bottom
vertex is colored 4, then the left copy of G; has no coloring. If instead the top vertex is colored
4 and the bottom vertex 3, then the right copy of G; has no coloring.

To form our non-4-choosable graph G, we begin with 16 copies of G, one for each choice
of a € {5,6,7,8}and b € {9,10, 11, 12}. We identify the leftmost vertex in each copy, giving
this new vertex the list {5, 6, 7, 8}, and also identify the rightmost vertex in each copy, giving
the new vertex the list {9, 10, 11, 12}. Now for any coloring of the leftmost vertex and rightmost
vertex, some copy of Gadget G, has no coloring. O

The graph G constructed in Theorem has order 16(10 — 2) + 2 = 130. Exercise
constructs a planar graph H that is not 4-choosable and has order 63. Graph H is currently the
smallest known planar graph that is not 4-choosable.

2.4 Non-3-Choosable Girth 4 Planar Graphs

By Grotzsch’s Theorem (Theorem |4.5), every planar graph with girth at least 4 is 3-colorable.
We show next that the analogous statement for 3-choosability is false.

Theorem 2.4. There exist planar graphs with girth 4 that are not 3-choosable.

Proof. We first prove that gadget G;, shown in Figure cannot be colored from its lists. Let
f1 denote the 5-face incident to a vertex with list {a, 1,2}, and f, the 5-face incident to one
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y:a,b,5 x: b

Figure 2.4: Gadget G; is not colorable from the lists shown.

with list {b, 1, 2}. Suppose G; has a coloring. Consider the diagonal path P between vertices y
and w. If the vertices of P are colored 5, 3, 4, 5, then each vertex of f; must be colored 1 or
2, a contradiction since f; is a 5-face. Similarly, if the vertices of P are colored 5, 4, 3, 5, then
each vertex of f5 must be colored 1 or 2, again a contradiction.

To form G we start with nine copies of Gi, one for each choice of a € {6,7,8} and
b €{9,10,11}. We identify all nine copies of v, and also identify all nine copies of x. Finally,
we give the merged vertex v the list {6, 7, 8} and we give the merged vertex x the list {9, 10, 11}.
(The resulting graph G has order 9(16 — 2) + 2 = 128.) Now for each coloring of v and x,
there exists a copy of G; that has no coloring from its lists. O

2.5 Steinberg’s Conjecture is False

In 1976, Steinberg conjectured that every planar graph with no 4-cycles and no 5-cycles is
3-colorable. This conjecture remained open for 40 years, being disproved only in 2016. The
counterexample we will see below is similar to those in the previous two sections, but more
involved, since it avoids both 4-cycles and 5-cycles.

Theorem 2.5 (Steinberg’s Conjecture is False). There exists a planar graph with no 4-cycles
and no 5-cycles that is not 3-colorable.

Proof. Our proof consists of four claims.
Claim 1. Gy, shown in Figure has no 3-coloring that uses the same color on all of v1, v, V3.

Proof. Suppose to the contrary that G; has a 3-coloring ¢ with @ (v;1) = @(v2) = @(v3) = 1.
Now the path wq, ws, ..., wg must alternate colors 2 and 3. This implies that @ (x1) = @(x2) =
©(x3) = 1. However, now the 3-coloring cannot be completed, since color 1 is forbidden on
each vertex of triangle y;yays. &
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Figure 2.5: No 3-coloring of G; uses the same color
on its three corner vertices: vi, Vi, V3.

Claim 2. We form Gy, shown in Figure from 3 copies of G1, by identifying the instance of v
in each copy of G1 with the instance of v3 in the next Gy (in clockwise order); we also add edges
joining the three copies of v1 (at the center of Figure[2.6). Now Gy has no 3-coloring that uses the
same color on all 3 corner vertices.

Note that G has one “side” of length 4 (the v, v3-path on its outer face) and its two other
sides have length 3. The point of G is that all three sides have length 4. So we can use G, in a
larger construction without any fear of creating a 5-cycle that uses edges in some copy of G.

Proof. Suppose to the contrary that G, has such a 3-coloring, with color 1 used on each corner
vertex. Since the three copies of v; induce a triangle, one of them must receive color 1; call this
vertex v;. However, now the copy of G; containing v{ has color 1 on all of its corner vertices,
which contradicts Claim O

Figure 2.6: G, is shown on the left. Its abstract structure is shown on the right.



2.5. STEINBERG’S CONJECTURE IS FALSE 49

Figure 2.7: Graph G is formed from identifying corner vertices in 4 copies of
G,, and also adding 3 new vertices and 12 new edges.

Claim 3. Form graph G by identifying corner vertices in four copies of G, and also adding 3 new
vertices and 12 new edges, as shown in Figure Every proper 3-coloring of the subgraph of
G induced by its white vertices (the corner vertices in the four copies of G, as well as the 3 new
vertices) has a copy of Gy in which all three corner vertices use the same color. Thus, G has no
proper 3-coloring.

Proof. Let ¢ be a proper 3-coloring of the subgraph of G induced by its white vertices. Consider
the subgraph of G induced by u, w,v1,v,. By symmetry between v; and vo, we assume that
@(w) = @(v1). Consider the subgraph of G induced by w, x1,y1,2;. By symmetry between
x1 and yj, we assume that @(w) = @(x1). But now @(v1) = @(w) = @(x1). Since vi, w,
and x; are the corners of a copy of Gy, this proves the first statement. By Claim [2, ¢ does not
extend to a proper 3-coloring of the copy of G2 with v1, w, and x; as its corners. Thus, G has
no proper 3-coloring. &

To complete the proof of Theorem we need only to verify the following claim.
Claim 4. Graph G has no 4-cycle and no 5-cycle.

Proof. Suppose to the contrary that G has a cycle C of length 4 or 5. First we show C is
not contained in a copy of Gi; suppose the contrary. Note that C contains no vertex v; (as
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in Figure [2.5)), since for each v;, the shortest path joining its neighbors, other than the edge,
has length 5. Now, since C contains no v;, a similar argument shows that C contains neither
wj nor wg, which in turn implies that C does not contain x3. In this way, we show that C
contains neither wy, ws, nor ys;. Now the only possible vertices of C are yi,ys, X2, W4, W3, X1,
a contradiction. Thus, C is not contained in a copy of G;.

Now we show C is not contained in a copy of Go; suppose the contrary. The only cycle in
G2 with no edge in a copy of G is the central triangle (among large vertices). Since C is not
contained in a copy of G1, assume C uses edges within at least two copies of G1. The distance
in each copy of G; between each pair of corner vertices is at least 3. So in each copy of G;
where C has edges, it has at least 3 such edges. Thus, C has length at least 6.

Finally, we show that C cannot exist. Note that C must use some edge in a copy of G, but
C is not contained in a copy of G,. Since the distance between each pair of corner vertices in
G2 is 4, in each copy of G, where C has edges, it has at least 4 such edges. If C uses edges
from only one copy of G, then it uses at least 2 additional edges, so has length at least 6. If C
uses edges from at least two copies of Gy, then it has length at least 8. &

This completes the proof that Steinberg’s Conjecture is false. O

2.6 Kj;-free Planar Graphs: Subexponentially Many 3-colorings

In most sections of this chapter, we use gadgets to construct graphs that have no coloring of a
given type. Here we go in a slightly different direction. Often if a graph has one coloring of
a given type, then it has many. For example, every n-vertex planar graph G has at least 5™/*
5-colorings and if G has girth at least 5, then G has at least 3™/¢ 3-colorings; see Section
Grotzsch’s Theorem guarantees that every triangle-free planar graph has a 3-coloring. So along
these line above, Thomassen conjectured that every triangle-free planar graph has exponentially
many 3-colorings. Here we disprove this conjecture.

Theorem 2.6. There exist infinitely many positive integers n and n-vertex triangle-free planar
139,23 0.731
n

graphs Gy, such that the number of 3-colorings of Gy, is at most 32 <327,

Proof. The graph we construct will be G(v, w, k, {), as defined recursively (using £) on the right
in Figure For short, let Vi ¢:= V(G(v,w, k, {)). The base case in the recursion is P(v, w, k)
on the left in the ﬁgure that is, G(v,w, k,0) := P(v,w, k). So the graph will consist of many
vertex-disjoint copies of Py (in fact, 3¢ of them), connected by some “linking” vertices, denoted
by v,w,x1,...,xs in the figure. Later we will specify k, as a function of £. The number of
vertices in the whole graph is dominated by the number of vertices in these 3¢ copies of Py; in
particular, [Vy ¢| = k3¢,

'The reason that we reuse vertex names from the left on the right is that the figure on the right can be formed
by adding 3 copies of G(xi, X2, k,{ — 1) each within a face of P(v,w, 5).
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Figure 2.8: Left: The gadget P(v,w,k); we also have G(v,w,k,0) := P(v,w, k). Right: G(v,w,k,{) is
defined recursively. Vertices v and w in each copy of G(xi, Xi;2, k, { — 1) are identified with x; and x; .

Note that if v and w in P(v,w, k) get a common color, then their coloring extends to
precisely two 3-colorings of P(v, w, k). A key fact is that in every 3-coloring ¢ of G(v,w, k, {),
either @(x1) = @(x3) or @(x2) = @(x4) or @(x3) = @(xs5). Further, if ¢ (v) = ¢@(w), then all
3 of these equalities hold. We prove both statements below, in Claim[1]

Let V,ze denote the subset of vertices in Vy , that appear in one of these 3¢ copies of Py;
and let V]E’e:: Vice \ Vﬁ’e. (Here P and L are for “path” and “linking”.) For each copy of
P(v,w, k) we call v and w the linking vertices for its induced subgraph Py. We will count the
number of ways to 3-color G [V]L-, ¢J, and show that for each such 3-coloring, we have only a small
number of ways to extend it to V]]z - We observe that at most 2% of the 3¢ copies of P(v, w, k)
have distinct colors on their two lfnking vertices. (This holds by induction on £. If f(£) is the
maximum number of these copies whose linking vertices have distinct colors, then f(1) = 2
and f(€) < 2f(€ — 1), by Claim[1}) Thus, each of the other copies of P(v, w, k) can be colored
in at most 2 ways. To optimize our upper bound, we let k := [(3/2)"]. Below we justify each
step in the following chain of inequalities.

# 3-colorings of G, 1, k¢ < (# 3-colorings of G [V]E’ o)) x (# 3-extensions to V]z ¢ per coloring)
< (3 x 2Vl 5 (2992 x 232 (2.1)
< (3 x z\vlﬁ’e\—l) % ((2((3/2)“+1)2“ % 23“—28)
< (22.5x3‘3+1) % (22x3‘3) (2.2)
< 2553 Z 393" < 30Vl < gVt (2.3)

For the first factor in (2.1), we note that G [V]E’ ¢J is connected; as we color along a spanning
tree away from its root, at each step after the first we have at most 2 available colors. For
the second factor, recall that at most 2° copies of P(v,w, k) have linking vertices with distinct
colors; similar to above, at each step we have at most 2 available colors. For the next two lines,
ending in (2.2), we need only that |V1E,e| = 2.5 x 3Y — 0.5. To see this, recall that |V1E,o| =2

P
Vk,l

L
Vi
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and IV]E, ol = BIV&, 1!+ 1; now the equality can be easily verified by substitution. The proof of
is mainly algebra; we must also recall that |V} | = [(3/2)*] x 3! > (9/2)%.

Claim 1. @) In every 3-coloring ¢ of G(v,w,k,{), we must have either @(x1) = @(x3) or

@(x2) = @(x4) or @(x3) = @(xs); see the right of Figure[2.8 (b) Furthermore, if ¢(v) = @(w),
then all 3 of these equalities hold.

Proof. Suppose that (a) is false. By symmetry, assume that ¢(v) = 1 and @(x;) = 2. Now
o(x3) & {e(x1), o(v)} = {1,2}, so @(x3) = 3. Similarly, @(xs) = 2. But now @(x2) ¢
{o(x1), @(x3)} =1{2,3}; so @(x2) = 1. Likewise, @(x4) = 1. So, @(x2) = @(x4), contradicting
that the claim is false. Suppose instead that @ (v) = @(w) = 1. Now X1, X2, X3, X4, X5 must

alternate colors 2 and 3. So all 3 equalities hold, as claimed. &
The proof of Claim [ finishes the proof of Theorem O

2.7 Edge-Coloring Regular Graphs is NP-Hard

As we mentioned in Chapter |1, much of this book’s content is motivated by the fact that it
is NP-hard to decide whether an arbitrary input graph is k-colorable, for each k = 3. More
succinctly, k-coloring is NP-hard. Here we prove the stronger result that k-edge-coloring is also
NP-hard, for every k = 3. The proof is not conceptually difficult, but it is longer than any we
have seen, and it uses a variety of gadgets.

2.7.1 An Overview and Proof Sketch for k = 3

Definition 2.7. An instance of 3-SAT consists of a set of variables{aj, ..., as}and a set of clauses
{C1,..., C¢}, where each clause C; consists of 3 literals {; 1, {1 2, 1 3 and each literal is either a
variable a; or its negation aj; call these sets A and C. A truth assignment f : A — {T, F} assigns
to each variable the value T (true) or F (false). A clause C; is satisfied by a truth assignment
f if at least one of its literals is true, i.e., if {; 1 \V £; 2V {i 3 is true. A truth assignment f is a
satisfying assignment for an instance of 3-SAT if it satisfies every clause in C.

Given a satisfying assignment f for an instance of 3-SAT, it is easy to check that f is
indeed satisfying. However, it is NP-Hard to determine whether such an assignment exists.
Let k-regular-EC denote the problem of determining whether a given k-regular input graph is
k-edge-colorable. The goal of Section [2.7]is to prove the following theorem.

Theorem 2.8. For each k = 3, the problem k-regular-EC is NP-hard (even for simple graphs).

To prove this, we reduce 3-SAT to k-regular-EC. More precisely, fix an integer k = 3 and
an instance S of 3-SAT. We construct an instance G(S) of k-regular-EC that has a Yes answer if
and only if S has a Yes answer. Further, the time it takes to construct G(S), and hence its size,
is bounded by a polynomial in the size of S.
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Our general approach is to construct gadgets in G(S) corresponding to each clause in S, to
each variable in S, and to each negation of a variable in a clause in S. The gadgets for each
clause and each negation have constant size. The gadget for each variable has size linear in the
number of clauses where it appears. Thus, |G(S)| is in fact linear in |S|.

Before proving the theorem for general k, we sketch the proof for k = 3, which is the simplest
case. Information is transmitted from one gadget to another by a pair of edges incident to both
gadgets. If the edges receive the same color (in some, possibly partial, 3-edge-coloring), then
the variable is “true”; otherwise, it is “false”. This idea is central to the construction, and
keeping it firmly in mind while reading this section will aid the reader greatly. We need the
following three lemmas, the proofs of which we omitf| Intuitively, these lemmas say that the
gadgets behave as we expect. (Note that we are coloring edges, so each instance of v,w,...
refers to an edge, rather than a vertex.)

input output

v » . E| notation: :J):

Figure 2.9: Left: A negation gadget. Right: The way we draw the negation gadget in
later constructions.

Lemma 2.9. In any 3-edge-coloring ¢ of the negation gadget N in Figure the following hold:
W @) =o@w)ore(x) =e(y);
(2) ¢(v) = @o(w) implies ¢(x) # @(y) and (x) # ¢(z) and ¢(y) # ¢(z);
(3) ©(x) = @(y) implies @(v) # @(w) and ¢ (v) # @(z) and (W) # ¢@(z).

Every 3-edge-coloring ¢ of v,w,x,y,z that satisfies (1), (2), (3) above can be extended to a
3-edge-coloring of N.

Lemma 2.10. In any 3-edge-coloring of a variable-setting gadget (Figure 2.10|shows an example of
such a gadget), either all output pairs are “true” or all output pairs are “false”. Furthermore, both
settings are possible.

*But the astute reader will notice that these lemmas are all generalized in Section and the proofs of those
generalizations imply these lemmas as special cases.

“true”, “false”
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Figure 2.10: A variable-setting gadget with 6 output pairs, built from 12
negation gadgets.

Lemma 2.11. In any 3-edge-coloring of a clause-testing gadget, shown in Figure at least one
pair of input edges must be “true”. Further, any 3-edge-coloring of the input edges with at least
one pair “true” can be extended to a 3-edge-coloring of the whole gadget.

Now we specify how to link up the gadgets. Suppose that variable a; appears as the second
literal in clause Cj and this is the rth clause in which a; appears. Now we identify the pair of
edges in the rth output of the variable-setting gadget U; for a; with the pair of edges in the
second input for the clause-testing gadget for C; (similarly, if a; is the first or third literal in
C;). If instead a; is the literal in Cj, then we do the same thing, but first insert a negation
gadget. Specifially, we identify the output edges of U; with input edges of the negation gadget,
and identify the output edges of the negation gadget with the input edges of the gadget for C;.

To ensure G(S) is 3-regular, we must handle all its pendent edges. We simply take two
copies of the graph thus far constructed, G’(S), and identify each pair of corresponding pendent
edges. The resulting graph G(S) is clearly 3-regular. And G(S) is 3-edge-colorable if and only
if G/(S) is. Finally, G(S) is 3-edge-colorable if and only if S is satisfiable.

2.7.2 k-Edge-Coloring k-Regular Graphs is NP-Hard

In this section we prove Theorem 2.8} for all k > 3. The proof is not difficult, but allowing k > 3
introduces numerous complications. Although the proofs of the three lemmas from the previous
section (which we generalize here) essentially amount to case-checking, there are many cases
to check, so at times we omit details to focus on the more interesting ideas.
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input 1 input 3

input 2

Figure 2.11: Each clause-testing gadget has a 3-edge-coloring that
extends the coloring of its input edges if and only if at least one
pair of input edges receives the same color. Thus, it checks to see
if at least one of its inputs is “true”.

When reducing an instance of 3-SAT, we prefer that the resulting instance of k-regular-EC
be a simple graph. But for most steps of the reduction it is more convenient to work with
multigraphs. So we begin the section by showing how to transform a multigraph instance of k-
regular-EC to an equivalent simple graph instance of the same problem (keeping k unchanged).
We use the following two lemmas; their proofs are the only places in this section that we
explicitly name vertices.

Lemma 2.12. There exists a gadget My with k vertices of degree 1 and all other vertices of degree
k such that a k-edge-coloring of its pendent edges extends to a k-edge-coloring of My if and only
if the pendent edges all receive distinct colors. (Figure [2.12]shows Ms.)

Proof. All subscript addition throughout this proof is modulo k. Let V(My) = {v1,...,Vk,
W1, .., Wi, X1, .00, Xk—3) and E(My) = {viwi, wiwipq, wix; |1 € [k],j € [k — 3]}

We first prove that if ¢ is a coloring of the pendent edges in My that gives each edge a
distinct color, then ¢ extends to a k-edge-coloring of M. By permuting colors, we assume
that @ (viw;) =1 (mod k). To extend this to My, let @(wiw;i_1) :=1+ k —2 (mod k) and
@(wixj) =1+ j (mod k) for all i € [k] and j € [k — 3]. For each w; and each x;, we can
check that all incident edges use distinct colors. So the resulting edge-coloring is proper.

Assume instead that ¢ is a proper k-edge-coloring of My, and that some color « is used on
at least two pendent edges. Either « is used on at least one edge wi;wj, 1 or else some color
[3 is used on at least two such edges. In each case, either « or 3 is used on edges of the form
viw; and/or wiw; 1 that are incident to at least four vertices w;. However, each color in [k] is
used on exactly k — 3 edges of the form wjx,. By Pigeonhole, some w; has at least two incident
edges with the same color. This contradicts that ¢ is proper, which completes the proof. O

Vi, Wj, X¢
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Vi Wi X4 M{ MY

TV TV v

MS M5,3

Figure 2.12: Left: Ms, a building block for simulating parallel edges in
a 5-regular graph. Right: Ms 3, which simulates 3 parallel edges in a
S5-regular graph.

Lemma 2.13. For each k-regular multigraph G, there exists a k-regular simple graph G’ such that
G’ has a k-edge-coloring if and only if G does. Further, ||G’|| is bounded by a polynomial in ||G]|.

Proof. To simulate i parallel edges in a k-regular graph, we start with two copies of My, say
M, and M;/. We pair each of k — i pendent edges in M with k — i pendent edges in M/,
and identify the two edges in each pair; call the resulting gadget My ;. (Figure shows
Ms,3.) A k-edge-coloring of the pendent edges in My ; extends to all of My ; if and only if the
i pendent edges from M;, use the same distinct colors as the i pendent edges from M. This
follows directly from Lemma [2.12]

Starting from G, we repeatedly replace i parallel edges (for some i with 2 < 1 < k—1)
having endpoints y and z with a copy of My ;; we identify each degree 1 vertex inherited
from M/ with y and each degree 1 vertex inherited from M,/ with z. We iteratively apply
these replacements until the resulting graph G’ is simple. By induction on the number of
replacements, we can prove that G’ has a k-edge-coloring if and only if G does. O

Throughout this section, we often use multigraphs. In actually constructing the reduction
from an instance of 3-SAT to one of k-regular-EC, we would perform the transformation detailed
in Lemmas and after applying the constructions in the remainder of the section. (We
simply present the lemmas in the order that we do to aid the reader’s understanding.)

Our gadgets now mainly generalize our earlier gadgets. More precisely, our gadgets here
are multigraphs that have as their underlying simple graphs the gadgets in the previous section.
To denote that an edge has multiplicity i we write (i). We begin with the following easy
counting result, which helps us understand more about proper k-edge-colorings.
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Lemma 2.14 (Parity Condition). Let H be a graph with every vertex of degree either k or 1 (and
no isolated edges), and let E’ denote the set of edges in H with an endpoint of degree 1. Let @
denote a k-edge-coloring of H. If b; denotes the number of edges in E’ colored 1, for each i € [k,
thenb; = --- = by (mod 2).

Proof. Choose arbitrary distinct i, j € [k] and let H; ; denote the subgraph of H induced by the
edges colored i and j. Each component of Hy; is either an even cycle or a path (with both
endpoints in E’), so each component contributes either 0 or 2 to the sum b; + b;. This sum is
thus even, so b; = b; (mod 2). Since i and j are arbitrary, the lemma follows. O

Lemma 2.15. Fix i € [k — 2]. If @ is a proper k-edge-coloring of the generalized negation gadget
N, shown in Figure then each of the k colors must appear at v, w, X, y, or z. Further, k — 1
colors each appear once and one color appears 3 times.

Proof. Suppose, to the contrary, that some color appears on none of v, w, x, y, or z. By
symmetry, say color 1 is missing. In a k-edge-coloring, every color appears at (incident to)
every k-vertex. Since N — {v,w,x,y, z} has 7 vertices, its matching number is (at most) 3.
Hence, no proper edge-coloring uses color 1 at each of its 7 vertices, which is a contradiction.
Thus, each color appears on at least one of v, w, x, y, z. This proves the first statement.

The second statement follows directly from the first, together with the Parity Condition.
For the sets of parallel edges v and y, we can also view each set of edges as having one endpoint
in common (the one of degree k) and having all other endpoints distinct. This does not change
whether or not an edge-coloring is proper. Now the Parity Condition applies. By the first
statement, b; = 1 for all i € [k]. If some b; is even, then all b; are positive and even, so
[E’] = k(2) > k + 2, a contradiction. Thus, each b; is odd. So one b; is 3, and the others are
1. This proves the second statement. O

input output

L

notation: (J
(1) 7 (k=i-1)

Figure 2.13: Left: A generalized negation gadget, N;. We write (1) to denote an edge of multiplicity
i; this notation is omitted for edges with multiplicity 1. Right: The way we draw N; in later
constructions.
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Figure 2.14: Left: A generalized negation gadget, N;, decomposed into a negation gadget N and a (k — 3)-
regular subgraph, R;.

For an edge-coloring ¢ and multi-edges v and w (possibly with multiplicity 1), we write
@(v) and @(w) to denote the sets of colors used by ¢ on v and w. We write @(v) = ¢@(w)
when at least one color used on v is also used on w, i.e., when @(v) N @(w) # (J; otherwise,

we write @(v) Z @(w).

Lemma 2.16 (Generalization of Lemma [2.9). In any k-edge-coloring ¢ of the generalized nega-
tion gadget N; in Figure the following 3 conditions hold:

(D o(v) = @(w) or o(x) = @(y);
(2) @(v) = @(w) implies @(x) Z @(y) and @(x) # @(z) and o(y) # @(z);
(3) @o(x) = o(y) implies (v) # (W) and ¢ (v) # ¢(z) and (W) # ¢(z).

Every k-edge-coloring ¢ of v,w,x,y,z that satisfies conditions (1), (2), and (3) above can be
extended to a k-edge-coloring of Nj.

Proof. To prove (1), assume the contrary, that ¢(v) # @(w) and ¢(x) # ¢(y). By Lemmal]2.15|
some color appears three times at v, w, x, y, and z. By symmetry, we assume this color is 1.
Since @(v) Z @(w) and @(x) # @(y), we must have @(z) = 1. We consider three cases.

Case 1: @ (W) = @(x). Let u denote the multi-edge adjacent to both w and x. Consider
the k — 1 edges that share an endpoint with z. Since @(z) = 1, none of these edge can use
color 1, and none can use the other color absent from u. Thus, these k — 1 edges use at most
k — 2 colors, which is a contradiction.

Case 2: @(w) = @(y) or @(v) = @(x). By horizontal symmetry (and replacing i with
k —1— 1), assume that @(w) = @(y). Now consider the vertex at distance one from one
endpoint of each of edges w, y, and z. This vertex has degree k, but no incident edge uses
color 1, which is a contradiction.

Case 3: @(v) = @(y). Let u denote the edge adjacent to both w and x. Since color 1 is
used incident to each vertex, and it is used on v, y, and z, color 1 is used on the edges other
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than u that share an endpoint with w and x. However, now u cannot use 1 or @ (w) or @(x).
So at most k — 3 colors are available to use on u, which has multiplicity k — 2; this contradiction
proves condition (1).

Now we prove conditions (2) and (3). By Lemma one color appears three times at v,
w, X, Yy, and z, and every other color appears once. So if ¢ (v) = @(w), then @(x), ¢(y), and
@(z) are disjoint. Similarly, if @(x) = @(y), then @(v), @(w), and @(z) are disjoint. This
proves conditions (2) and (3).

To prove the final statement, we assume that color 1 appears three times at v, w, x, y, and
z. Further, we assume that @(v) = ¢@(w). The case k = 3 is easy to check. Either ¢@(x) =1 or
@(y) = 1or @(z) = 1; by permuting colors 2 and 3, we have only three possibilities for ¢ on
v, W, X, Y, and z. In each instance we have only one way to extend the matching colored 1, and
the remaining uncolored edges induce a path. We omit the details, but the interested reader
should be able to recreate them quickly. Now we reduce the case k = 3 to the case k = 3.

We decompose N; into two subgraphs, as in Figure [2.14} one is N, from the case k = 3,
and the other is Ri, a regular graph of degree k — 3. At each of v, w, x, y, and z where color
1 does not appear, we choose a color that does appear there; by permuting colors, we assume
that the other colors we choose are 2 and 3. The k-edge-coloring of v, w, x, y, and z naturally
induces a 3-edge-coloring ¢’ of the same edges in N and a proper edge-coloring ¢" of v and y
in R; with colors 4, ..., k. We extend ¢’ to N by the case k = 3 above. To extend ¢ to R, we
color greedily. (This graph is two paths with each vertex of degree k — 3, so we have no choice
in this process.) O

The double negation gadget is formed from two copies of the generalized negation gadget
N1, by identifying their output edges, as shown in Figure (where the identified edges on
the left are x and y (k — 2)). The generalized variable-setting gadget is formed from multiple
copies of the generalized negation gadget in exactly the same way as the variable-setting gadget
is formed from the negation gadget; again, see the example in Figure

Lemma 2.17 (Generalization of Lemma [2.10). In every k-edge-coloring of the generalized
variable-setting gadget, either all outputs are “true” or all outputs are “false”. Further, both
settings are possible in such a way that every output edge is colored 1, 2, or 3.

z| |2 3|1
w X w' 2 3 3
O @) O @)
v y (k—2) v/ 1 3,...,k 2

Figure 2.15: Left: A double negation gadget. Right: The gadget properly
k-edge-colored, with all outputs “false”.
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Proof. Consider the double negation gadget shown in Figure and fix some k-edge-coloring
@ of it. If @(v) = @(w), then @(x), ©(y), and @(z) are disjoint, by Lemma Since
@(x) # o(y), we get @(v') = @(w’). Thus, ¢(z’) # ¢@(x) and ¢(z’) # ¢(y). This implies
that @(z) = @(z’), since a total of k — 1 colors appear on x and y. By induction, if one output
pair of the variable-setting gadget is true, then so are all output pairs.

Now we prove the second statement of the lemma. Consider the k-edge-coloring of the
double negation gadget that uses color 1 on each of edges v, w, z, v/, w’, and z’, uses color
2 on x, and uses colors 3, ...,k ony. It is easy to overlap copies of this coloring to properly
k-edge-color every generalized variable-setting gadget so that each output is true (in fact, every
output edge is colored 1). To get a k-edge-coloring with all output pairs set to false, we start
from the coloring on the right in Figure By permuting colors, and reflecting horizontally,
we get a total of 12 colorings. It is easy to check that these twelve can be combined to yield
the desired k-edge-coloring. O

Figure 2.16: An “extended” negation gadget.

Figure shows an extended negation gadget. We need the following easy observation.

Lemma 2.18. Let @ be a k-edge-coloring of the two input edges of an extended negation gadget,
as well as w; and us. This k-edge-coloring of these four edges extends to a k-edge-coloring of the
whole extended negation gadget if and only if either (a) the input is true and @(u;) Z @(ug) or
(b) the input is false and @(u1) = @(us).

Proof. The lemma is implied by Lemma [2.16 O

Figure shows a generalized clause-testing gadget. Perhaps unsurprisingly, its underlying
simple graph is the clause-testing gadget that we saw earlier, from the case k = 3. We show
that a coloring of its input edges extends to a coloring of the whole gadget if and only if at
least one input is true. Proving necessity is quite easy. To prove sufficiency, we decompose
the gadget into a copy of its underlying simple graph and a matching in which each edge has
multiplicity k — 3. We use colors 1, 2, and 3 on the simple graph, and use the remaining colors
on the multi-matching.

Lemma 2.19 (Generalization of Lemmal|2.11). (1) In any k-edge-coloring of a generalized clause-
testing gadget, shown in Figure|[2.17} at least one of the inputs must be true (a common color appears
on the two edges of the input pair). (2) If ¢ is a k-edge-coloring of the input edges satisfying (1),
then @ can be completed to a k-edge-coloring of the gadget.
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input 1 input 3

input 2

Figure 2.17: Each generalized clause-testing gadget has a k-edge-coloring that extends
the coloring of its input edges if and only if at least one pair of input edges receives the
same color. Thus, it checks to see if at least one of its inputs is “true”.

Proof. First, we prove (1). Suppose instead that each input is false. By Lemma [2.18} ¢(u1) =
@(uz) = @(us) = @(uy), contradicting that u; and u; share an endpoint.

Now we prove (2). We first reduce the general case to the case k = 3. To begin, we restrict
to a 3-edge-coloring of the input edges by ignoring multiple edges. For each input that is true,
we pick the repeated color on its two edges. For each input that is false, we arbitrarily pick two
colors, so that the total number of colors we pick is at most three. By symmetry, assume these
colors are in {1, 2, 3}. We write simple clause-testing gadget to denote the clause-testing gadget
when k = 3. If we can handle the case k = 3, then we can extend the resulting 3-edge-coloring
of the simple clause-testing gadget to a k-edge-coloring of the whole clause-testing gadget: we
just use colors 4, ...,k on each set of parallel edges that are not yet colored. Thus, we need
only to consider the case k = 3.

Note that whether or not we can extend a 3-edge-coloring of the inputs of a simple clause-
testing gadget to the whole gadget depends only on whether each input is true or false, not on
the colors used on the edges of the input. This follows directly from Lemma [2.18} with k = 3.

To extend a coloring of its inputs to the whole simple clause-testing gadget, it suffices to
extend it to uj, us, Us, Wy in a way consistent with the hypotheses of Lemma for each of
the three copies of the extended negation gadget contained within. This amounts to 3-coloring
the vertices of a 4-cycle, u;uszusuy, where each successive pair of vertices is required to have
either the same color or distinct colors (depending on whether the corresponding input is false
or true). To color this 4-cycle, we contract each edge joining successive vertices that must use
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the same color. This results in a 2-cycle, 3-cycle, or 4-cycle that we must properly 3-color, since
at least one input is true and also uy; and u; must always use distinct colors. Such a coloring
always exists, which proves the lemma. O

The way we connect (generalized) variable-setting gadgets with (generalized) clause-testing
gadgets is similar to what we did for k = 3. However, now each input in a clause-testing gadget
has one edge of multiplicity 1 and one edge of multiplicity k—2. If a variable appears negated in
a clause, then we connect the output of the variable-setting gadget to the generalized negation
gadget N1, which has an output where one edge has multiplicity 1 and one edge has multiplicity
k — 2. This matches the desired input of the clause-testing gadget, so we identify the relevant
edges and we are done. However, if the variable appears in the clause, but is not negated, then
we must “add” k — 3 parallel edges to the output of the variable-setting gadget before we can
identify the edges of that output with the input edges of the clause testing gadget. So we need
one final gadget.

| G SR S S|

. w X
input () () o () @) @) () o o

o/ \ 4 s . o’ N o’ N’ \ 4 o/ \ 4

(k=2) (2) (k—3) 1) k=i=1) (+1D (k—i-2) (k=4)  (3) (k=3) (2) (k—2)

Ny Ny Nj Ny Ny_4 N3
Figure 2.18: An edge-adding gadget.

An edge-adding gadget is formed from generalized negation gadgets N1, ..., Ny _3 by iden-
tifying, for each i € [k — 4], the output edge x in N; with the input edge w in N;j,; and
identifying one endpoint of y in N; with one endpoint of v in Ni ;. Finally, we add k — 2
parallel edges incident to an endpoint of y in Ny _3; the other endpoint of these new edges is

y’. See Figure[2.18]

Lemma 2.20. Each k-edge-coloring ¢ of an edge-adding gadget satisfies @ (v) = @ (w) if and only
if o(x) = o(y’).

Proof. More generally, the i-edge-adding gadget (for each 1 € [k—3]) connects and identifies the
edges of N1,..., Nj as in the edge-adding gadget, and then adds i + 1 parallel edges incident
to an endpoint of edge y in N;. We let v and w denote the pendent edges (with multiplicity)
in N7 and x and y’ denote the pendent edges (with multiplicity) in Nj.

We prove the more general statement that each k-edge-coloring ¢ of the i-edge-adding
gadget has @(v) = @(w) if and only if @(x) = @(y’). We use induction on i. The base
case follows from Lemma with i = 1. This shows that ¢(v) = @(w) if and only if
@(x) # @(y). Since y and y’ together use each color in [k] exactly once, ¢ (x) = @(y’) if
and only @(x) # @(y). Thus, @(v) = @(w) if and only if @(x) = ¢(y’), as desired. The
induction step is similar. By hypothesis, we have ¢ (v) = @(w) if and only if ¢(x) = ¢(y’), in
the (i — 1)-edge-adding gadget. By Lemma [2.16] in N; we also have ¢(v) = ¢(w) if and only
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if (x) = @(y’). Since x and y’ in the (1 — 1)-edge-adding gadget are also v and w in Ny, the
more general statement is proved. O

We have now finished all of the ingredients needed to prove our main result (which we
restate below). At this point, the reader will likely find it clear how they fit together. But, for
easy reference, we gather most of the details in one place.

Theorem 2.21. For each integer k = 3, the problem k-regular-EC is NP-hard. This remains true,
even when the input graph must be simple.

Proof. We reduce 3-SAT to k-regular-EC. Let S be a given instance of 3-SAT, with variables
ai,...,as, and with clauses Cq,..., C¢. Fix an integer k = 3. For each clause, we create a
generalized clause-testing gadget. For each variable ai, let n; denote the number of clauses in
which a; appears. For each a;, we create a generalized variable-setting gadget with n; outputs.
We “connect” the edges in output j of the variable-setting gadget with the input edges in the
jth clause where a; appears. If a; is negated in that clause, then we identify the output edges
with the input edges of a generalized negation gadget N1, and identify its output edges with
the edges in one input of the clause-testing gadget. If the variable does not appear negated
in the clause, then we create an edge-adding gadget, identify its input edges with the output
edges of the variable-setting gadget, and identify its output edges with the input edges of the
clause-testing gadget.

The resulting graph is neither simple nor regular; but each degree is either k or 1. To fix
these degrees, we take two copies of the graph and identify each pendent edge in one copy
with its corresponding edge in the other; this yields a k-regular multigraph. To reach a simple
graph, we repeatedly substitute gadget My ; for a set of i parallel edges. Ultimately, this yields
a simple k-regular graph G(S). It is straightforward, though tedious, to check that S has a
satisfying assignment if and only if G(S) has a proper k-edge-coloring. O

2.8 Chromatic Number and Girth both Arbitrarily Large

To conclude this chapter, we explicitly construct graphs with chromatic number and girth both
arbitrarily large. By modifying this construction a bit, we also get bipartite graphs with girth
and choice number arbitrarily large.

Definition 2.22. A complete d-ary tree of height h is a rooted tree in which each internal vertex
has d children and every leaf is distance h from the root. An r-augmented tree consists of a
rooted tree, called the underlying tree, plus edges from each leaf to r of its ancestors (these are
augmenting edges). For integers d, v, and g a (d, 1, g)-graph is a bipartite r-augmented complete
d-ary tree with girth at least g. Let h(d, r, g) denote the minimum height of a (d, r, g)-graph.
See Figure 2.19]

The goal of this section is to prove the following three theorems.

complete d-ary
tree of height h
r-augmented tree
underlying tree
(d, 7, g)-graph
h(d,r,g)



full path
[d]-coloring

reference coloring

@-path
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Figure 2.19: A (2,1,4)-graph, with augmenting edges in bold;
hence, h(2,1,4) = 3. The underlying tree is a complete
2-ary tree of height 3.

Theorem 2.23. For all d, 7, and g, the value of h(d, r, g) is finite. In other words, (d,r, g)-graphs
always exist.

Theorem 2.24. For all integers g and k, there exists a graph Gy with girth at least g and
chromatic number greater than k. Further, we can construct Gy i explicitly.

Theorem 2.25. For all integers g and k there exists a bipartite graph B 1 with girth at least g
such that mad(H) < 2(k — 1) for every proper subgraph H of By y, but X¢(Bg k) > k.

The proof of Theorem uses a double induction, primarily on g and secondarily on r
(handling all d at once). To emphasize the role of gadgets in our constructions, we defer the

proof of Theorem to Section In Section we assume that Theorem holds
and we use it to prove Theorems and
In Theorem 2.2} we constructed graphs with girth 6 and chromatic number arbitrarily large.

Given that (d,r, g)-graphs exist, the proof of Theorem is similar. The main difference
is that we use a (d, , g)-graph in place of the independent set I, to ensure that our girth is
large. Starting from the (d, r, g)-graph, we replace each leaf v in the underlying tree T with
a (recursive) gadget that is not (k — 1)-colorable, and each vertex of the gadget inherits one
augmenting edge from v. For each k-coloring ¢ of the internal vertices of the underlying tree,
at least one copy of the gadget has the same color used by ¢ on the endpoints of all of its
augmenting edges. So each k-coloring ¢ of the internal vertices of T results in some copy of
the gadget that has no k-coloring extending ¢. The construction for Theorem [2.25)is similar.

2.8.1 The Coloring Results

Definition 2.26. In a complete d-ary tree, a full path is a path from the root to a leaf. A [d]-
coloring is a d-coloring using the colors in [d]. Given an order of the children at each internal
vertex, define an edge-coloring as follows: if v is the ith child of w in the order, then color
edge vw with 1. This is the reference coloring; note that it is not proper; see Figure For a
[d]-coloring  of the vertices of T, a full path P is a @-path if for each non-leaf vertex w on P the
color @ (w) matches the reference color on the edge from w to its child in P. Every [d]-coloring
@ of V(T) has a unique @-path. Likewise, every full path is a ¢-path for some [d]-coloring .
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A descending edge at a vertex v in a rooted tree is any edge from v to one of its children. Let
G be a (d, 7, g)-graph with a specified vertex order of the children at each internal vertex of its
underlying tree T. In the reference coloring of G, each internal non-root vertex v has exactly
one descending edge colored the same as the edge from v to its parent. To form the reduced
(d,r, g)-graph H corresponding to G, for each such v we delete from G the subtree under this
descending edge with repeated color. Each non-leaf vertex of H has degree d in HN T, and the
reference coloring is a proper edge-coloring of HN T.

Figure 2.20: Top: A complete 3-ary tree of height 3, with the reference coloring. Bottom Left: The tree T
underlying a reduced (3, 1, 4)-graph H; to form H we add an edge from each leaf to the root. Bottom Right: An
arbitrary proper [3]-coloring ¢ of T; the ¢-path is marked in bold.

Proof of Theorem For fixed g, we use induction on k. Let G2 be an odd cycle of length
at least g. For the induction step, let p := ‘Gg,k,l‘. Start with a reduced (k, (p — 1)k + 1, g)-
graph, with underlying tree T and edges colored by the reference coloring. Fix a leaf v of T
and let P be the full path ending at v.

By Pigeonhole, at least p neighbors of v (along augmenting edges) have the same color on
their descending edges in P. Let v keep its augmenting edges to p of these, and delete all other
augmenting edges from v. Repeat this process for each leaf v of T; the resulting graph H is a
reduced (k, p, g)-graph. Finally, replace each leaf v of T by a copy of Gg —1, with each of its
vertices inheriting one augmenting edge from v; this is G4 . See Figure M

First we prove X(Gg ) > k. Let ¢ be a [k]-coloring of V(T), let P be a ¢-path in T ending
at a leaf v, and let S be the set of p neighbors of v along augmenting edges. By construction,
each vertex of S gets the same color « in ¢. By hypothesis x(Ggx—1) > k — 1, so ¢ does not
extend to a [k]-coloring of the copy of G4 1 substituted at v, since each of its vertices has a
neighbor in S colored «.

Now we check that G4 has girth at least g. By hypothesis, every cycle contained in a
single copy of Gg 1 has length at least g. So suppose that C is a cycle that uses edge e
corresponding to an augmenting edge in H. Contracting each copy of G4 1 to a single vertex
yields H. Let C’ be a closed walk in H corresponding to C in G4 k. Since each augmenting

descending edge

reduced
(d,r, g)-graph
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Figure 2.21: The final step constructing Gy in the proof of TheoremM

edge of H is inherited by a distinct vertex in a copy of G4 1, the image of e appears exactly
once in C’. So C’ contains a cycle C” in H that includes e. Since H has girth at least g, cycle
C” has length at least g; thus, so does C. O

It is interesting to note that mad(Gg) < 2(k — 1); see Exercise (a). If we do not care
about this property, then we can give an even simpler construction; see Exercise [11)(b).

Proof of Theorem Fix an even g = 4; we use induction on k. For each proper subgraph H,
we prove that d(H) < 2(k — 1). We specify a root, and orient the edges so that the root has
outdegree k and each other vertex has outdegree k — 1; further, every vertex is reachable from
the root. Thus, if a proper subgraph | contains the root, then it also contains the tail of some
deleted edge, so ||J|| < |J| (k — 1), as desired.

We build our base case By > from two g-cycles by identifying a vertex of each to form the
root. Next we direct the edges of each g-cycle cyclically (so each vertex has outdegree 1, except
the root). Finally, we can easily verify that x¢(Bg2) > 2; see Exercise @

For the induction step, fix k > 3 and assume that By 1 has the desired properties. Let
p= |Bg,k,1} — 1. Let H be a reduced (k, p, 2g)-graph with underlying tree T. Let (U, W) be
a bipartition of By 1 with U containing the root. For each leaf v in T, add to H a copy of
Bg,kx—1, identifying its root with v and letting each of its non-root vertices inherit from v exactly
one augmenting edge. Now for each vertex w € W, shift the other end of its augmenting edge
to be one vertex closer to v on the full path to v. Since H is bipartite, by definition, this ensures
that the resulting graph B i is also bipartite, since every closed walk in By corresponds to
a walk in H of the same parity. (This construction is similar to the final step constructing Gy,
shown in Figure The two differences are that (i) we identify v with the root of B , rather
than deleting it, and (ii) we shift the endpoints of augmenting edges ending in W.)

Orient each edge of T from parent to child, each edge in a By x 1 recursively, and each
augmenting edge away from its endpointina By ;. Since H is a reduced (k, p, 2g)-graph, the
root has outdegree k and each other internal vertex of T has outdegree k — 1. By hypothesis,
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each vertex in a copy of By 11 has outdegree k — 2 in that copy, so its augmenting edge gives
it outdegree k — 1.

Now consider the girth of By . By hypothesis, By 1 has girth at least g. Each cycle C
that uses an augmenting edge corresponds to a closed walk C’ in H, of length at most 2 |C|.
Since H has girth at least 2g, the desired girth bound holds for B .

Finally, we construct a k-assignment L such that B has no L-coloring. For each non-leaf
vertexvin T, let L(v) := [k]. Let L” be a (k—1)-assignment such that By x_; has no L’-coloring;
further, we assume that L’ uses no colors in [k]. For each leaf v of T and vertex x in Bgx—1, let
x, denote vertex x in the copy of By k1 rooted at v. Let P be the full path ending at v. For
each x,, let L(x,,) := L’(x) U{«}, where « is the color on the edge of P descending from the
neighbor of x,, in V(P). Each L-coloring ¢ of V(T) has a ¢-path P, ending at a leaf v. Now
each vertex x,, loses the color used on its neighbor in V(P). By hypothesis, the copy of By 11
has no L’-coloring. Thus, By has no L-coloring. O

2.8.2 Construction of (d, r, g)-Graphs

In this section, we prove Theorem which we restate for convenience. The theorem follows
easily from the three lemmas below, so we prove the theorem first, assuming the lemmas, and
prove the lemmas thereafter. (Recall that, by definition, every (d, r, g)-graph is bipartite.)

Theorem 2.6.2. For all d, r, and g, the value of h(d,r, g) is finite. In other words, (d,r, g)-
graphs always exist.

Lemma 2.27. For all positive integers d and r, we have h(d,r,4) = 2r + 1.

Lemma 2.28. For all positive integers d and g, with g at least 4 and even, h(d,1,g + 2) <
2 +h(d,d? g).

Lemma 2.29. For all positive integers d, v, and g, with g at least 4 and even, h(d,r + 1,g) <
hi + hy, where hy :=h(d,1,g) + 1 and hy := h(d™,, g).

Proof of Theorem Let P(r, g) denote the claim that h(d,r, g) is finite for all d. We prove
that P(r, g) holds for all r and g by induction; the primary induction is on g, and the secondary
on 1. It suffices to consider g even and at least 4. The base case is Lemma2.27] For the primary
induction, P(1, g 4+ 2) holds by Lemma since P(r, g) holds for all r. For the secondary
induction, P(r + 1, g + 2) holds by Lemma [2.29] since P(r, g + 2) holds by hypothesis. O

Proof of Lemma Given a complete d-ary tree of height 2r+ 1, add augmenting edges from
every leaf v to each of its ancestors w such that distt (v, w) is at least 3 and odd. O

Proof of Lemma Start with a (d, d2, g)-graph H. For each leaf v of the underlying tree T,
identify with v the root of a complete d-ary tree T’ of height 2; let each leaf w of T’ inherit
exactly one augmenting edge from v. (This is nearly the same as in Figure but now v is
identified with the root of T’, not deleted.) Call this new graph G. Every cycle C in G maps to
a cycle in H that is shorter than C and has the same parity. So Gisa (d,1,g + 2)-graph. [
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Figure 2.22: The proof of Lemma To form G from G, we replace each
star induced by leaves and their parent with a copy of Gj.

Proof of Lemmalz.29 Let hy := 2 |h(d,1,9)/2] + 1 and hy = h(d™,r,g). We prove the
slightly stronger statement that h(d,r + 1, g) < h; + hy — 1. We construct the desired graph
G from two smaller graphs G; and G,.

We want G; to be a (d, 1, g)-graph of height h;. Note that h; is the smallest odd integer
that is atleast h(d, 1, g). If h(d, 1, g) is odd, then G; exists by definition. Otherwise, start with
d copies of a (d, 1, g)-graph of minimum height, and add a new vertex with the roots of these
copies as its d children. (This fussing about the parity of the height ensures that G is bipartite.)

Now we build G,. Let d’ := d™, and let H be a (d/, 7, g)-graph with height h,. We form
G from H by starting at the root and deleting all but d children of each vertex that we keep,
except that we keep all d’ children at the last level; let T, be the tree underlying G,. (So
deleting the leaves of T, would yield a complete d-ary tree of height h, — 1.) For each vertex v
that is a parent of leaves in T,, replace the star in Ty induced by v and its children with a copy
of G1; identify v with the root of the tree T; underlying G; and let each leaf w in T; inherit the
T augmenting edges from one child of v. We call the resulting graph G.

To show that G is a (d,r + 1, g)-graph, we consider its underlying tree T. Form T, from
T, by deleting its leaves. Now T has a top part, T,, coming from G, and many bottom parts,
each isomorphic to T;. We observe that T is a complete d-ary tree of height h; + hy — 1. The
augmenting edges in G coming from G, are long and those coming from G; are short. Each
leaf of T has r long edges and 1 short edge. So the vertices of G have the desired degrees.

For each vertex v that is a parent of a leaf in G2, each edge e descending from v in Gg
was replaced by a path of length h;. Since h; — 1 is even, the resulting graph G is bipartite.
By hypothesis, each cycle contained in a copy of G; has length at least g. So consider a cycle
C in G that uses a long edge e; C corresponds to a closed walk C’ in G (formed from G by
contracting each copy of G; to a star centered at its root). Further C’ uses e only once, since
each leaf of G; maps to a distinct leaf of G;. So C’ contains a cycle C” that includes e. Since
G> has girth at least g, so does G. Thus, G isa (d,r + 1, g)-graph. O
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Notes

Borodin et al. [56] first constructed planar graphs Gy with girth 6 and A = k such that x(G%) >
k + 2. Our proof of Theorem follows Dvotak, Kral’, Nejedly, and Skrekovski [132]. Triangle-
free graphs with arbitrary chromatic number were found by Mycielski [315] and Zykov [439]];
see Exercise 2} Kelly and Kelly [242] gave such graphs with girth 6. The construction of these in
Theorem follows Descarte [394]]. Kostochka and NeSetril revisited Descartes’ construction
in [274]], more than 40 years after its initial publication, and enumerated its beautiful properties.

Theorem is due to Voigt [403]. The smallest known non-4-choosable planar graph
was found by Mirzakhani [[3o0]l; it has 63 vertices and is constructed in Exercise The
constructions of both Voigt and Mirzakhani are 3-colorable, so a 3-colorable planar graph need
not be 4-choosable. Voigt [404] also proved Theorem that some planar graphs with girth
4 are not 3-choosable; her construction has 166 vertices. By modifying this construction, we
gave a graph in Section with order 128. Glebov, Kostochka, and Tashkinov [[i77] further
improved this bound by constructing such graphs with orders 109 and 97. Their graph with
order 109 has each list a subset of {1, ..., 5} and their graph with order 97 has each list a subset
of {1,...,6}

In contrast to Voigt’s result for planar graphs of girth 4, Thomassen [378, [380]] proved
that all planar graphs with girth at least 5 are 3-choosable. His proof is similar to those of
Theorems and but more detailed, and we present it in Section For planar graphs
with girth at least 6, proving 3-choosability is easy: they are 2-degenerate. Erdds, Rubin,
and Taylor also conjectured that bipartite planar graphs are 3-choosable. Alon and Tarsi [20]
confirmed this, as we show in Proposition 5.6

Grotzsch proved that every triangle-free planar graph has a 3-coloring. Thomassen [382]]
then conjectured that such a graph G has exponentially many 3-colorings; here we mean
‘exponential’ in the order of G. This conjecture was motivated by analogous results for 5-list-
colorings of planar graphs and for 3-list-colorings of planar graphs with girth at least 5; see
Section 8.5} (Section [6.3| presents similar results for graphs with exponentially many nowhere-
zero Zy-flows.) As evidence in support of this conjecture, Thomassen [382] proved that such

21/20000

1/12 . .
an n-vertex graph has at least ¢c™ ' = 3-colorings, where ¢ = This lower bound

was improved to 2V™/212 by Asadi, Dvorak, Postle, and Thomas [29]. However, Thomassen
ultimately disproved his own conjecture [[385]], constructing n-vertex triangle-free planar graphs
with at most 21°™/182™ 3.colorings. This upper bound was improved to 64“1?;9/23 by Dvordk
and Postle [140]. Their construction is what we presented in Section In the same paper,
Dvorak and Postle conjectured this upper bound is best possible.

In 1976, Steinberg conjectured [[7] that every planar graph without 4-cycles and 5-cycles

3Blanche Descartes was a pseudonym of R. Leonard Brooks, Arthur H. Stone, Cedric Smith, and William T.
Tutte [364]]. The four met in 1935, when they were students at Cambridge, and became close friends. While
undergraduates, they worked on a number of mathematical research problems. To get the name Blanche, they
combined the initials of their first names, Bill, Leonard, Arthur, Cedric, to form BLAC, which they then extended.
They chose the last name Descartes to play on the phrase Carte Blanche.
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is 3-colorable. This problem received lots of attention, and led to many partial results (which
are discussed further in the Chapter |1l Notes). Steinberg’s Conjecture was strengthened to the
Strong Bordeaux Conjecture [70] and still further to the Novosibirsk 3-Color Conjecture [57].
But these were all disproved by Cohen-Addad, Hebdige, Kral’, Li, and Salgado [89]], as we saw
in Section 2.5} Their construction is striking for its simplicity.

The use of gadgets certainly predates the notion of NP-hardness (this term is formally
defined in Section[A.1} informally, a problem is NP-hard if it seems impossible to optimally solve
every instance of it efficiently). But it was the widespread work in this area, particularly during
the 1970s and 1980s, that elevated gadget use to a fine art. The classic reference on this topic
is [173]], and we still highly recommend it.

The most famous NP-hard coloring problem is 3-edge-coloring 3-regular graphs. Its NP-
hardness was proved by Holyer [220], and Section]2.7.1|essentially reproduces his paper. Shortly
thereafter, Leven and Galil [282]] extended the result to Theorem 2.8} For every integer k > 3,
it is NP-hard to decide if a k-regular graph is k-edge-colorable. Section follows their
presentation. An immediate corollary is that k-coloring is NP-hard for every k = 3; simply
take the line graph of a graph we are trying to edge-color. Perhaps the next most well-known
NP-hard coloring problem is 3-coloring planar graphs [174]]. To prove such a result, we simply
draw an arbitrary graph in the plane (allowing edge-crossings) and then substitute a planar
“crossover gadget” for each edge-crossing in our drawing. Exercise [10|sketches the proof.

The quest for graphs with both girth and chromatic number arbitrarily large has attracted
many researchers over many years. Erdds [153]] was the first to prove that such graphs exist.
He constructed a random graph, adding each edge with equal probability p; for the right choice
of p, with high probability the graph has few short cycles and few large independent sets. So
deleting a few specific vertices yields a graph with no short cycles and no large independent
sets. We always have x(G) = |G| /x(G), where « is the independence number; so the result
follows. A nice exposition is given by Aigner and Ziegler [5, Chapter 35]. But what about
explicit constructions?

Lovasz [287] first constructed these graphs in 1968; a key step was generalizing the prob-
lem from graphs to hypergraphs. Subsequent proofs were given by Nesettil and Rodl [323],
Ktiz [278]], and Kostochka and NeSettil [274]. Section follows Alon, Kostochka, Reiniger,
West, and Zhu [17]. The (d,r, g)-graphs we construct have height given by a version of the
Ackerman function; Alon [13] showed that this is essentially best possible. In Theorem m
we construct bipartite graphs By with x¢(Byx) > k and mad(H) < 2(k — 1) for every proper
subgraph H. This edge bound is very sharp. In Theorem we prove that every bipartite
graph G with mad(G) < 2(k — 1) is k-choosable.

To close this section we mention two beautiful constructions using gadgets that are too
long to include here. In the same paper where they introduced list-coloring, Erdés, Rubin, and
Taylor [152] mentioned the generalization to list-multicoloring. A graph is (a, b)-choosable if,
given any a-list assignment L to its vertices there exists a function ¢ such that ¢(v) C L(v) and
l@(v)| =band @(v)Ne(w) = 0 for each edge vw € E(G). (When b = 1, we recover standard
list-coloring.) They asked whether every graph that is a-choosable is also (am, m)-choosable,
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for every positive integer m. This question remained open for more than 30 years, before being
answered negatively by Dvordk, Hu, and Sereni [130]]. For each a = 4, they construct a graph
that is a-choosable, but not (2a, 2)-choosable.

Another longstanding open problem was Jaeger’s Circular Flow Conjecture. Posed in 1981,
it was disproved only in 2018 [201]. We omit the necessary definitions, but provide more
details on this problem in the Notes sections of Chapters [4] and [6] Again, the construction was
remarkably simple for a problem that stood open for more than 35 years. Now research in this
area focuses on finding the weakest hypotheses (necessarily stronger than Jaeger originally
conjectured) under which the desired conclusion holds.

Exercises
2.1. Show that x¢(Ky yx) > k. [Remark: This is best possible, since x¢(Ky 1) < k.]

2.2. (@) Let G; := Ky. For each k = 1, to form Gy, start with the disjoint union of
G1,...,Gy. For each set S consisting of one vertex from each Gj with j € [k], add a
new vertex adjacent precisely to the vertices in S. Show that Gy, 1 is triangle-free and
X(Gki1) = k+ 1. [439] (b) Let Gk be a triangle-free graph such that x(Gy) = k. Let
V1, ..., Vvt denote the vertices of Gy. To form Gy 1 from Gy, add new vertices w1, ..., Wy
such w; <> vj in Gy 1 whenever v; <> vj in Gy; finally add a vertex x adjacent to all
wj. Show that Gy is triangle-free and x(Gy 1) = k + 1. This is known as Mycielski’s
construction. [315]]

2.3. Show that no Gallai tree is degree-choosable.

2.4. A clustered coloring with clustering at most C is a, possibly improper, coloring such that
each color class induces a subgraph where each component has order at most C. (So a
proper coloring has clustering 1.) Let P{’ denote the join of a path Py with two isolated
vertices. For every constant C, show that there exists t and a 3-assignment L for P{’ such
that P{’ does not admit any L-coloring with clustering at most C. [128]]

2.5. (a) For every k > 2, construct a planar graph Gy such that A = k and x(G%) > L%kJ
(b) Modify this graph slightly to get Hy with A = k and x(H2) = 1+ |3k|. [Remark:
Hell and Seyffarth [215] showed that if G is planar with A > 8 and G? is a clique, then
IG| <1+ L%AJ Cranston [[92] extended their ideas to show that if G is planar and

A > 36, then w(G?) <1+ L%AJ, even if G2 is not a clique.]

2.6. A barbell is formed from two vertex disjoint cycles by either (i) identifying one vertex
from each cycle with the distinct endpoints of a path or (ii) identifying one vertex from
one cycle with one vertex from the other. Show that no barbell is 2-choosable. Similarly,
show that the ©-graph @, p . is not 2-choosable when a # 2 and b # 2. [152]

2.7. Show that every graph with 6 > 2 that is neither an even cycle nor ©, 32t (for some
t = 1) contains as a subgraph one of the following: (i) an odd cycle, (ii) K24, (iii) a
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barbell (as in the previous exercise), or (iv) a ©-graph Oy with a # 2 and b # 2.
[Together with Lemmalt.34]and the previous exercise, this completes the characterization
of 2-choosable graphs. [152]]

For the construction of triangle-free planar graphs with few 3-colorings, in Section
show that our choice k := [(3/2)!] is asymptotically best possible. More formally, show
that no value of k leads to an upper bound on the number of 3-colorings of the form a™
where n := [V(G(v,w, k, {))], a is constant, and ¢ < logg /5 3. [140]

(a) At the top of Figure we write S to denote {1, 2, 3,4} and we write i for S \ {i}.
Prove that the graph shown has no coloring from its lists. (b) At the bottom of Figure[2.23]
we write 1 to denote {1,2,3,4, 5} \ {i}. Form a graph G from the graph shown by adding
a vertex adjacent to all vertices on the outer face and giving it the list {2, 3, 4, 5}. Show
that G has no coloring from its lists. [[300]]

. Figure[2.24]shows a “crossover gadget”. The four vertices at its top, bottom, right, and left

are called external connectors. (a) Prove that every 3-coloring of the crossover gadget
uses the same color on each pair of external connectors at distance 4. Prove that if a
coloring of the external connectors uses the same colors on each pair at distance 4, then
it extends to a 3-coloring of the whole crossover gadget. (b) Use this to show that it is
NP-hard to 3-color planar graphs. [174]

(a) Prove that the graph G i constructed in Theorem have mad(Gg ) < 2(k —1).
[17] (b) By dropping the criteria that mad(Gg) < 2(k — 1), give an even simpler
construction than we did in Theorem [2.24] [17]
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Figure 2.23: Mirzakhani’s construction of a non-4-choosable planar graph with 63 ver-
tices.

Figure 2.24: A crossover gadget, which is used
in the proof that 3-coloring planar graphs is
NP-hard. See Exercise
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Chapter 3

Recoloring

... we should continually be striving to transform every art into a
science: in the process, we advance the art.

—Donald Knuth

In Chapter 1 we studied greedy coloring. We can view this process as repeatedly extending
a partial coloring. To reduce the number of colors we need to finish, at each step we now try
to modify our partial coloring, so the vertex colored next has many neighbors with the same
color. Specifically, suppose an uncolored vertex v has colors « and 3 both used once on its
neighborhood, with 3 appearing only once, on some vertex w. We try to recolor w with «,
so that 3 is no longer used on N(v). But if w already has neighbors colored «, then we must
recolor them with 3, which may lead to further swaps of « and 3 throughout the graph.

These recoloring techniques are among the most versatile tools that we will study. Kempe
swaps, introduced in 1879, were the central idea in the original prooff] of the 5 Color Theorem,
and also played a key role in the eventual proof of the 4 Color Theorem. They yield a nice
proof of Brooks’ Theorem, and also underlie nearly all of the best results in edge coloring.

3.1 Kempe Chains: Edge-coloring Simple Graphs

We begin by studying edge-coloring, which we will see is a special case of vertex coloring. Up
’til now we have mainly considered simple graphs, where each pair of vertices is joined by at
most one edge. This is natural, since parallel edges rarely effect vertex coloring results’ Now
we also study multigraphs, which allow parallel edges.

'This was the only proof known until 1974, when Kainen found the proof we present in Section
A notable exception is correspondence coloring, which we study in Section where parallel edges do matter.
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3.1.1 Definitions and Konig’s Theorem

Definition 3.1. Edges with the same pair of endpoints are parallel edges; now the edge set of
the graph is replaced by an edge multiset. When we explicitly allow a graph G to have parallel
edges, we call G a multigraph. If G has no parallel edges, then G is a simple graph. The
multiplicity, u(vw), of vw in a multigraph G is the number of edges with the pair of endpoints
(v,w). The maximum edge multiplicity, u(G), is given by u(G) := max, ycv(g) w(vw). The
line graph, L(G), of a graph G has E(G) as its vertices and two vertices of [(G) are adjacent if
their corresponding edges share an endpoint.

A proper edge-coloring of a graph G assigns a color to each edge of G so that any two edges
with a common endpoint receive distinct colors; when the context is clear, we usually just write
edge-coloring. Note that edge-colorings of a graph are in bijection with vertex colorings of its
line graph. So edge-coloring is a special case of vertex coloring, since not all graphs are line
graphs. Figure [3.1]illustrates this bijection.

Figure 3.1: A proper edge-coloring of a multigraph, and the corresponding vertex coloring
of its line graph.

A partial edge-coloring of G is a proper edge-coloring of some subgraph of G, allowing
edges to be uncolored. A k-edge-coloring is an edge-coloring that uses at most k colors. The
edge-chromatic number of G, denoted x’(G) and also called its chromatic index, is the smallest
k such that G has a k-edge-coloring. A graph G is edge-critica if x'(G—e) < x'(G) for every
edge e. (For example, each graph in Figure [3.2] is edge-critical.) In a partial edge-coloring @,
a color « is seen at vertex v if « is used on some edge incident to v; otherwise « is missed at v.
Let @(v) and ®(v) denote the sets of colors seen and missed at v, respectively.

Given a partial k-edge-coloring ¢ of a graph and two colors «, 3 € [k, an «, 3-Kempe
chain, or simply an «, 3-chain, H is a component of the subgraph induced by the edges colored
o and 3. If vertex v sees exactly one of colors « and 3, then P, (, ) denotes the «, 3-chain
starting at v. An «, 3-swap recolors the edges of an «, 3-chain, using « in place of 3, and {3 in
place of o«. We call this recoloring H.

Edge-critical graphs are useful because every graph G contains an edge-critical subgraph H

3To be precise, we also require that G has no isolated vertices.
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with A(H) = A(G), but edge-critical graphs have more structure than general graphs, which
may facilitate a proof. As a result, many edge-coloring conjectures are known to be true if they
are true for the class of edge-critical graphs.

Remark 3.2. If ¢ is a proper partial k-edge-coloring of a graph G and we form ¢’ from ¢
by performing a Kempe swap, then ¢’ is also a proper partial k-edge-coloring of G. This
observation is the fundamental property of Kempe swaps, and we often use it without remark.
Every Kempe chain has maximum degree at most 2, so must be a path or an even cycle. When
viewed in the context of line graphs, this is because K 3 is not an induced subgraph of any line
graph. In fact, many coloring results for line graphs extend to larger classes of K; 3-free graphs.

With definitions done, we turn to proofs. We start with the case when G is bipartite.
Theorem 3.3 (Konig’s Theorem). If G is a bipartite multigraph, then x'(G) = A.

Proof. We use induction on ||G||. The base case ||G|| = 1 is easy. So suppose that |G| > 1.
Choose an arbitrary edge vw and let G’ := G — vw. By hypothesis, x'(G’) = A(G’) < A(G).
So let @ be a A(G)-edge-coloring of G’. We want to extend ¢ to vw. If v and w miss a common
color «, then we color vw with «, so assume they do not. Since v and w each see at most
A(G) — 1 colors in ¢, there exist distinct colors & € @(v) and € @(w). Let P := P, («, B).
Clearly w is not an internal vertex of P, since 3 € ®(w). Also w is not an endpoint of P, since
then P + vw would be an odd cycle, which is forbidden since G is bipartite. So w ¢ V(P).
Now an «, B-swap at v yields a new A(G)-edge-coloring ¢’ of G’, with B € ¢@’(v) N @’(w). To
finish the A(G)-edge-coloring of G, we color vw with f3. O

We might hope that x’ = A for all graphs, but this is false.

O H @& A

Figure 3.2: Simple planar graphs with x’ = A+ 1, when A € {2, 3,4, 5}.

Example 3.4 (Simple graphs with x’ > A). For every k > 2 there exists a simple graph G
with A(G) =k and x’(G) > k. When 2 < k < 5, there exist such graphs that are planar.

Proof. Let H be a k-regular graph with |H| even, say |H| = 2t for some integer t. Form G from
H by subdividing a single edge. Now ||H|| = tk, so ||G|| = tk + 1. However, each matching of
G has size at most | |G| /2] =t,s0x’(G) = [||G||/t] =k + 1. When k is 2, 3, 4, or 5, choose H
to be an even cycle, the cube, the octahedron, or the icosahedron (respectively). Subdividing
an edge preserves planarity, as shown in Figure so G is planar. O
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3.1.2 Vizing’s Theorem and Kierstead Paths

Vizing used Kempe swaps to show that every simple graph G satisfies x'(G) < A + 1. We
present 3 proofs of this result. All 3 of the proofs rely on Kempe swaps to modify partial
colorings. But each of the 3 uses induction in its own way.

Lemma 3.5. Let G be a simple graph and ¢ a k-edge-coloring of all of G except for some edges
ei1,...,es incident to a specified vertex w, where e; = viw for each 1 € [s]. If [p(w)| = s,
[P(vi) N@(w)| =1, and [p(vi) N@(W)| = 2 for all i = 2, then G has a k-edge-coloring.

Proof. We use induction on s. For the base case, s = 1, color viw from @(v1) N @(w). So
assume s = 2. Choose A; C @(vi) NP (w), for each i € [s], so that |A;| =1 and |A;| = 2 for
alli > 2. Let B = @(w). Suppose there exists j € [s] and a color « such that € A; N B and
o & Ay for all i # j. Now color e; with « and proceed by induction on s. So assume instead
that each o € U§_; A appears in A; for at least two values of i. Since ) ;_; |Aj| =2s—1 and
IB| = s, there exists a color 3 € B\ (U{_;A;). Choose y € A; and recolor P, (3,y). Now 3 is
available at v; and at most one other v; (since Py, (3,v) is a path). Use 3 on e; and proceed
by induction on s, taking v; as the new instance of v;. O

Theorem 3.6 (Vizing’s Theorem). If G is a simple graph, then x'(G) < A + 1.

Proof. Let k := A+ 1. We show that G has a k-edge-coloring, by induction on |G| (the base
case |G| = 1 is trivial). Choose an arbitrary w € V(G). By hypothesis, G — w has a k-edge-
coloring ¢. Clearly [@(w)| = k = d(w). For each neighbor v; of w, we have |@(vi)| = 2 and
©(vi) Co(w). By Lemma we can extend the coloring ¢ to G. O

Definition 3.7. For a multigraph G, let ¢ be a partial k-edge-coloring, for some integer k =
A + 1. For an uncolored edge vgvi, a Kierstead path is a path vy, ...,vs such that for each
i € [s] there exists j € {0,...,1— 1} such that @ (vivi_1) € @(vj). That is, each color used on
an edge of the path is missed at an earlier vertex on the path. By definition, every prefix of a
Kierstead path is again a Kierstead path. See Figure

B &, e , ® , ©

o e 0

Vo %1 Vo V3 Vg

Figure 3.3: A Kierstead path, where circled labels denote colors missed at a vertex;
we use this convention throughout the chapter. Since color 2 is missed at vertices
vo and v,, Lemma [3.8| ensures that, after some Kempe swaps, we can extend the
coloring to vov;.
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Lemma 3.8 (Kierstead’s Lemma). Let G, @, k, and vy, ..., Vs satisfy Definition Let H
denote the subgraph induced by edges colored by @, and let H' := H + vov;. If there exist distinct
vy and v missing a common color; i.e., @(vi) N @(v;) # 0, then H' has a k-edge-coloring.

For a color & € @(vi) N®(vj), We will “push” the two vertices where o is missed down
the path toward vg, so that « (or some other common color) is eventually missed by v and v,
at which point we can clearly extend the coloring. This pushing process consists of repeated
Kempe swaps at vertices on the path.

Proof. We use double induction, first on s, and second on [i — j|. Choose o € @(vi) N @(v;).
By symmetry, we assume i < j. We also assume j = s, since otherwise we apply the induction
hypothesis to a prefix of the path. Similarly, we assume « ¢ @(vy,) for all h € {i, j}; also for all
distinct ¢, € {0, ...,s — 1}, we have ¢(vq) N @(v;) = 0. For the base case, s = 1, we have
i=0andj=1. So we color edge vov; with «.

Now consider the induction step, when s > 1. First suppose thati =j —1 = s — 1. Let
B := @(vivi+1). Recolor edge vivi,, with «, and call this new coloring ¢’. Now B € ¢’(v;).
Also, since @(vivi 1) = B, there exists h € {0,...,1 — 1} such that 3 € @(v,). We apply the
induction hypothesis to v; and vy,, which shows that H’ has a k-edge-coloring.

So assume instead that j —1i > 2. Choose 3 € @(viy1) and let P := P, (&, 3). Form
¢’ from @ by recoloring P. If P does not end at v, then we invoke the (primary) induction
hypothesis, keeping i unchanged and letting j := i + 1. We must check that vp,...,vi41
remains a Kierstead path after the Kempe swap. Note that {«, 3} C @(vn) = @’(v) for all
h < 1; now the definition of Kierstead path implies that ¢’ (viyvhi1) = @(Vvivhi1) € {«, B} for
all h < i. So assume that P ends at v;. Now we invoke the (secondary) induction hypothesis,
with j unchanged and i increased by 1. Again, we can check that vy, ..., vs remains a Kierstead
path after the Kempe swap, since 3 € ¢’(vi) and @ € @’(vi,1). Thus, by induction H’ has a
k-edge-coloring. O

Second proof of Vizing’s Theorem. We use induction on ||G||; the base case ||G|| = 1 is easy, so
assume that ||G|| > 1. Choose an arbitrary edge vov; and let G’ := G—vgv;. Letk := A(G)+1.
By hypothesis, x'(G’) < A(G’) +1 < k, so let ¢ be a k-edge-coloring of G’. To extend the
coloring to vgv; by Lemma it suffices to find a Kierstead path P starting from vgv; and a
color o missed at distinct vertices of P. Suppose we have constructed a Kierstead path vg, ..., v;
for some i = 1. We can assume that at most one vertex misses each color.

Now we extend P to v; 1. Since k > A(G), each vertex misses at least one color; further vg

and v; each miss at least two colors. Thus, ‘U%;lo @(vh)’ =2 1+ 2. Each color missed earlier on

the path is seen at v;, and we must extend the path by following an edge to a new vertex. Since
G is simple, each of vy, ..., v;_1 forbids at most one edge incident to v;. Thus, we have at least
2 choices to extend the path. We can keep extending the path until two of its vertices miss a
common color. By Pigeonhole, this happens before the path has length k. Now by Lemma 3.8}
we can extend the k-edge-coloring to G. O
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3.1.3 Vizing’s Adjacency Lemma and 2 Applications

Vizing proved that in an edge-critical graph every vertex has at least two A-neighbors, and if
a vertex v has a low-degree neighbor, then v has even more A-neighbors. Next we prove this
so-called “adjacency lemma”, and its generalization, the Fan Equation. We use the phrase with
respect to frequently, so we often shorten it to w.r.t.

Definition 3.9. Let G be a multigraph with an edge e with endpoints v and w. Let ¢ be a
k-edge-coloring of G — e, for some integer k = A. A Vizing multi-fan, or simply multi-fan, at
w w.rt. e and @ is a sequence (e, V1,...,€s,Vs) such that e; = e, each e; is an edge, each
vj is a vertex, and the following two conditions hold: (i) the edges are distinct, and for each
j € [s] edge e; has endpoints v; and w, and (ii) for every j € {2, ..., s}, there exists h € [j — 1]
such that ¢(ej) € @(vn). That is, each color used on an edge of the fan is missed at an earlier
vertex in the fan. (Note that (ii) is also required in the definition of Kierstead path.) When the
multi-fan is simple, we may simply call it a fan. Figure 3.4/ shows an example.

Figure 3.4: A simple Vizing fan.

Lemma 3.10. Let G be a graph with x'(G) = k + 1 for some k = A. Let e be an edge such that
x'(G —e) = k, and w an endpoint of e. Let ¢ be a k-edge-coloring of G — e, and let F be a
multi-fan (e1,v1,...,es,Vs) at w, w.r.t. e and @. The following two statements hold.

@) The sets (W), @(v1),..., @(vs) are pairwise disjoint.

(b) If Fis a maximal multi-fan at w w.r.t. e and @, then

D> (dvi) + pr(viw) — k) = 2. (3.1
viEV(F)

Given a multi-fan F and partial edge-coloring ¢ satisfying the hypotheses, the key idea is
that we can “move the uncolored edge” to be any edge of F, by shifting around the colors on
the edges of F. This is easy to prove by induction on |F|. Suppose there exist o« € @(w) N P(vi)
for some i. Now we make wv; be the sole uncolored edge, and color it with «. If there exists
o € @(vi) N'@(v;), then after a Kempe swap we can reduce to the previous case. This proves
(@). Part (b) follows from (a) by a simple counting argument.
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Proof. (a) First we prove that @(w) N @(vi) = 0, for all i € [s]. Assume the contrary, and
choose 1 and « such that « € @(w) N @(vi). We get a k-edge-coloring of G by induction on 1,
as follows. If i = 1, then we color e; with «. Otherwise, let f = @(e;). Now recolor e; with
o.. Since F is a multi-fan, there exists j € [i — 1] with B € @(vj). Now f3 is unused at both w
and v;. So by induction G has a k-edge-coloring, a contradiction.

Now we show that @(vi) N @(v;) = 0 for all distinct i,j € [s]. The main step is proving the
following claim. For all i € [s] and & € @(vi) and 3 € @(w), the path P, («, 3) ends at w.
Assume the contrary, and choose 1 minimum such that the claim is false. Let P := P, («, f3),
and form ¢’ from @ by recoloring P. Since « € @(vi), P is a path. By assumption, P
does not end at w; so w ¢ V(P), since f € @(w). Thus, none of eq,...,e; appears on P.
So @’(ej) = @(e;) for each j € {2,...,1}. Similarly, the colors seen at w and at each vj,
with j € [i — 1], are unchanged. Thus, (e, Vv1,...,e€i,vi) is a multi-fan at w w.r.t. e and
¢@’. Butnow B € ¢’(w) N ¢’ (vy), which contradicts the previous paragraph. This proves the
claim. To complete the proof of (a), assume that it is false, and choose 1, j, and « such that
o € @(vi) N @(vj). Choose B € @(w). Now either v; or v; contradicts the claim, since the
«, 3-chain starting at w ends at exactly one vertex.

(b) Let F be a maximal multi-fan at w w.r.t. e and ¢. By definition, every color used on
an edge of F is missed at a vertex of F. Conversely, by (a) and the maximality of F, every color
missed at a vertex v; of F is used on a edge of F. Since e; is uncolored, this gives s — 1 =
ZvieV(F) [@(vi)|=1+ ZvieV(F)(k_ d(vi)). Since Fis maximal, s = ZvieV(F) ug(viw), so
substituting and regrouping terms gives the desired equation. O

We call Equation the Fan Equation. It yields two immediate corollaries.

Lemma 3.11 (Vizing’s Adjacency Lemma). Let G be an edge-critical simple graph with maximum
degree Aandx’(G) > A. Ifvertices v and w are adjacent, then w has at least max{A+1—d(v), 2}
A-neighbors.

Proof. Let e be an edge with endpoints v and w, and let ¢ be a k-edge-coloring of G — e, where
k = A. Let F be a maximal multi-fan at w with respect to e and ¢. Since G is simple, note that
every term in the sum of Equation is at most 1, and the term for each vertex v; equals 1
precisely when d(v;) = A. Since the term for v equals d(v) + 1 — A, the sum must contain at
least A + 1 — d(v) terms for A-vertices, as desired. O

We use Vizing’s Adjacency Lemma often, and typically abbreviate it as VAL.
Theorem 3.12 (Vizing’s Theorem for Multigraphs). If G is a multigraph with maximum edge

multiplicity u, then X' (G) < A + .

Proof. Let H be an edge-critical subgraph of G with A(H) = A. When k > A + p, every
term on the left in Equation is non-positive, so the Fan Equation fails to hold. Thus,
X' (G) =x'(H) <A+ O
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The proof of Lemma 3.10]also yields the following corollary, which we use in Section [3.3}

Corollary 3.13. Let G be a simple graph, and k be an integer with k = A + 2. Given any
k-edge-coloring ¢ of G, we can form from @ a (k — 1)-edge-coloring of G by a series of Kempe
swaps.

Proof. Let @ be a k-edge-coloring of G. We use induction on my, the number of edges colored
k in @. The base case, my = 0 is trivial. So assume my =2 1. Let M denote the set of edges
colored k and choose an arbitrary edge e € M. Let G’ := G — M + e. Let ¢’ denote the
restriction of @ to colors 1, ...,k — 1. Note that ¢’ is a (k — 1)-edge-coloring of G’ — e. Implicit
in the proof of Lemma is an algorithm to transform ¢’ into a (k — 1)-edge-coloring of G’,
as follows.

Since k—1 = A+ 1, substituting k — 1 for k in (applied to @) yields a statement that
is false. Recall that was derived from Lemma [3.10{(a) by an easy counting argument. So
the falseness of (3.1), with k — 1 in place of k, implies that the sets @’ (w), @’(v1),..., @' (V)
are not all pairwise disjoint. Since the proof of Lemma [3.10[@@) was constructive, we get an
algorithm to transform ¢’ to a (k — 1)-edge-coloring of G’. Further, each step in this algorithm
is either a Kempe swap or simply recoloring an edge. But the latter is also a Kempe swap.
Specifically, consider an edge wv; that is colored . If @ € @(w) N @ (vy), then to recolor wv;
with «, we simply perform an «, 3-swap at w or at vj.

Now we view the series of Kempe swaps above in the context of a k-edge-coloring of G.
Since color k is involved only in the final Kempe swap (recoloring wv; with a color other than
k), this process does not effect any edge in M — e. Thus, the result is a k-edge-coloring of G
with my — 1 edges colored k. So by induction on my, the corollary holds. O

Proposition 3.14. Let G be a simple, k-degenerate graph. If A(G) = 2k, then x'(G) = A(G). In
particular, if G is planar with A = 10, then x'(G) = A(G).

Proof. The second statement follows from the first when k := 5; now we prove the first.
Let H be an edge-critical subgraph of G with A(H) = A(G); see Exercise Let | be the
subgraph of H induced by all vertices v with dj;(v) = k + 1. Since G is k-degenerate, there
exists w € ] such that dj(w) < k. Since dy(w) > dj(w), vertex w has some neighbor
x in H such that dg(x) < k. Now by VAL, the number of A(H)-neighbors of w is at least
A(H) +1—d(x) 2 2k + 1 — k = k + 1; this contradicts that dj(x) < k. Thus, we conclude
that x’(G) = A(G), as claimed. O

In our next theorem, we strengthen the previous result when G is a planar graph. All of
our reducible configurations come from Vizing’s Adjacency Lemma (VAL).

Theorem 3.15. If G is planar with A = 8, then x'(G) = A.

Proof. Let G be a planar graph with A > 8, and suppose that G is a counterexample to the
theorem, i.e., X'(G) > A. We assume that G is edge-critical; if not, then we take an edge-
critical subgraph with the same maximum degree. Note that VAL implies that 5(G) > 2.
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loe]
o

Figure 3.5: Some cases in the proof of Theoremwhere vertices end with charge 0.

Further, VAL implies that the 4~ -vertices induce an independent set. We use discharging with
initial charge d(v) — 6 and the two discharging rules below. Figure [3.5/shows some examples.
Since d(G) < 6, to reach a contradiction we show that every vertex ends happy.

(R1) Each vertex v with d(v) € {2, 3,4} takes 2

) from each of its neighbors.
(R2) Each vertex v with d(v) € {5, 6} takes % from each of its 6" -neighbors.

Now we show that every vertex ends happy. For a vertex v, let j equal the smallest degree
of its neighbors. By VAL, v has at least A + 1 — j neighbors of degree A. Since A = 8, if vis a
6~ -vertex, then v takes charge from at least 9 —j of its neighbors. So d(v) = (9 —j) + 1, which
implies that j = 10 — d(v). Similarly, v gives charge to at most d(v) — (A + 1 — j) vertices,
which is at most d(v) +j — 9. To show that each vertex ends happy, we consider the possible
values of d(v). When v is a 6 -vertex, we also consider the possible values of j.

Case 1: d(v) < 4. Because the 4~ -vertices induce an independent set, v loses no charge

and ends happy by (R1), since d(v) — 6 + d(v) 6;?3) =0.

Case 2: d(v) = 5. VAL implies that v has at least four 6" -neighbors. So v ends happy by
(R2), since 5 — 6 + 4(%) =0.

Case 3: d(v) = 6. Now j = 10 — 6 = 4. We consider the three cases j = 4, j = 5, and
j = 6. If j = 4, then v gives at most 1(%), by (R1), and gets at least 5(%), by (R2). If j = 5, then
v gives at most 2(%) and gets at least 4(%). If j = 6, then v gives at most 3(%) and gets at least
as much as it gives. So v ends happy, since 0 + min{—g + 5(1) — (1) +4(3),0} =

Case 4: d(v) = 7. Now j = 10 — 7 = 3, so either j = 3, ]—4 ]—5 ]—6 or] = 7.
Similar to the previous case, v ends happy, since 7 — 6 — max{l( ), 2

Case 5: d(v) = 8. Now j = 10 — 8 = 2, so either j = 2, j =
j 2 7. Here v ends happy, since 8 — 6 — max{l(z), (3) 3(2) (%

4, ] = 5 j = 6 or
,0= O

Hadwiger conjectured that every graph G with chromatic number k contains Ky as a minor.
That is, we can form Ky from some subgraph of G by contracting edges. This is the biggest open
question in graph coloring, and we say more about it in the Notes. Below we prove Hadwiger’s
Conjecture for line graphs of multigraphs.
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Theorem 3.16. Hadwiger’s Conjecture is true for line graphs of multigraphs. More formally, if G is
a multigraph with x'(G) = k+1, then there exist connected edge-disjoint subgraphs Hy, ..., Hyx 11
such that V(H;) N V(H;) # 0 whenever 1 <i<j <k+ L

The proof is a nice application of the Fan Equation and Menger’s Theorem. For reference,
we state the latter below and defer the proof (see Theorem (c)).

Theorem 3.17 (Menger’s Theorem). Fix a graph G. For every pair of distinct vertices v and w
in G, the maximum number of edge-disjoint v, w-paths equals the minimum size of an edge-cut
that disconnects v from w.

Proof of Theorem Assume the theorem is false. Let G be a counterexample that minimizes
|G|. We can assume that G is edge-critical. Let k := x’(G) — 1. Clearly A < k, since otherwise
we can take as Hi, ... Hy 1 distinct edges incident to a A-vertex. Let w be any A-vertex, e be
any edge incident to w, and ¢ be any k-edge-coloring of G — e. Finally, let F be a maximal
multi-fan (e1,v1,...,es,Vs) at w with respect to e and ¢. Since the Fan Equation holds for F,

- RIS p
P
Py H;
Z1
P3
H;
o /
Vi
Hj
oM
Zl Hé
G, Gy

Figure 3.6: Form a partition V7, V, of V(G) that minimizes |[E(V;, V,)| such that z; € V;
and z; € V,. Form G; and G, from G by contracting V; and V,, respectively. Given the
desired subgraphs H{, ..., H;,; in Gy and P4,..., Pjg(v;,v,) in Gy, we lift them all to G
and combine them to form the desired subgraphs in G.
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we have

S S

2= (d(vi) +plwvi) =k) = D (d(vi) + plwvis) = k), (3:2)

i=1 i=1

where we write v 1 for v;. Equation implies there exists i such that d(v;) + n(wvi, 1) =
k + 1. To reach a contradiction, we show that v; has d(v;) edge-disjoint paths to {w,vi 1},
which we can choose to avoid edges between w and v; ;. To get our desired edge-disjoint
subgraphs Hy, ..., Hx.1, we take all parallel edges wv; 1 and this set of edge-disjoint paths
from v; to {w, vi1}. This is at least k 4+ 1 subgraphs since d(v;) + n(wviy1) = k+ 1. Now it
suffices to show that there exist d(v;) edge-disjoint v, w-paths (we truncate each path when it
first reaches {w, vi; 1}). In fact, something stronger holds: For all distinct pairs z1,z3 € V(G),
the maximum number of edge-disjoint z1, zp-paths is min{d(z;), d(z2)}.

Suppose to the contrary that G has vertices z; and z; without min{d(z;), d(z2)} edge-
disjoint z1, zy-paths. We partition V(G) into V; and V; such that z; € V; and z; € V, and
subject to this |[E(V3, V)| is minimized; see the top of Figure E Let v := |E(V1, V2)|. By
Menger’s Theorem, r < min{d(z;), d(zz)}. This implies that |V;| = 2 and [V,| = 2. Form G;
from G by identifying all vertices in V;, deleting any resulting loops; call the new vertex zj.
Form G and z5 analogously, by identifying vertices in V5; see the bottom of Figure E If both
G; and G, are k-edge-colorable, then so is G: we permute the color classes for G, to agree
with those for G; on E(V, V3). So assume x’(G1) > k or x'(Gz) > k.

Note that |G| < |G| and |G5| < |G|. So by minimality, the theorem holds for both G
and G,. By symmetry, we assume that x’(G1) > k. So there exist edge-disjoint subgraphs
Hi,...,Hj; in G such that V(H{)HV(H]-’) # () whenever 1 < i < j < k+1. When viewed as
subgraphs of G, these Hy, ..., Hy ; are still edge-disjoint. However, some pair H{ and H; may
not share a vertex in G if in G; they shared only the vertex zj. We fix this problem as follows.
By the minimality of our choice of the partition (V1, V2), in G2 no edge-cut of size less than
1 disconnects z; and z3. So, by Menger’s Theorem, G, contains r edge-disjoint z;, z3-paths,
P1,...,Pr. Now we are nearly done. We order the subgraphs Hj,..., H{<+1 of G; such that
each one including an edge incident to z] (in G, these are the edges of E(V1, V2)) is among the
first r. Now the subgraphs H; U Py,...,H  UPy, H; ..., H} ; of G are edge-disjoint, and
each pair shares a common vertex; see the top of Figure So G is not a counterexample,
and this contradiction completes the proof. O

3.2 A Glimpse of the 4 Color Theorem

In this section we apply the recoloring ideas above in the more general context of vertex coloring.
One notable difference here is that the subgraph induced by any two colors classes, « and f3,
need not be a path or an even cycle. As a result, the theory of Kempe swaps for vertex coloring
is far less developed than for edge-coloring.

Gi, G2

* *
Z1,2Zy
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Although the proof of the 4 Color Theorem is long, the central idea is simple: reducibility
and unavoidability. One thorny complication is showing that the unavoidable subgraphs appear
not just as subgraphs, but as induced subgraphs. Appel and Haken lacked a consistent way of
doing this, which lead to many “immersion” difficulties in their proof. To explain a solution to
this problem, we need a few definitions.

Definition 3.18. A minimal counterexample to the 4 Color Theorem is a counterexample G
that minimizes |G|. A graph G is internally 6-connected if every cutset X of G has |X| = 5, and
for every cutset X of size 5, the subgraph G \ X has exactly two components, one of which is an
isolated vertex. (We will show that each minimal counterexample is internally 6-connected.)
The 2-neighborhood, N?(v), of each vertex v is the set of vertices at distance at most 2 from v.

Given a partial vertex coloring of a graph G and colors « and {3, an «, 3-component is a
component of the subgraph induced by vertices colored o or 3. An «, 3-swap at a vertex v
interchanges the colors used on vertices in the «, 3-component containing v.

In 1913 Birkhoff proved that every minimal counterexample to the 4 Color Theorem must
be an internally 6-connected plane triangulation. A consequence is that the subgraph induced
by each vertex v and its 2-neighbors must be “well-behaved”, which we make precise below.
Informally, this means that every reducible subgraph appearing in the 2-neighborhood of a
vertex must appear as an induced subgraph. So, to avoid immersion difficulties, it suffices to
find a set of unavoidable configurations that must each appear in the 2-neighborhood of some
vertex. This is exactly what Robertson, Sanders, Seymour, and Thomas did [[344]].

Lemma 3.19. Let G be an internally 6-connected plane triangulation. For each vertex v, its
neighbors induce a chordless cycle; also the vertices at distance 2 from v induce a chordless cycle.

Proof. Let G satisfy the hypothesis. This implies that G has no separating 3-cycle and no
separating 4-cycle; in particular, 6(G) = 5. Choose an arbitrary v € V(G).

Let wi,...,Wq(y) be the neighbors of v in clockwise order (the neighbors of w1, followed
by those of wy, etc. Since G is a triangulation, G contains the cycle wy - - - wq(y,). Suppose
this cycle also contains a chord wiwj. Now the 3-cycle vw;w; separates wi_; from wi 1, a
contradiction. So N(v) induces a chordless cycle.

Denote by x1,...,Xs the vertices at distance two from v, in clockwise order. Since G is a
triangulation, each successive pair xi, xi+1 (subscripts modulo s) must have a common neighbor
wj in N(v), and wj is unique, since G has no separating 4-cycle. Since G is a triangulation,
edge xixi1 is present. So xq,...,Xs induces a cycle, C, possibly with chords. We now show
that this cycle C must be chordless.

Suppose that C has a chord x;x;, with i < j — 1. If x; and x; have a common neighbor wr,,
with wy, € N(v), then the cycle x;x;wy, separates x;_; from x; 1, a contradiction. So assume

4There are at least three distinct proofs, one of which was also encoded to be verified by a formal proof checker.
But all three follow the same outline, and all three are long.

5Since G has no separating 4-cycle, each pair w; and w; have at most one common neighbor other than v, and
if they have one, then |1 — j| = 1. So this ordering can be made precise.
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that x; and x; have no such common neighbor. Let P; and P, denote a shortest v, x;-path and a
shortest v, x;-path. And let D denote the 5-cycle induced by P1, P2, x;x;. Note that D separates
Xi_1 from x;i 1. Further, x; 1 has a neighbor inside D, since d(x;,1) = 5and xj 1 <4 v. So D
has at least two vertices in its interior. Likewise, D has at least two vertices in its exterior, which
contradicts that G is internally 6-connected. Thus, X1, ..., xs induces a chordless cycle. O

Theorem 3.20. If G is a minimal counterexample to the 4 Color Theorem, then G is an internally
6-connected plane triangulation.

Proof. Let G be a minimal counterexample to the 4 Color Theorem. If G has a cut-vertex, then
we can 4-color each block by minimality and permute color classes to agree on the cut-vertices.
So assume G is 2-connected. Suppose G has a 4™ -face f, say with boundary vi ---vy(f). By
planarity, either vi ¢4 v3 or vy ¢4 v4. So we can identify some non-adjacent pair on f to form
a smaller plane graph G’. By minimality, G’ has a 4-coloring ¢. But ¢ also gives a 4-coloring
of G, a contradiction. Thus, G is a plane triangulation.

Since G is a plane triangulation, every minimal cutset must induce a cycle, C, with one
component inside C and another component outside. (This is intuitively clear, but making it
precise requires the Jordan Curve Theorem, so we omit the details.) Thus, it suffices to show
that every separating 5~ -cycle in G is a 5-cycle that separates only a single vertex from the
rest of the graph. For a separating cycle C, let C;; denote the subgraph induced by C and the
vertices of G inside C. Similarly, define C,,; for C and the vertices outside.

Suppose that G has a separating 3-cycle, C. By minimality, Ci, has a 4-coloring ®iy;
likewise, Coyt has a 4-coloring @qy¢. In each coloring, the vertices of C get distinct colors. So
we can permute the color classes of @ to agree on V(C) with those of ¢y,. Together, these
colorings give a 4-coloring of G, a contradiction. So G has no separating 3-cycle.

mjuguin

Figure 3.7: The 4 ways to 4-color a 4-cycle.

Suppose that G has a separating 4-cycle, vivavsvy; call it C. In every 4-coloring of V(C),
the colors around C in order of increasing index, up to permuting colors, are either 1234, 1232,
1213, or 1212 (we omit the commas within each type of coloring); see Figure

Form C/ and C/ from Cj, by adding edges v1v3 and vovg, respectively (if they are not yet
present). Form C/,, and C//, analogously; see Figure Note that every 4-coloring of C/
(and C/)) has type 1234 or 1232. If any 4-colorings of Ci, and Coy have the same type, then

they combine to give a 4-coloring of G, a contradiction. So by symmetry we assume that C/ ,

and C/, have only 4-colorings of type 1234, while C/ and C// have only 4-colorings of types

m

1232 and 1213, respectively. Let ¢ be a 4-coloring of Coy of type 1234. By planarity, either v;

Cin
Cout

.....
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Figure 3.8: The 4 graphs C/, C/7, C. ., C/
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and vs are in different 1, 3-components of ¢ or else v, and v, are in different 2, 4-components
(if not then these 1, 3- and 2, 4-components intersect, a contradiction). By either a 1, 3-swap at
v1 or a 2, 4-swap at vo, we form from ¢ a 4-coloring ¢’ of Coy of type 1232 or type 1213. In
each case, we combine ¢’ with a 4-coloring of the same type of Ci,, after possibly permuting
color classes. This gives a 4-coloring of G, a contradiction. So G has no separating 4-cycle.
Finally, suppose that G has a separating 5-cycle, vi1vovsv4vs, with at least two vertices inside
and at least two outside. Define Ci, and Coy; as above. Up to permuting colors, the restriction
of a 4-coloring to v; - - - vs that uses only 3 colors on V(C) has one of the five types shown in
the top row of Figure (in clockwise order from v;, on the top left): 12123, 31212, 23121,
12312, 21231. If a 4-coloring uses 4 colors on V(C), then it has one of the five types shown in
the bottom row of Figure ﬁ 12134, 41213, 34121, 13412, 21341. Let P;(C;i,) be a boolean
function that is true when Cj, has a 4-coloring of the ith type in the top row; similarly for Coy;.
We define Qi(Cin) and Qi(Coy:) analogously for the 5 types in the bottom row. To reach a
contradiction, we prove two claims. In each, we always assume that H € {Ci,, Cout)-

Claim 1. Pi(H) AN _‘Pi+1(H) = Qi(H).

Proof. By rotational symmetry, we assume thati = 1; thatis, (v1) =1, @(v2) =2, @(v3) =1,
@(v4) =2, and @(vs) = 3. Form ¢’ from ¢ by a 1, 3-swap at vi. Now ¢’(v1) =3, @' (v3) = 2,
©'(v4) = 2, and @'(vs) = 1. If ¢’(v3) = 1, then Po(H). So we assume that ¢’(v3) = 3.
This means that v; and vs are in the same 1, 3-component, which implies that v, and v4 are in
different 2, 4-components. Now a 2, 4-swap at v, starting from ¢, shows that Q;(H). &

Claim 2. —P; 1 (H) A—Qi,1(H) = P;(H).

Proof. By symmetry, we assume i = 1. Form H’ from H by identifying v, and v4. By minimality,
H’ has a 4-coloring, and it induces a 4-coloring ¢ of H with ¢@(v2) = @(v4). By symmetry, we
assume that @(v2) = 1 and @(v3) = 2. Either (@) @(vs) = @(v3), (b) @(v1) = @(v3), or (¢)
©(vs) ¢ {®(vs), @(v1)}. Each case implies Po(H), P1(H), or Q2(H). Thus, the claim holds. <

Now we show that G has a 4-coloring. Form C/ and CJ, from Cj, and C,y by adding
a single vertex adjacent to every v;. By minimality C/ and C/, each have a 4-coloring that
uses only 3 colors on V(C). That is Pi(Ciy) and P;j(Coy) for some i,j € [5]. Clearly i # j, or
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Figure 3.9: The 10 ways to 4-color a 5-cycle. The 3-colorings are on top.

else G has a 4-coloring. By symmetry, assume that P;(Ci) and —P(Cjy). By Claim [t we get
Q1(Cin). Since P1(Ciy) and Q1(Cin), we assume —P1(Coye) and —Q1(Coue). By Claim this
implies Ps(Coyut), S0 by Claim we get Qs(Cout). So we assume that —Ps(Cj,) and —Qs(Cip).
By Claim |2} this gives P4(Cji,). Now repeating the same arguments, starting from P4(Cy,) and
—Ps(Cin), implies Py (Cyy), a contradiction. O

3.3 Kempe Equivalence of Colorings

In this section we are motivated by a question of Vizing [399, [401] from the 1960s (answered
affirmatively in 2022, as we discuss in the Notes). Recall that a coloring is optimal if it uses as
few colors as possible.

Question 3.21 (Now answered). Starting from any proper edge-coloring of a graph G, can we
reach an optimal proper edge-coloring by a sequence of Kempe swaps, suppressing empty color
classes (and never introducing more colors than in the initial edge-coloring)?

We are interested more generally in when we can reach one proper coloring from another,
by repeated Kempe swaps. (Figure shows an example where we cannot.)

Definition 3.22. For a graph G and an integer k, with k = x(G), two k-colorings ¢ and ¢ of
G are k-Kempe equivalent if @ can be obtained from ¢ by a sequence of Kempe swaps (never
using more than k colors). For short, we write that ¢ ~¢ @¢. When the context is clear, we say
the colorings are k-equivalent or simply equivalent.

How can we show that all k-colorings of a graph G are k-equivalent? Given k-colorings ¢
and g, we start from ¢ and “move toward” ¢@o. We use Kempe swaps to reach an equivalent
k-coloring that agrees with @ on one color class, say . Now we need only prove the result for
G — I, by induction on x. Our next lemma formalizes this approach.

P ~x o

k-equivalent
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Figure 3.10: A 3-regular graph with two 3-colorings that are not 3-Kempe
equivalent. This is the only connected, k-regular graph with k-colorings that
are not k-Kempe equivalent.

Lemma 3.23. Let k be an integer and G be a graph such that each k-coloring of G is k-equivalent
to some (k — 1)-coloring of G. If I is an independent set such that all (k — 1)-colorings of G — I
are (k — 1)-equivalent, then all k-colorings of G are k-equivalent.

Proof. Let @ and @¢ be k-colorings of G. By assumption, these colorings are k-equivalent
(respectively) to (k — 1)-colorings ¢* and ¢;. We assume that ¢* and ¢ each use only
[k — 1], as follows. If @* uses k, then we replace color k everywhere with the same unused
color ¢ (by a series of k, x-swaps, which each recolor a single vertex); similarly for ¢.
Starting from ¢* and from ¢, we recolor each vertex of I with k. This gives k-colorings ¢**
and @g* such that @* ~¢ @™ and @5 ~x @g*. Further, ¢** and ¢g* each use k only on
I, so they both restrict to (k — 1)-colorings of G — I. By assumption, these (k — 1)-colorings
of G — I are (k — 1)-equivalent. And the sequence of Kempe swaps that proves this (k — 1)-

equivalence also proves that ¢@** ~i @, since color k is used only on I throughout. So
@~k @ ~k @ ~ O ~k ©§ ~x Po, as desired. O

Definition 3.24. For edge-colorings, we abuse terminology. Two k-edge-colorings of a graph G
are k-equivalent when the corresponding k-colorings of the line graph of G are k-equivalent.

Theorem 3.25. If G is a graph and k = x'(G) + 2, then all k-edge-colorings of G are k-equivalent.

Proof. We use induction on x’(G); the base case x'(G) = 1 is easy. So let s := x/(G), and
assume s > 1. We will apply Lemma to the line graph. Fix an s-edge-coloring ¢ of G,
with color classes My, ..., Ms. Clearly x'(G — M) = s — 1. By the induction hypothesis, all
(k—1)-edge-colorings of G—M are (k—1)-equivalent. (Here M is I.) To apply Lemma|3.23}
it suffices to show that every k-edge-coloring of G is k-equivalent to a (k — 1)-edge-coloring of
G. This follows from the Vizing fan results in Section [3.1] specifically, from Corollary[3.13} O

Now we return to vertex colorings.
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Theorem 3.26. If G is d-degenerate and k > d, then all k-colorings of G are k-equivalent.

Proof. We use induction on |G|; the base case |G| < 1 is trivial. Fix k-colorings ¢ and ¢ of G.
Let v be a d™ -vertex, and let G’ := G —v. Let ¢’ and @] denote the restrictions to G’ of ¢
and @o. By hypothesis there exist ¢, ..., @} such that @§ ~ @1 @._; ~k @ = @’; in fact,
we can assume that ¢/ differs from ¢/ _; by only a single Kempe swap, for each i € [r]. We
construct a sequence of k-colorings @1, ..., @, of G such that @; ~ @;_1 and the restriction
of @i to G’ is .

Choose « and  such that ¢ is formed from ¢{ ; by an «, B-swap. If @i_1(v) & {o, B},
then we form ¢; from @;_; using the same Kempe swap as in G’. This idea also works when
©i_1(v) € {a, B}, as long as at most one neighbor of v is colored from {«, 3} (since the Kempe
components of G’ are identical to those of G, except that one in G includes v). So assume that
©i_1(v) = a and at least two neighbors w of v have ¢;_;(w) = 3. Since d(v) < k, some color
v € [k] is unused by ;1 on N(v) U {v}. So we recolor v with y (technically, an «,y-swap at
v). Now we proceed as above.

So @ ~x @+ for some @, that agrees with ¢ on every vertex except for v. If necessary, we
recolor v in @, with its color in . This proves that @g ~ @, as desired. O

Corollary 3.27. If G is planar and k 2 6, then all k-colorings of G are Kempe equivalent.

Proof. This is true because every planar graph is 5-degenerate. O
Next we improve by 1 the lower bound in Corollary|[3.27]

Theorem 3.28. If G is planar and k = 5, then all k-colorings of G are Kempe equivalent.

The proof of Theorem is by induction on |G|. For some 5 -vertex v, we assume the
result for G — v and use this to prove it for G. We need two lemmas. The first is proved in
Section[11.1] (as Lemmal11.3)), since it follows directly from Thomassen’s proof that planar graphs
are 5-choosable. The second captures key ideas that we use repeatedly in the induction step.

Lemma 3.29. Let G be a planar graph having a 6~ -vertex v with four neighbors w1, Wz, Y1, Y.
@ If w1 <A wy, then G has a 5-coloring @ such that @(w1) = @(ws). (b) If also y1 <4 Yo, then
we can further require that ©(y1) = @(y2).

Lemma 3.30. Let G be a planar graph such that, for each planar graph H with [H| < |G|, all
5-colorings of H are Kempe equivalent. Fix a 5~ -vertex v and two 5-colorings of G, say ¢ and @.
If any of the following hold, then @ ~s ©q:

@) d(v) <4;or

(b) v has neighbors wy and wo, with @(w1) = @(ws) and @o(w1) = @o(w3); or

(©) v has neighbors w1y, wo, X1, X2 with @ (w1) = @(w2) and @g(x1) = @o(x2).

(In (b) and (c) we assume that all listed neighbors are distinct.)

.....
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Proof. The proof of (a) is the same as the proof of Theorem We prove (b) similarly, but
with a wrinkle. We form G’ from G — v by identifying w; and w; call the new vertex wyxws.
Let ¢’ and @] be the restrictions to G’ of ¢ and ¢o. We again basically copy the proof of
Theorem By assumption, we have @[, ..., ¢, where @, = ¢’, and each successive pair
@], ¢} differ by a single Kempe swap. Suppose the Kempe swap from ¢ _; to @] uses colors
o and B, and that @;_1(v) = . When we perform the same Kempe swap in G, we only need
to recolor v beforehand if ¢;_; uses {3 on at least two neighbors of v, including one neighbor
that is neither wy nor wy; this is because ¢! ;(wi) = @] ;(wq) and @!(w1) = @{(w3). But
when v has two such neighbors, we can always recolor it first, since @] _;(w1) = @]_;(w3). If
the Kempe swap from @] ; to ¢/ recolors w; *w,, then we may need to use two Kempe swaps
to get from @; 1 to @i, since wi and w, may be in different Kempe components of G.

Now we prove (c). By Lemma 3.29)(b), G has a 5-coloring ¢* with ¢*(w1) = ¢*(w,) and
®*(x1) = @*(x2). Now @ ~5 @* and also @™ ~5 @o, by (b). So @ ~5 ©* ~5 Po. O

Proof of Theorem By Corollary we can assume that k = 5. So below we write ~ to
denote ~5. Suppose the theorem is false. Let G be a counterexample minimizing |G| and,
subject to that, maximizing ||G||. By minimality, Lemma [3.30/@) implies that G has no 4~ -
vertex. So let v be a 5-vertex. Fix two arbitrary non-equivalent 5-colorings of G, say ¢ and .
In other words, @ £ @q.

Let w1 and wy be neighbors of v such that ¢ (w;) = @(w2); such w; exist by Pigeonhole.
Let x; and x5 be neighbors of v such that @o(x1) = @o(x2). By Lemma (b,c), we must
have {w1, w2} N{x1,x2}] = 1. So assume that w; = x; and wy # X, as in Figure Let
y; and y; be the other two neighbors of v. Suppose that y; <4 y2. By Lemma (b), there
exists a 5-coloring @* with @*(w1) = @*(w2) and @*(y1) = @*(yz2). Similarly, there exists a
5-coloring @** with @**(x1) = @**(x2) and @**(y1) = ¢**(y2). Now using Lemma [3.30|(b)
three times gives @ ~ @* ~ @** ~ @y, as in Figure [3.11] Thus, we assume y; <> ys.

Case1: G is a plane triangulation. By symmetry, we assume the neighbors of v in clockwise
order are wi, Y1, Wa, X2, Y2 (recall that wy = x1). Since G is a triangulation, we have edges
W1Y1, Y1 Wa, WaXa, X2Y2, Yawi. Suppose that yj <4 xg and ys <A wo, as in Figure- 3.12l We use
the same idea as above, but with one more step. By Lemma(b) G has three 5- colorlngs ©*,

@**, and @™ such that *(w1) = ¢*(w2) and @*(y1) = @™ (x2); also @™ (w2) = ©**(y2)
‘\ Wl/Xl !

Figure 3.11: If y; ¢4 ys, then using Lemmathree times shows @ ~ @,.
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Figure 3.12: If y; ¢4 x, and w, ¢4 y,, then using Lemma b) four times shows @ ~ @q.

***(

and @**(y1) = @**(x2); and also @™ (wy) = @***(y2) and ¢***(x1) = @***(x2). By four
applications of Lemma [3.30|(b), we get ¢ ~ @* ~ @** ~ @*** ~ ¢, as in Figure [3.12]

So assume that either y; <> x2 or ys <> wa; by planarity, we cannot have both. By
symmetry between ¢ and o, and possibly relabeling vertices, we assume that y; <> x3. Recall
from above that y; > ys. Let « := @(w;) and B := @(x2); recall that @(wy) = @(w1).
Now an «, 3-swap at xp gives a new 5-coloring @* with @*(x2) = « and @*(wz) = $3; also
@*(w1) = «, since wj is separated from w;, and x; by the cycle y;yov, which does not use «
or . Clearly ¢ ~ @*. So we are done, since Lemma 3.30|(b) gives ¢* ~ @o.

Case 2: G is not a plane triangulation. Let f be a 4" -face with boundary w; - - - wy(y). By
planarity, either wy <4 w3 or wa ¢4 wy. By symmetry, we assume that wy <4 ws. Form G’ from
G by identifying w1 and ws, as in the center of Figure Since |G’| < |G|, by hypothesis,
every 5-coloring of G’ is Kempe equivalent. Note that the 5-colorings of G’ are in bijection
with the 5-colorings of G that give w1 and w3 the same color. So all of these 5-colorings of
G are Kempe equivalent. Further, let G” := G + wyws, as on the right of Figure @ Since
|G”|| > ||G||, by minimality all 5-colorings of G” are Kempe equivalent. So we need only show
the equivalence of these two types of 5-colorings of G: those giving w1 and wj the same color,
and those giving w; and ws distinct colors.

Suppose that v has non-adjacent neighbors y; and y, such that wi,ws,yi,ys are all
distinct. (We have no reason to expect that w; and/or wj is adjacent to v, but this is possible.)
We apply Lemma (a) to G’ to get a 5-coloring @* of G such that ¢*(y1) = ¢*(y2) and

Wi Wy Wi/ W3 Wy Wi Wy
<
N
S ~
..
Wy W3 Wy Wy W3
G G/ Gl/

Figure 3.13: Graphs G’ and G” are smaller than G, so the 5-colorings for each
are Kempe equivalent, by the minimality of G.

Gl/

.....
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@*(w1) = @*(wj3). Similarly, applying Lemma [3.29)(a) to G” gives a 5-coloring ¢** of G such
that **(y1) = ¢**(y2) and @**(w1) # @**(ws3). By Lemma 3.30|(b), we have ¢* ~ ¢**, so
all 5-colorings of G are Kempe equivalent.

Assume instead that no such y; and y; exist. Now v and three of its neighbors, say
Y1,Y2, Ys, induce K4. Further, since Ks is non-planar, the other two neighbors of v must be w;
and ws. Since wi and ws both lie on the boundary of f, they must lie inside the same face of
the K4 induced by v, y1,Y2,ys. So w; and ws must both be non-adjacent to some yi, say yi.
By Lemma [3.29)(a), G’ has a 5-coloring that gives the same color to w;*ws and yi, and G”
has a 5-coloring that gives the same color to w; and y;, but not ws. These colorings naturally
induce a 5-coloring @* of G with ¢*(w;) = @*(w3) = ¢*(y1) and a 5-coloring ¢@** of G with
@**(w1) = @**(y1) # @**(ws). By Lemma[3.30|(b), ¢* ~ ¢**. Thus, all 5-colorings of G are
Kempe equivalent. O

3.4 Tashkinov Trees

3.4.1 The Goldberg-Seymour Conjecture is True Asymptotically

This section is about edge-coloring multigraphs. For every simple graph G, Vizing’s Theorem
states that A < x/(G) < A+ 1. But when G is a multigraph, this upper bound can fail. For
example, suppose G has 3 vertices and k parallel edges between each pair of vertices, as on the
left in Figure Now A = 2k, but x’(G) = 3k. For every multigraph G, Claude Shannon
proved that x/(G) < %A, and Vizing proved that x'(G) < A + u(G) (recall that u(G) denotes
the maximum edge multiplicity in G). Both bounds hold with equality in the example above,
which is known as Shannon’s “fat triangle”. But when our graph is not the fat triangle, we seek
stronger upper bounds. As motivation, we begin with an easy lower bound, which holds for all
multigraphs. We will aim to prove that this lower bound is always nearly sharp.

Proposition 3.31. Every multigraph G satisfies

, IH]|
x'(G)= er‘ca’é um/zﬂ ' -3

Proof. Every multigraph H satisfies x’(H) = [||H]|/|/H|/2]], since its |H| edges must be
partitioned into color classes of sizeﬂ at most ||H|/2]. If H is a subgraph of G, then every
coloring of G induces a coloring of H; so x’(G) = x’(H). Now maximizing over all subgraphs
H proves the proposition. O

For a graph G, let p(G) := maxncg ||H||/[[HI /2]; we call p(G) the densit of G. So
x'(G) = [p(G)]. Goldberg [178]] and Seymour [360] each conjectured (independently) the
following remarkable upper bound on x’(G).

To be precise, we require that [H| > 2.
7The density of G is closely related to its fractional chromatic index, which we discuss in Section
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Figure 3.14: On the left, all edges are pairwise incident, so x’ = ||G|| = [ 2A|.
On the right, each set of pairwise incident edges has size at most A, but still
x'=[134]/2].

Conjecture 3.32 (Goldberg-Seymour Conjecture). Every multigraph G satisfies

/ [
X' (G) < max{A+ 1, LT&E% UH|/2J-‘ } .

Recall that for a simple graph G, it is NP-hard to determine whether x’(G) = Aorx’(G) =
A+ 1. Although it is far from obvious, given an arbitrary input graph G, we can compute p(G)
in polynomial time. Now the Goldberg—Seymour conjecture implies that if x’(G) > A+ 1, then
x'(G) = [p(G)]. So in this case computing X' becomes easy!

In a recent breakthrough, the Goldberg-Seymour conjecture was proved, by Chen, Jing,
and Zang [81]]! Their proof is about 60 pages, so we do not reproduce it here. Instead, we only
show that the conjecture is true asymptotically. More precisely, in Theorem [3.42, we show that

x'(G) < max { [P(G)],A+ 4/ % - 1}. The Notes discuss more of this problem’s history.

Definition 3.33. For a k-edge-coloring ¢ of a graph G, let @(e) denote the color used on
e, let @(v) denote the set of all colors used on edges incident to v, and let @(v) denote
[k] \ @(v). We extend these definitions to a set of vertices U or edges F by @ (U) := Uycy@(u),
@(U) := Uyeu®(u), and @(F) := Uecro(e).

A multigraph G is elementary if x'(G) = [p(G)]; that is, the trivial lower bound on X’ in
Inequality (3.3) holds with equality. A set of vertices U is elementa w.r.t. an edge-coloring ¢
if each color is missed at no more than a single vertex of U, that is, @(v) N @(w) = ) for each
pair v,w € U. We often abbreviate “with respect to” as w.r.t. Within Section we say that
a graph G is k-critical if x'(G) > kand x'(G —e) =k for all e € E(G).

Elementary sets are of interest because of the following lemma. In essence, it says that
every k-critical graph with k much larger than A cannot have large elementary sets.

8 Admittedly, the use of this term for both graphs and sets of vertices can be a bit confusing. Perhaps the best
explanation comes from Lemma 3.40]

elementary

W.LLt.

k-critical
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Lemma 3.34 (Tashkinov’s Lemma). Let s be an integer, with s 2 2, and let G be a k-critical
graph with k > 3 A + 5;_21 Fix an arbitrary edge e € E(G) and X C V(G) such that X is an
elementary set w.r.t. a k-coloring ¢ of G — e. If X contains both endpoints of e, then |X| < s — 1.

The hypothesis on k in terms of s and A may look mysterious, but it arises naturally from
solving an inequality that we need to complete the proof.

Proof. Assume instead that |X| = s. Since X is elementary, k = [@(X)| = [X|(k —A) +2 =
s(k—A)+2. By adding A—k to the first and last expressions, and using the hypothesis (s—1)k >
sA—2,wegetA = (s—1)(k—A)+2=(s—1)k—(s—1)A+2 > (sA—2)—(s—1)A+2 = A,
which is a contradiction. O

We get Shannon’s bound as a corollary.
Corollary 3.35. Every multigraph G satisfies x'(G) < %A.

Proof. Let G be a k-critical graph and ¢ be a k-edge-coloring of G — e, where e = vw. Choose
o € ¢(v) and x € N(w) such that ¢(wx) = «. Let X := {v, w, x} and note that X is elementary
(we can prove this directly, but it is quicker to notice that v, vw, w, wx, x is a Kierstead path,
and apply Lemma. Suppose X'(G) = k + 1 with k > %A — 1. Now applying Lemma
with s = 3 contradicts that |X| = 3. Thus, k < %A — 1, which shows that x/(G) < %A. O

To best take advantage of Lemma [3.34) we search for elementary sets that are as large as
possible. For simple graphs, we saw this idea in our proof of Vizing’s Theorem via Kierstead
paths (and also Vizing fans). To get more power, we generalize this method to Tashkinov trees.

Definition 3.36. Let G be a multigraph with x’(G) = k+ 1 for some integer k > A(G)+1, and
X'(G—e) = kforevery e € E(G). Choose ey € E(G), and let ¢ be a k-edge-coloring of G — ey.
A Tashkinov tree w.r.t. @ is an ordered set of vertices and edges (vo, €1,V1,...,Vs_1, €s, Vs) such
that the vertices v; are distinct, vgv; = e and the following two conditions hold (Figure m
shows an example):

(@) For each vi with i € [s], we have e; = v;v; for some j € {0,...,1—1} anqﬂ

(ii) For each i € [s] we have @(e;) € @(vg) for some £ € {0,...,1—1}.

Condition (i) requires that for each 1, the subgraph induced by {eo, ..., e;} is a tree. Condi-
tion (ii) requires that each color used on an edge of the tree is unused at some vertex earlier in
the tree. Note that every prefix of a Tashkinov tree is again a Tashkinov tree. For each i € [p],
we write Tv; for the Tashkinov tree (vg, €9, V1,...,Vi—1, €i, Vi)

9Since G is a multigraph, the vertex pair (v;, vj) may be the endpoints for more than one edge. So, more precisely,
we require that e; has endpoints v; and v;. However, this technicality will not concern us.
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Figure 3.15: A Tashkinov tree as in Lemma Tree
edges are drawn in bold.

Note that Vizing fans are precisely those Tashkinov trees that are stars, and that Kierstead
paths are precisely those that are paths with eq at one end.

Tashkinov proved that if G—e has a k-edge-coloring ¢ (for some edge e and some k = A+1),
but x’(G) > k, then every Tashkinov tree w.r.t. e and ¢ must be elementary. This result is
called Tashkinov’s Lemma. Its proof is somewhat long, so we defer it to the next subsection
(Theorem [3.43)). First we assume the lemma and use it to show that the Goldberg—Seymour
Conjecture is true asymptotically. We begin with a few simple results.

Proposition 3.37. Consider a multigraph G, an edge e € E(G), an integer k = A+ 1, and a
k-edge-coloring @ of G — e. Let T be a maximal Tashkinov tree w.r.t. e and @. If To is some other
Tashkinov tree w.r.t. e and @, then V(Ty) C V(T). Thus, for any two maximal Tashkinov trees, T
and T', w.r.t. e and @, we have V(T) = V(T’). Hence, every maximal Tashkinov tree w.r.t. e and
@ is maximum.

Proof. The proof is by induction on ||Ty||. The base case, ||To|| = 1, is trivial, since it implies
that V(Tp) is simply the endpoints of e, which are contained in V(T). Now suppose || To|| = s,
for some s = 2, and let vs and ey denote the final vertex of Ty, and its incident edge in Ty. By
the induction hypothesis, V(Tg) — vs C V(T). Thus, @(es) € @(To —vs) € @(V(T)). So, if
vs ¢ V(T), then we can add e to T to get a larger Tashkinov tree, a contradiction. This proves
the first statement. The second and third statements are immediate corollaries. O

Lemma 3.38. Given any multigraph G with x'(G) > k, edge eg € E(G), and k-edge-coloring ¢
of G — eq, with k =2 A + 1, there exists a maximum Tashkinov tree T w.r.t. ey and ¢ such that T
uses at most (|[V(T)| —1)/2 colors.

Proof. Let eg := vgvi. Choose o € @(vg), and let e; denote the edge incident to v with
©(e1) = «; say e; = v1va. Now (v, €g, V1, €1, V2) is a Tashkinov tree T3 on 3 vertices, that uses
only (3—1)/2 = 1 color on its edges. We use induction on the number of vertices to repeatedly
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grow our Tashkinov tree, until it is maximum. (By Proposition [3.37, we cannot get stuck, since
every maximal Tashkinov tree is maximum.)

By Tashkinov’s Lemma, our Tashkinov tree T; is elementary, for each i = 3. If Tj is not
maximal, then there exists 3 € @(V/(T;)) such that 3 is used on some edge leaving T;. Since T;
is elementary, 3 is unused at exactly one vertex of T;. Since |T;| is odd, p must be used on an
even number of edges leaving T;; so the number of such edges is at least 2. (Figure gives
an example.) Adding these edges to T; yields a new Tashkinov tree, T;, 5. Further, the number
of colors used on Ty 5 is at most 1 + (|T;| — 1)/2 < (|Tiy 2| — 1)/2, as desired. O

Definition 3.39. For a graph G and X C V(G), the boundary of X is the set of edges with
exactly one endpoint in X. Let G be a k-critical graph, with k = A + 1 and ¢ be a k-coloring
of G —e. A color is defective for X if is used at least twice on the boundary of X. Suppose
X C V(G), X contains the endpoints of e, and X is elementary w.r.t. ¢. Now X is closed if there
does not exist a color « such that & € @(X) and « is used on the boundary of X. A closed set
X is strongly closed if no color is defective for X.

A closed set is clearly an obstruction to continuing to grow a Tashkinov tree. So a natural
plan is to grow a Tashkinov tree until its vertex set is closed. By Lemma|3.37, we can’t go wrong
in this process, since every maximal Tashkinov tree (w.r.t. ¢ and e) has the same vertex set. But
what can we do once the vertex set of our Tashkinov tree becomes closed? If G is elementary,
then G satisfies the Goldberg—Seymour Conjecture, so we have nothing to prove. Otherwise,
the following lemma implies that no vertex subset X is strongly closed. So, once we prove the
lemma, we will focus on how we can make further progress when the vertex set of our tree is
closed, but not strongly closed.

Lemma 3.40. Let G be a multigraph with X' (G) = k + 1 for some integer k = A. If G is critical,
then the following two conditions are equivalent:

@) G is elementary; and

(b) G has an edge e, a k-edge-coloring ¢ of G — e, and X C V(G) such that X contains the
endpoints of e, and X is elementary and strongly closed w.r.t. .

Assuming (a), we show that (b) holds with X := V(G), and that for every e € E(G), there
exists a k-edge-coloring of G—e. To prove (a) from (b), we show that X induces k(|X|—1)/2+1
edges, so [p(G)] =k + 1.

Proof. Suppose G is elementary. So there exists H C G such that x/(G) = k+ 1 =
[IH||/[IH|/2]]. Since G is critical, x’(G —e) = k for all e € E(G). So H = G, since otherwise
there exists e € E(G) \ E(H) and x’(G —e) = x/(G) = k+ 1. Thus |G| is odd, since otherwise
IGl|/[IGl /2] < 1AIG| /|Gl /2] = A <k, a contradiction. Since [||G||/[|G|/2]] =k + 1 and
[IG—ell/|IGl/2]] < k, for some integer t, we have |G| = 2t+ 1 and ||G|| = kt+ 1. Since G is
k-critical, for every edge e € E(G), there exists a k-coloring ¢. of G —e. Since |G — e|| = kt,
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and each color class has size at most t, in fact every color class has size exactly t. Thus, V(G)
is elementary (and strongly closed) w.r.t @.. So condition (a) implies condition (b).

Now suppose (b) holds. Choose « € ©(X). Since X is closed, « is not used on the boundary
of X. Since X is elementary, « is missed at only a single vertex of X. Say & € @(v) for some
v € X. Soin G[X—V], the edges colored « induce a perfect matching. Thus [X|is odd. Similarly,
choose B € [k]\@(X). Since X is odd, {3 is used on the boundary of X. Since X is strongly closed,
(3 is used exactly once on the boundary of X. So, for each y € [Kk], color y is used on exactly
(IX| — 1)/2 edges induced by X, whether or not y € ®(X). Thus, ||GIX]|| = k(IX] —1)/2 + 1,
which implies that [||G[X]||/[IX|/2|] = k + 1. So, by definition, G is elementary. That is,
condition (b) implies condition (a). O

Remark 3.41. For many pictures in the rest of this section, we draw dotted ovals to depict trees
or portions of trees. This choice emphasizes that the tree’s shape is irrelevant to the proof.

Now we can prove the Goldberg—-Seymour Conjecture asymptotically.
Theorem 3.42. Every multigraph G satisfies x'(G) < max{[p(G)],A+ % — 1L

The main idea is to find a vertex z € V(T) such that each color in ®(z) is used on T. By
Lemma|3.38] we have (|T|—1)/2 > @(z) = k—A. Since V(T) is elementary and §(v) > k—A
foreachv € V(T), we have k = @(V(T)) = (k— A)|T|+ 2. To prove the theorem, we combine
this inequality with the one in the previous sentence, and solve for k.

Proof. If G is elementary, then the theorem holds, so suppose G is not elementary. We assume
that G is critical. Let k = x/(G) — 1. Choose an arbitrary edge e. Over all k-edge-colorings
@, we choose a maximum Tashkinov tree T. Subject to this, we choose T to use as few colors
as possible. By Tashkinov’s Lemma, V(T) must be elementary. That is, each color is missed at
no more than one vertex. Since each vertex misses at least k — A colors, the total number of
colors missing on V(T) is at least (k — A) [T| + 2; thus, k = (k — A) [T| + 2.

We need one other idea: to show that for some vertex z € V(T), every color missing at z is
used on some edge of T. By Lemma 3.38} the edges of T use at most (|T| — 1)/2 colors. Hence
(ITI—1)/2 = @(z) = k — A, which gives

[T| = 2k —2A + 1. (3.4)
Combining Inequality with the previous inequality gives k = (k—A) [T|+2 = (k—A)(2k—
2A 4 1) + 2. Solving the resulting quadratic in k yields k < A + 4/ % — 1, as desired. Now
we must simply prove (3.4)), by showing that for some vertex z € V(T), every color 6 € ¢(v) is
used on some edge of T.

By assumption, G is not elementary. So, Lemma implies that V(T) is not strongly
closed. By assumption, T is maximum, so V(T) is closed. Thus, some color is defective (for ¢
and V(T)); call it B. This implies that (3 is used on at least 2 edges on the boundary of V(T).

In fact, 3 is used on least 3 such edges, since |V(T)| is odd, and every edge of V(T) is incident
to an edge colored f3.
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Figure 3.16: Claim 2 in the proof of Theoremﬂ

Claim 1. Choose colors «, 3 such that o« € @(T) but « is not used on T, and f is defective. Let
P :=Py(«x, B), where v € V(T) such that « € ®(v). Now P must contain every edge colored 3 on
the boundary of V(T).

Proof. Since 3 is defective and T is maximum, we must have 3 ¢ @(T); otherwise we could
add some [-colored edge to T to get a larger Tashkinov tree, a contradiction. Further, since
B & ®(T), color B is not used on T. Form a coloring ¢’ from ¢ by recoloring P. Since neither
a nor (3 is used on T in ¢, also neither color is used on T in ¢’. So T is also a Tashkinov tree
w.r.t. ¢@’. Suppose some f3-colored edge e in ¢ is on the boundary of V(T), but is not in P.
Now also ¢’(e) = B. However, since € ¢’(v), we can add e to T to get a larger Tashkinov
tree, a contradiction. &

Since 3 ¢ ®(V(T)) and « is missed only at v, path P must end outside V(T). And since P
contains at least 3 boundary edges of V(T) (each of which is colored 3), we know that z # v.

Claim 2. Define «, 3, and P as in Claim |1} and let z be the final vertex on P that lies in V(T). See
Figure If vy € 9(z), then 'y must be used on T.

Proof. Suppose there exists y € @(z) that is unused on T. Let P’ denote the subpath of P from
z to the endpoint of P other than v. Since & € @(V(T)), the edge of P’ incident to z must be
B-colored. Let Q denote the «,y-chain starting at z. Form ¢ from ¢ by recoloring Q. Since
vy € ©(V(T)), and T is maximum, all vertices of Q lie in V(T); so recoloring Q does not
change any colors on P’. Since o« € ¢/ (z), recoloring P’ in ¢” yields a proper coloring ¢’”.
Note that T is again a Tashkinov tree for ¢’”, since « and y are not used on T in any of ¢, ¢”,
and "". However, 3 € @”’(z), so we can add some (-colored-edge to get a larger Tashkinov

tree, which is a contradiction. &

Recall, by Lemma [3.38] that T uses at most (|T| — 1)/2 colors. Clearly, [¢(z)| = k — A. So
(ITI—1)/2 = [@(z)| = k — A. This proves (3.4]), which finishes the proof of the theorem. [
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3.4.2 Tashkinov Trees are Elementary
Theorem 3.43 (Tashkinov’s Lemma). Tashkinov trees are elementary.

The proof builds heavily on Kierstead’s Lemma, that all Kierstead paths are elementary.
Given a non-elementary path, in that proof we “pushed” the color missed twice to be missed at
the endpoints of the uncolored edge. Rather than trying to repeat that proof for every Tashkinov
tree T, we instead reduce the general case to the case when T is a path. Suppose we are given
a k-edge-coloring ¢ of G — ey and a non-elementary Tashkinov tree T. Our goal is to recolor
G — ep to get a new coloring ¢’ and non-elementary Tashkinov tree T’, such that T’ is more
“path-like” than T. If T eventually becomes a path, then it is a Kierstead path, so we are done by
Kierstead’s Lemma. To formalize this intuition, we need to introduce a number of definitions.

Definition 3.44. Let T := (vg,e1,V1,...,Vs_1, €5, Vs ). Let G‘} be the set of k-edge-colorings of
G —eg such that for each ¢ € CX, tree T is a Tashkinov tree w.r.t. @ and V(T) is non-elementary
w.r.t. @. When the context is clear, we write C for G'}. When ¢ € G, we call (T, @) a repeating
pair, since some color « is missed at two vertices of T.

The tail of a tree T is the maximum subgraph (v]-, €j11se-ns es, Vs) that is a path. The body
of T is the subgraph Tv;. So T is the edge-disjoint union of its body and its tail. The left side of
Figure shows an example, with the body in the dotted oval and the tail extending outside
of it. Let t(T) and b(T) denote, respectively, the numbers of edges in the tail and the body of
T. For short, we write @(Tv;) to mean @(V(Tvi)).

We will show that given a repeating pair (T, @), we can recolor G to reach a repeating pair
(T’, ¢’) such that either b(T’) < b(T) or else b(T’) = b(T) and t(T’) < t(T). This implies
that G has no minimal repeating pair (T, ¢), which will prove the theorem.

Proof of Theorem The proof can be viewed as a double induction, where the base case is
that b(T) = 0, which means that T is a Kierstead path w.r.t. . However, it is slightly cleaner
when phrased in terms of minimality. We choose a repeating pair (T, ¢) such that

(@) the body has minimum size (that is, b(T) is minimum) and, subject to that,
(b) the tail has minimum size (that is, t(T) is minimum).

We call (@, T) a minimal repeating pair. When ¢ is clear from context, we simply say that
T is minimal. Note that if (¢, T) is a minimal repeating pair and (¢’, T’) is smaller than (¢, T),
then T’ must be elementary w.r.t. ¢, by the minimality of (¢, T).

To break the proof into more manageable units, we prove five claims. The first three are
essentially observations, which are easy to prove once stated. The bulk of the work is in proving
the fourth and fifth claims, and in using these to prove the theorem.

During the proof, we often perform Kempe swaps to “move” a color « that is missing at one
vertex v; of the tree T to be missing at another vertex v;. To ensure that T is also a Tashkinov
tree for this new coloring, we require that neither color « nor (3 be used on Tvp.; j;. This
motivates our first two claims.

¢
repeating pair

tail, body

t(T), b(T)
©(Tvi)

minimal
repeating pair

minimal
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Claim 1. If 1 < i < s, then at least four colors in ®(Tvi) are unused on Tv;. Further, when
1 € [s — 2], for each color « there exists y € ®(Tvi) \ {o} that is unused on Tvio.

Proof., The second statement follows from the first, since at most 3 colors are excluded by « and

the colors used on e;1 and e;;2. To prove the first, we simply count the colors in @(Tv;) and

those used on Tv;. Since k = A + 1, each v; misses at least one color. Further, since vov; is

uncolored, vy and v; each miss at least two colors. Since T is minimal, V(Tv;) is elementary.

So [@(Tvi)| = 2(2) + 1(i— 1) = i+ 3. Since ||Tv;|]| = i and vgv; is uncolored, at most i — 1

colors are used on Tv;. Now we are done, since (1+3)—(1—1) = 4. O
The next claim allows us to move an unused color from one vertex of T to another.

Claim 2. Suppose that y € @(vi) and 6 € @(v;) and vy is unused on Tvj for some ¢ € C and
0<1i<j<s. (SeeFigure ) Now y # 8, so let P := Py, (v, 8). The other endvertex of P is
vi. Further, if ¢’ is formed from @ by recoloring P, then ¢’ € C and

o (@vi) \{yH U{d} fv=vi;
o'(v) = ¢ (@) \{8}) U{y} ifv=nvj;

PWv) otherwise.

P
[

Figure 3.17: Path Py, (v, &) must end at v;.

This is essentially an extension of the ideas used to prove the Fan Equation.
Proof. Since T is minimal, V(Tv;) is elementary. So & € @(vy) for each h € [j — 1]. Thus,  is
unused on Tvj;. By hypothesis, v is also unused on Tv;. This proves that Tv; is a Tashkinov tree
w.r.t. @’. Now P must end at v;, as show in Figure since otherwise y € @’(vi) N@’(v;),
contradicting the minimality of T. This proves the above description of ¢@’. As a result,
W(ij) =®(Tvj) 2 {v,d}. So T is also a Tashkinov tree w.r.t. ¢’. &

In the proof of the next claim, the body size of T decreases, but its tail size may increase
arbitrarily. This is why the minimality of T is phrased primarily in terms of b(T), and only
secondarily in terms of t(T), rather than in terms of ||T||, since || T|| = b(T) + t(T).

°Figure is perhaps misleading, since edges of P, (v, d) might be incident to other vertices of Tv; (even
having both endpoints in this set), but are forbidden only from being edges of Tv;. The same is true of Figure
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Figure 3.18: The proof of Claim 3.

Claim 3. Let j := b(T). Suppose there exist i,h € [j — 2] and colors «,y such that « €
P(vi)N@(vs) and vy € ©(vn) \ ©(vs); we allow the possibility that i = h. Let P := Py, («,7v);
see the right of Figure We must have V(P) N V(Tvj_,) = 0.

Proof. Suppose that i, h, «,y satisfy the hypotheses, but V(P) N V(Tv;_;) # (. Let P’ be
the minimal subpath of P containing v such that V(P’) N V(Tvj_;) # 0 and let {v¢} :=
V(P')NV(Tvj_1). Now replace the tail of T with P’, deleting vj; further, if { < j —1, then also
delete v;_;. Formally, let (wo, f1,w1,..., ft,w¢) denote P/, where wg = vy and wy = vg. If
¢ =j—1, then let

[
T = (\}07 €1, Vi, ..., e)',l,\)]',]_, flawla L] ft: Wt)'

Otherwise, let
r_
T o (vOJ el’vl""’ejfz)vjfzj f].’w].}"')ft)wt)'

In each case (T, @) is a Tashkinov tree with o € @(v;{) N @ (wy), but with b(T’) <j—1 < b(T),
which contradicts the minimality of T. &

In the next claim, we extract the main idea from the proof of Kierstead’s Lemma. The
hypothesis that « is unused on Tvj arises naturally when we rephrase the induction step from
that proof to apply also in this more general setting. This is the most important claim for
handling the case when T has a non-trivial tail (that is, t(T) > 0).

Claim 4. If T has a non-trivial tail, then for all @ € € there cannot exist i,j, and x withi < j < s,
vertex v a tail vertex, color « unused on Tvj, and & € ©(vi) N @ (vs). In particular, there cannot
exist a tail vertex v; (distinct from vg) and & € @(vi) N @(vs). See Figure

Proof. We begin with the first statement. Assume that i, j, & satisfy the hypotheses; subject to
this, choose @, 1,j, « so that i is as large as possible, over all ¢ € C. If i = s — 1, then let
B := @(es), and recolor es with «. For the resulting coloring ¢’, the pair (T — vs, @) is a
smaller repeating pair, since B € @’(Tvs_s) = @(Tvs_2) and also B € @’(vs_1). So instead,
we assume that i < s — 1. If v; is a tail vertex, then we may assume j = i + 1; otherwise, we
may assume j = b(T). Choose 3 € @(v;). Clearly, p # «. Let P := Py, (e, 3) and form ¢’
from ¢ by recoloring P. By Claim 2, the pair (T, ¢’) is again repeating.
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Figure 3.19: The proof of Claim 4.

Now observe that, since « € @(vi) N @(vs), at most one of v; and vy appears in V(P);
this is the key insight needed. If vi ¢ V(P), then o € ’(vi) N ¢’(v;), which contradicts the
minimality of T, specifically (b). If vy ¢ V(P), then o € W(v)-) N @’ (v ), which contradicts the
maximality of 1. This proves the first statement.

Now we consider the second statement. The case when i = s — 1 is the same as in the first
paragraph, so we assume thati < s—1 and let j := i+ 1. To apply the first statement, we must
show that « is unused on Tvj. Since @ € @(v;), and Tv,_1 is elementary by the minimality of
T, we know that « is unused on Tv;. And since e;, 1 = viviy1 and « € @(v;), we conclude
that o is unused on Tvi 1 = Tvj. Thus, the second statement follows from the first. &

The next claim is the natural analogue of Claim |4|for the case when T has a trivial tail.

Claim 5. If T has a trivial tail, then for all @ € C there cannot exist i and o with 1 < s — 2 such
that color o is unused on T and & € @(vi) NP (vs). See Figure

Proof. Our goal is to find ¢ € € such that ¢(es) ¢ ®(vs_1) and also there exists h € [s — 2]
and color « such that & € @(vn) N @ (vs). Given such a @, we let

/.
T ':(VO) e].: M) 68—23 vS—Z) es,vs), (3-5)

formed from T by deleting vs_;. Now we are done, since T’ is also a Tashkinov tree with
x € @(vh) NP(vs), but b(T’) < b(T), which contradicts the minimality of T.

Suppose the claim is false and let ¢, «, and i be a counterexample. We show that we
can choose ¢ and « so that @(es) ¢ @(vs_1), although now possibly i = s — 1, i.e., x €

Figure 3.20: Two steps in the proof of Claim 5, ensuring that @(es) € P(vs_1).
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©(vs—1) N P(vs). Let B := @(es). Assume to the contrary that § € @(vs_1); see the left of
Figure Let P := Py («, B) and form ¢’ from ¢ by recoloring P. By Claim 2| P ends at
vs_1 and ¢’ € €. However, now ¢’(es) = @(es) = B and B € ¢’ (vs_1), as desired.

As shown above in (3.5)), to complete the proof it suffices to show that we can choose ¢ € C
such that @(es) € @(vs_1) and also there exists h € [s — 2] such that @(vi,) N @(vs) # 0. So
assume that @(vy) N@(vs) = 0 for all h € [s — 2]. Since T is non-elementary w.r.t. ¢, we have
& € @(vs—1) N P(vs). By Claim[i] there exists h € [s — 2] and y such that y € §(vi) and y
is unused on T. By Claim Py, (o, y) must end at vs_1; see the right of Figure However,
we now show that we can also swap the roles of vs_; and v, and so conclude that P, (x,v)
must also end at v, a contradiction. Let

/.
T L (\)0) ela ) eS—2JVS—2> eSJVSJ eS—l:VS—l)J

formed from T by swapping the order of vs_1 and vs. Note that b(T’) = b(T) and t(T') =
t(T) = 0. Further, V(T'vs) is elementary and vy is unused on T’vs. Thus, Claim [2 implies that
P,, (o, y) must end at v, the desired contradiction. &

Now we complete the proof of the theorem.

Figure 3.21: The end of the proof of Theoremm

First suppose that T has a non-trivial tail; see Figure Let j := b(T). Since (¢, T) is a
minimal repeating pair, there exists i < s and « € ®(vi) N P(vs). By the second statement of
Claim[4] we must have i < j — 1. We first ensure that i < j — 2. Suppose, to the contrary, that
i=j—1. By Claim there exists h € [j —2] and vy € @(vn) \ {«} such that y is unused on Tvj.
Let P:=P,, («,v). By Claim we know that P ends at v;. So recoloring P gives a coloring ¢’
such that (T, ¢’) is a repeating pair with & € @’(vy) N @’(vs). Further, ¢’(es) € @'(vs_1), as
desired. Thus, we can assume i < j — 2.

Now we make a similar argument to finish the case. By Claim there exist h € [j — 2] and
Y € ©(vih) \ {«} such that y is unused on Tv;. If y € @(vs), then h, j, and vy violate Claim
So assume y ¢ @(vs). Let P :=P,_(«,v). By Claim V(P)NV(Tvj_1) = 0. Form ¢’ from ¢
by recoloring P. Path P might intersect V(T) \ V(Tvj_1). But o,y € ¢’(Tvj_1) = @(Tvj_1),
so still ¢’ € €. Nowy € ¢’(vs) N @’(vn), 50 h,j,, and ¢’ violate Claim |4} thus, we are done.

Suppose instead that T has a trivial tail. By Claim g} it suffices to find ¢ € € and i and «
with 1 < s—1 such that color « is unused on T and & € ©(vi) V@ (vs). By assumption, we have
i€ [s—1]and x € ¢(vi) NP(vs). We now show that we can also assume that both i € [s — 2]
and « is unused on T. First suppose that i = s — 1. By Claim [1} there exist j € [s — 2] and
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B € @(vj) such that  is unused on T. By Claim path Py, («, 3) ends at vs_; and recoloring
Py, (o, B) yields a new coloring ¢’ with ¢’ € Cand « € W(vj) N @’ (vs). Thus, we can assume
1 < s —2. So assume « is used on T. Again, by Claim there exists j € [s — 2] and 3 € ©(v;)
such that 3 is unused on T. Let P := P, _(«, 3). By Claim we have V(P) N V(Tvs_1) = 0.
Form ¢’ from ¢ by recoloring P. Now ¢’ € Cand 3 € ¢’(vj) N ¢’(vs) and 3 is unused on T.
Thus, we are done by Claim s} O

Notes

Kempe chains first appeared in 1879, in Kempe’s false proof of the 4 Color Theorem [243].
Heawood noticed the error 11 years later, and salvaged the idea to prove the 5 Color Theo-
rem [212]. For nearly a century, Heawood’s was the only known proof of this result; finally, in
the 1970s Kainen [235]] discovered the proof we present in Section Konig’s Theorem [268]]
was proved in 1916; Schrijver [357, Section 16.7h] gives more history. An alternate proof uses
Hall’s Theorem, and induction on A; see Exercise

Vizing proved his eponymous theorem [398], 400] in 1964 and adjacency lemma [400] in
1965. In view of Vizing’s Theorem, we call a simple graph G Class 1 if X'(G) = A and Class
2if x’(G) = A+ 1. Lemma and the subsequent proof of Vizing’s Theorem are due to
Ehrenfeucht, Faber, and Kierstead [146]]. Our first two proofs of Vizing’s Theorem both easily
extend to multigraphs; see Exercise |4/ Our presentation of Lemma follows [367]].

Kierstead [244] strengthened Vizing’s Theorem: If G is a multigraph with x'(G) = A + t,
and t > %(u(G) + 1), then G contains a triangle vwx with u(vw) + p(vx) + n(wx) = 2t.
Using this result Kierstead and Schmerl [253] showed that if G is a simple graph and G does
not induce K; 3 or Ks —e, then x(G) < w(G)+ 1. This generalizes Vizing’s Theorem for simple
graphs, since neither K; 3 nor K5 — e can appear as an induced subgraph in a line graph.

It is NP-hard to decide whether a simple A-regular graph is Class 1 or Class 2. This was
proved in 1981, by Holyer [220]], when A = 3. Two years later, it was extended by Leven and
Galil [282]] to all A > 3. We include the proof in Section 2.7.2]

Most work on edge-coloring simple graphs provides sufficient conditions for a graph to
be Class 1. This includes Konig’s Theorem and Theorem Tait showed that the 4 Color
Theorem is equivalent to the following statement: every 2-connected, 3-regular planar graph
is Class 1. Tutte conjectured [[392] this could be extended to all 2-connected, 3-regular graphs
with no subdivision of the Petersen graph. This conjecture was proved in a series of papers by
Edwards, Robertson, Sanders, Seymour, and Thomas [[145], 345}, [346), 347, [3501.

Vizing conjectured that every simple planar graph with A = 6 is Class 1. We proved this for
A = 8 in Theorem The case A = 7 was proved by Zhao [352] and Zhang [429]]. (Both
proofs use the same general approach as when A = 8, but the details are more technical, so we
omit them.) The case A = 6 remains open.

Jaeger posed the following intriguing conjecture. If true, this conjecture implies both the
Berge-Fulkerson Conjecture and the Five Cycle Double Cover Conjecture.



3.4. TASHKINOV TREES 107

Conjecture 3.45. Let G be 3-regular with no cut-edge. We can map the edges of G to the edges
of the Petersen graph, P, so that every 3 edges in G incident to a common vertex are mapped to 3
edges of P incident to a common vertex.

We discuss the 4 Color Theorem in the Chapter[4]Notes. The material in Section [3.2|follows
Steinberger [366].

We began Section with a question of Vizing [[399]]: Starting from any proper edge-
coloring of a graph G, can we reach an optimal proper edge-coloring by a sequence of Kempe
swaps (suppressing empty color classes)? The proof of Vizing’s Theorem gets us to an edge-
coloring with at most A+ 1 colors. But this stronger question remained open for many decades.
The first significant progress was by Asratian, who proved it for bipartite graphs [30]. This
was later extended by Bonamy, Defrain, KlimoSovd, Lagoutte, and Narboni to all triangle-free
graphs [46]]. Finally, the question was answered affirmatively by Narboni for all graphs [316].

The meta-question motivating Section [3.3] is this: For which graphs G and which values
k are all k-colorings of G Kempe equivalent? This area was first investigated by Las Vergnas
and Meyniel [280]], who proved Theorem that this holds for d-degenerate graphs when
k > d. Theorem due to Meyniel [298]], extends this to planar graphs when k = 5.
Fisk [163]] proved it for 3-colorable plane triangulations, and Mohar [303] extended this to all
3-colorable plane graphs. In contrast, Mohar [301] disproved it, when k = 4, for general plane
triangulations. He found examples where the number of equivalence classes of 4-colorings is
arbitrarily large.

Mohar conjectured that if G is d-regular then all d-colorings are Kempe equivalent. Fig-
ure gives a counterexample, when d = 3. But Feghali, Johnson, and Paulusma [159]
proved the conjecture when d = 3, with that single exception. Bonamy, Bousquet, Feghali, and
Johnson [44] proved the conjecture when d = 4. Cranston and Mahmoud [[98] extended the
notion of Kempe equivalence to list-coloring and proved the analogue of Mohar’s conjecture in
this more general context. (This also implies an alternate proof of the main result in [44].)

Early progress on the Goldberg—Seymour Conjecture proved it for graphs with A < k, for
increasing values of k. In 2000, Tashkinov [[372] proved it for A < 11 (a result proved earlier
by Nishizeki and Kashiwagi [[324]). However, his work introduced Tashkinov trees and proved
Tashkinov’s Lemma, which laid the foundation for all future work on the problem. In 2012,
Stiebitz, Schiede, Toft, and Favrholdt [367] published the monograph Graph Edge Coloring:
Vizing’s Theorem and Goldberg’s Conjecture. McDonald [295] surveyed work until 2014. And in
2018, Chen, Jing, and Zang announced a proof of the full conjecture. In 2019 they uploaded a
preprint [81] to arXiv. However, as of 2024, the author is not aware of this manuscript having
appeared in a journal. In addition to being very long, the proof is complex enough that it
does not yield a polynomial-time algorithm for constructing an optimal edge-coloring. In 2023,
Jing [230] provided a “more natural” proof of the Goldberg-Seymour Conjecture, which is
significantly shorter and does provide a polynomial-time coloring algorithm.

Kahn [233]] was the first to prove that the Goldberg—Seymour Conjecture holds asymptoti-
cally, by using an iterative random coloring. (This result now has a much easier proof, which we
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present in Section [3.4.1; see Theorem ) Later [234] Khan extended this work to prove the
same bound for list-coloring. Namely x,’(G) < (1+0(1)) max{A, p(G)}. For a more accessible
presentation of these results, see [[307, Chapters 22 and 23].

Although the Goldberg-Seymour Conjecture is now proved, many interesting questions on
edge-coloring multigraphs remain open. Seymour conjectured [360} [362] that every planar
graph satisfies x’(G) = max{A(G), [p(G)]}. Much work has studied the special case when G is
r-regular and p(G) = A(G). The cases r € {1, 2} are trivial and the case v = 3 is equivalent to
the 4 Color Theorem. The cases r € {4, 5} were proved by Guenin [326]]. The cases r € {6, 7, 8}
were handled in [131],[86],[87]. For each r = 4, the proof reduces to the case of smaller r. So
all results for r = 4 assume the 4 Color Theorem. We remark more on some related problems
in the Notes of Chapter [6]

Exercises

3.1. Let G be an edge-critical graph. For each i with 2 < i < A, show that G contains an
edge-critical graph H with A(H) =1i. [400]

3.2. Determine all edge-critical graphs with x’ = A.
3.3. Prove Konig’s Theorem using Hall’s Theorem and induction on A.

3.4. Extend our first two proofs of Vizing’s Theorem (for simple graphs) to the case of multi-
graphs. Let G be a multigraph, and let s := u(G). Use the second proof to show
that if x'(G) = A(G) + u(G), then G contains vertices v, w,x such that p(xv) = s,
u(xw) = s —1, and u(vw) = 1. [146, 244]

3.5. Prove the following stronger form of Vizing’s Theorem. For a multigraph G, let i denote
the maximum edge multiplicity and let k := A+ p. For any maximal matching M, graph
G has a k-edge-coloring in which one color class is M.

3.6. Show that if G is k-degenerate and A > 2k, then x'(G) = A. [399]

3.7. Use Vizing’s Theorem to give a short proof of Theorem in the special case of simple
graphs.

3.8. Show that for every surface S, the set of 7-critical graphs embeddable in S is finite. [[302]

3.9. Use Kempe chains to give an alternate proof (without vertex identification) that all planar
graphs are 5-colorable.

3.10. Use Kempe chains to prove Brooks’ Theorem. [297]
3.11. Prove that the two 3-colorings in Figure are not 3-Kempe equivalent. [395]

3.12. Show that in the definition of p(G) we can restrict the maximum to subgraphs H with
H| = 3 and |H| odd (as long as |G| = 3). [356}, §4.2]



Chapter 4

Vertex Identification:
Coloring Planar Graphs

When you first start off trying to solve a problem, the first solutions
you come up with are very complex, and most people stop there. But
if you keep going, and live with the problem and peel more layers of
the onion off, you can often times arrive at some very elegant and
simple solutions.

—Steve Jobs

In this chapter we study vertex coloring problems for planar graphs. Our proofs typically
follow the pattern familiar from Chapter 1: assume a minimal counterexample G, color a smaller
graph G’ by minimality, and extend the coloring of G’ to G, which gives a contradiction. But
rather than forming G’ by simply deleting vertices of G, we now contract edges. So to color
G’ by minimality, we use more than just the observation that planar graphs form a hereditary
class. In fact, planarity is preserved by edge-contraction. If our theorems also assume that G
is triangle-free (or, more generally, that G has girth at least g), then we must be more careful
about which edges we contract, to ensure that the resulting graph G’ has girth large enough to
itself satisfy the hypotheses of the theorem.

We aim to use the coloring ¢’ of G’ to induce a partial coloring ¢ of G. To ensure that ¢ is
proper for G, we need to know that each pair of vertices identified in G’ is non-adjacent in G.
But why is this approach better than simply deleting vertices? The key observation is that now
each pair of vertices that are identified must use the same color in ¢. So if two vertices are
identified in G’ and they have a common neighbor v in G, then they forbid only a single color
from use on v, rather than the two colors they might forbid if we had used vertex deletion.
(Our goal here is much the same as it was in the previous chapter: to ensure that the vertices
we are about to color have colors that are repeated among their neighbors. But our means for
achieving that goal are quite different.) This idea is illustrated well by our first theorem.

109
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4.1 5-Coloring, 4-Coloring, and 3-Coloring

If G is planar, then x(G) < col(G) < 6, as we saw in Corollary[t.7} Asa warm-up, we strengthen
this bound by 1. Following the suggestion above, we want to ensure that when we extend a
5-coloring of a planar graph to a previously deleted 5-vertex v that the neighbors of v use some
color at least twice. Thus, we identify non-adjacent neighbors of v.

Theorem 4.1 (5 Color Theorem). Every planar graph is 5-colorable.

Proof. Assume the theorem is false, and let G be a counterexample minimizing |G|. Since G is
planar, by Lemma [1.6|it has a 5~ -vertex v. If d(v) < 4, then we 5-color G — v by minimality,
and greedily extend the coloring to v. So assume that d(v) = 5. Note that K¢ is non-planar,
since ||Kg|| = (g’) > 3(6) — 6. So v has two neighbors, w; and ws, that are non-adjacent.
Form G’ from G by contracting edges vw; and vw,, and suppressing any parallel edges this
creates. Note that G’ is planar. By minimality, G’ has a 5-coloring ¢’. Furthermore, ¢’ gives a
5-coloring of G — v that uses the same color on w; and w,. Since ¢’ uses at most 4 colors on

neighbors of v, we can extend ¢’ to G. O

The upper bound of 5 in Theorem 4.1|can be improved further to 4, and this is best possible,
as shown by K4. But K4 is far from being the only obstruction to 3-coloring planar graphs. In
fact, there are infinitely many 4-critical planar graphs. A simple family of examples are the
“necklaces”. Each necklace is formed from an odd cycle by expanding each vertex of some
maximum independent set into an edge, with both endpoints of each new edge inheriting the
two neighbors of the original vertex. Figure shows the first 3 necklaces.

Theorem 4.2 (4 Color Theorem). Every planar graph is 4-colorable.

Proving the 5 Color Theorem is easy, as we just saw. In contrast, proving the 4 Color
Theorem is quite hard. More precisely, all known proofs require extensive computer case-
checking that is infeasible for a human. Not surprisingly, these proofs use reducibility and
unavoidability, and the latter relies on discharging. But the former needs two new techniques:
Kempe swaps (which we study in Chapter [3), and a more subtle use of minimalityf]

Entire books have been written on the 4 Color Theorem [23], 415, [167]], so we will not address
it at length. In Section [3.2 we prove a few properties of a minimal counterexample, and in the
Notes we recommend places to read more. Instead, we now turn to Grétzsch’s Theorem, that
every triangle-free planar graph is 3-colorable.

4.1.1 3-Coloring Planar Graphs: Grotzsch’s Theorem

Definition 4.3. A separating cycle in a plane graph G is a cycle C with vertices of G both
inside and outside. A triangle is a 3-cycle. In this section, a minimal counterexample means a
counterexample to Theorem that minimizes |G|.

'The smaller graph that we color by induction is not just formed by contracting edges, but requires adding new
vertices where old ones were deleted.
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Remark 4.4. We often reuse the following trick. To prove a theorem, we consider some
hypothetical minimal counterexample, and show that it has no short separating cycle C, as
follows. Suppose such a cycle C exists. By minimality, we get a coloring @i, of C and the
vertices inside, as well as a coloring @ of C and the vertices outside. When @i, and @yt
agree on C, they combine to give a coloring of G, which is a contradiction. We may also need
to modify one coloring first. For example, suppose a minimal counterexample G to the 4 Color
Theorem has a separating 3-cycle C. The vertices of C receive distinct colors in both @i, and
Qout, SO We can permute color classes of @i, to agree with @oy on V(C). Thus, our minimal
counterexample G has no separating 3-cycle.

Theorem 4.5 (Grotzsch’s Theorem). Every triangle-free planar graph is 3-colorable.

We assume a minimal counterexample G, and note that 6(G) > 3, since 2 -vertices are
reducible. Every such G has a 5~ -face, by face charging. So it would suffice to show that 4-faces
and 5-faces are reducible. For a 4-face, we can always identify some non-adjacent pair of its
vertices and 3-color the smaller graph by minimality, which gives a 3-coloring of G. We want
to do something similar for a 5-face f, but now we cannot identify any vertices on f (without
creating a triangle or loop), so we instead identify some nearby vertices.

Identifying these nearby vertices is complicated, since we might create a triangle, if G has
a short separating cycle. So we design Lemmato handle separating 6~ -cycles. When G has
such a cycle, we restrict ourselves to working on a subgraph H that lies inside an “innermost”
such cycle. Now we perform the reduction within H, which sidesteps this pitfall. To formalize
when a k-face is reducible, we need a new definition. When k = 5 the details are technical,
but they arise naturally from our reducibility proof in Lemma 4.7

Definition 4.6. A 4-face or 6-face (v1,...,Vs) is safe if every path of length at most 3 in G from
V1 to vs is part of the cycle vy - - - vs. A 5-face f is safe if (v1, ..., vs) satisfies the following four
properties (see Figure: (1) d(vi) = 3 foralli € [4], (ii) if w; denotes the neighbor of v; not
on T, for each 1 € [4], then all vertices w; are distinct and non-adjacent, (iii) G \ {v1, V2, V3, v4}
has no path of length at most 3 joining wy and vs, (iv) G has at most one path of length at most
3 joining vertices w3 and w4 other than w3vsvawy, and if such a path exists, then it has length
2; if x is the common neighbor of w3 and wy, then wsxwav4vs is a 5-face.

The proof of Theorem is now easy, assuming our three lemmas on reducibility and
unavoidability, which we state and prove below.

Proof of Theorem Suppose the theorem is false, and let G be a minimal counterexample.
Clearly 5(G) = 3, since for any 2~ -vertex v, we can 3-color G — v by minimality, and greedily
extend the coloring to v. Lemma [4.9|implies that G contains a safe 4-face, 5-face, or 6-face,
while Lemmal4.7]implies the opposite, since G is a minimal counterexample. This contradiction
completes the proof. O

Lemma 4.7. Safe 4-faces, safe 5-faces, and safe 6-faces are all reducible for Theorem That is,
none of these appears in a minimal counterexample.

safe
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Proof. Suppose that G is a minimal counterexample, and G contains a safe 4-face or safe 6-face
(v1,...,Vs). Form G’ from G by identifying v, and v3. By the definition of safe, G has no path
of length at most 3 joining v; and v3. So G’ is a triangle-free plane graph. Since G is minimal,
G’ has a 3-coloring, which induces a 3-coloring of G, a contradiction.

Suppose instead that G contains a safe 5-face (vi,...,Vs), as shown in Figure Form
G’ from G by deleting v1, vo, v3, v4 and identifying w3 with w4 and also wy with vs; call these
new vertices ws*xwy4 and woxvs, . Now (iii) and (iv), in the definition of safe 5-face, imply
that G’ is a triangle-free plane graph. Since G is minimal, G’ has a 3-coloring, which induces
a 3-coloring ¢’ of G \ {v1, v2,V3,Vv4}. We now extend this 3-coloring ¢’ to G.

Let «, 3, and 7y be the colors used, respectively, by ¢’ on wq, waxvs, and waswy. If f =7y,
then we can color greedily in the order vi,vy,vs,v4. Otherwise, we use color 3 on vz, and
color greedily in the order vi, Vs, v4. This gives a 3-coloring of G, a contradiction. O

Figure 4.1: A safe 5-face in G and the corresponding subgraph in G’. The 3-coloring of G’ induces a partial
3-coloring of G, which we then extend to all of G.

Due to Lemma our goal is to show that every triangle-free planar G with 6(G) = 3
contains a safe 4-face, safe 5-face, or safe 6-face. But the definition of a safe 5-face is unwieldy.
To improve clarity, we first show the unavoidability of certain configurations; only later do we
show they are safe. To prove unavoidability we use discharging, much like in Lemmalt.43 The
main difference is in our application, which is restricted to the subgraph inside an innermost
separating 6~ -cycle. Thus the outer face may actually be a separating 6~ -cycle, rather than a
real face; so we need a safe 4-face, safe 5-face, or safe 6-face that is not the outer face, fo. To
account for this, we give f extra charge, to guarantee that it ends positive.

Lemma 4.8. Let G be a connected triangle-free plane graph with 6(G) = 2, with outer face o of
length at most 6, and with d(v) = 3 for each vertex v not on fo. Assume the boundary of fo is a
cycle. If E(G) # E(fy), then G contains a face f, other than fq, such that either (@) f is a 4-face
or (b) fis a 5-face (v1,...,Vvs) and, for each i € [4], both d(v;) = 3 and v; is not on f.
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fo fo
el BN T
(R1) (R2) (R3)

Figure 4.2: (R1)-(R3) give charge from faces to 3-vertices and 2-vertices. Here —> , —>> , and
—>>>> denote sending 1/3, 3/3, and 5/3.

Proof. Assume the lemma is false, and let G be a counterexample. To reach a contradiction, we
use dischargin giving d(v) — 4 to each vertex v and £(f) — 4 to each face f other than fy, but
giving {(fo) + 4 to fo. By Euler’s Formula, these charges sum to 0. We use three discharging
rules, shown in Figure

(R1) Each 3-vertex not on fy takes % from each incident face.
(R2) Each 3-vertex on fj takes 1 from fo.

(R3) Each 2-vertex on f takes % from fo and % from its other incident face.

We show that each vertex and face ends happy, and fy ends positive. Since the initial charges
sum to 0, this is a contradiction.

Each 3-vertex v starts with —1 so must gain 1. If v is on fy, then v gains 1 by (R2). If v is
not on fy, then v gains 3(%), by (R1). Each 2-vertex v starts with —2, so must gain 2. Note that
v must be on fg, so v gains % + %, by (R3). Thus, all vertices end happy.

Now we consider faces, starting with fg. Let s := {(fp). By hypothesis, s < 6 and fg
contains a 31 -vertex. Thus, fo ends positive, since s + 4 — %(s —-1)—-1= % > 0. Recall
that G has no 3-face, since it is triangle-free, and G has no 4-face, since it is a counterexample
to the lemma. So we only need to consider 5" -faces.

Let f be a 5" -face other than . By (R1) and (R3), f gives at most % to each incident vertex,
so ends with at least {(f) —4 — %K(f) = %(K(f) —6). Thus f ends happy when £(f) = 6. Further,
if £(f) = 5 and f ends unhappy, then f gives charge to at least 4 vertices. So, to finish the proof,
we show this is impossible.

*Balanced charging has initial charges summing to —8. Here we modify the initial charge of f, to exploit the
“slack” between —8 and 0. We use a similar approach in the proof of Lemma 4.37}



G/

safe

114 CHAPTER 4. VERTEX IDENTIFICATION: COLORING PLANAR GRAPHS

Suppose that one of these vertices receiving charge from f, say v, is a 2-vertex on fg.
Consider the maximum path P in E(f) N E(fp) containing v. The endvertices of P must be
distinct 3™ -vertices that lie on both f and fy, since the boundary of fq is a cycle. So these
end-vertices each receive no charge from f, and f ends happy. Otherwise, f has no incident
2-vertex, so f is a 5-face with at least four incident 3-vertices not on fy. But now f satisfies (b)
of the lemma, a contradiction. O

To complete the proof of Theorem |4.5, we show that (a) and (b) in the previous lemma
both imply that G has a safe 4-face, safe 5-face, or safe 6-face.

Lemma 4.9. Every triangle-free plane graph G with 5(G) = 3 contains a safe 4-face, safe 5-face,
or safe 6-face.

Proof. We first show that every 4-face is safe. Let f be a 4-face (v1, V2, V3, V4) in a triangle-free
plane graph. If f is not safe, then G contains a v1, vs3-path Py, of length 2 or 3 (edge-disjoint
from f). By symmetry, G also contains a vy, v4-path P, of length 2 or 3. By planarity, paths
P, and P, have a common vertex x. But now x induces a triangle with two vertices of f, a
contradiction. Thus, f is a safe 4-face; see Figure This is a very special case of the Folding
Lemma, which we prove in Section[4.3

Now we assume that G has no 4-face. If G has no separating 6 -cycle, then let G’ := G and
choose an embedding of G’ with outer face of length at most 5 (by face charging, G has such a
face, since 5(G) = 3). Otherwise, let G’ be an induced subgraph of G bounded by a separating
6~ -cycle, including all vertices inside the separating 6~ -cycle; subject to this, choose G’ to be
as small as possible. So G’ has no separating 6 -cycle.

Since G has no 4-face, Lemmaimplies that G’ contains a 5-face (v1, ..., Vvs), other than
fo, such that both d(vi) = 3 and v; is not on fg, for each i € [4]. We want to show that v, - - - vs
satisfies conditions (i)—(iv) for a safe 5-face, in Deﬁnition For convenience, we repeat that
definition. A 5-face f is safe if (v, ..., Vs) satisfies the following four properties: (i) d(vi) =3
for all 1 € [4], (ii) if w; denotes the neighbor of v; not on f, for each 1 € [4], then all w; are
distinct and non-adjacent, (iii) G \ {v1, v2, v3, v4} has no path of length at most 3 joining w, and
vs, (iv) G has at most one path of length at most 3 joining w3 and wy4 other than wsvsvswy,
and if such a path exists, then it has length 2; if x is the common neighbor of w3 and wy, then
W3XW4V4Vs3 is a 5-face.

Clearly (i) holds. Note that (ii) also holds, for otherwise G’ has a 4-face or a separating
6~ -cycle. Similarly, (iii) holds, for if G \ {v1, vs, Vs, v4} contains a path of length at most 3
joining ws and vs, then with wovyvyvs, this path forms a 6~ -cycle in G’ that separates w;
from vs. Finally, suppose that (iv) fails and let P be a path of length at most 3 joining ws
and wy, other than wsvsvaw,. Now P together with wsvsvaw, must form a face boundary,
since otherwise G’ has a separating 6 -cycle; in particular, exactly one such path P exists.
Since (iv) fails and G is triangle-free, P must be a path wsx;Xxaw4, as in Figure But now

3No, that figure number is not a typo.
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Figure 4.3: The 5-face in Lemma b) must be safe.

(v3, V4, W4, X2, X1, W3) must be a safe 6-face. If not, then G’ contains a path joining w3 and
v4 of length at most 3; call it Q. (Note that Q contains w4 or vs as an interior vertex, since
d(v4) = 3.) So G’ contains a separating 5-cycle Qv4v3ws, which is a contradiction. O

4.2 %-Coloring

When a coloring conjecture seems difficult, we often consider its fractional relaxation. Now
each vertex can be partially colored with various colors, say one half red, one third blue, and
one sixth green. Here we prove a fractional coloring result for planar graphs, in the direction
of the 4 Color Theorem.

Definition 4.10. To fractionally color a graph G, we give each independent set in G a nonneg-
ative weight, such that each vertex appears in sets with weights summing to 1. A graph G is
fractionally k-colorable if G has a weight assignment with weights summing to at most k. The
fractional chromatic number, x¢(G), is the minimum k such that G is fractionally k-colorable.

By restricting each weight in a fractional coloring to be 0 or 1, we get the standard definition
of vertex coloring. So always x¢(G) < x(G). In 1997, Scheinerman and Ullman [356, p. 75]
succinctly described the state of the art for fractionally coloring planar graphs:

The fractional analogue of the four-color theorem is the assertion that the maximum
value of x¢(G) over all planar graphs G is 4. That this maximum is no more than
4 follows from the four-color theorem itself, while the example of K4 shows that
it is no less than 4. Given that the proof of the four-color theorem is so difficult,
one might ask whether it is possible to prove an interesting upper bound for this

fractionally color

fractional
chromatic number
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maximum without appeal to the four-color theorem. Certainly x¢(G) < 5 for any
planar G, because x(G) < 5, a result whose proof is elementary. But what about a
simple proof of, say, x(G) < % for all planar G? The only result in this direction
is in a 1973 paper of Hilton, Rado, and Scott [217] that predates the proof of the
four-color theorem; they prove x¢(G) < 5 for any planar graph G, although they
are not able to find any constant ¢ < 5 with x¢(G) < c for all planar graphs G.
This may be the first appearance in print of the invariant .

Here we give exactly what Scheinerman and Ullman asked for—a simple proof that x¢(G) <
% for all planar G. This result follows from a stronger statement, which needs another definition.

Definition 4.11. A 2-fold 9-coloring of a graph G assigns to each vertex a 2-element subset of
[9], such that adjacent vertices get disjoint sets. If G has a 2-fold 9-coloring, then x¢(G) < %:
to the vertices of each color class, we assign weight %

The main result of this section is the following theorem.
Theorem 4.12. Every planar graph has a 2-fold 9-coloring.

The proof is similar to our proof that planar graphs are 5-colorable, but here we use more
reducible configurations. Suppose the theorem is false, and let G be a minimal counterexample.
Adding edges never makes coloring easier, so we assume that G is a plane triangulation. By
Remark[4.4] G has no separating 3-cycle.

Now we show that G cannot exist, since each planar graph contains a configuration H that
is reducible. To prove unavoidability we use discharging. To show that each configuration H
is reducible, we delete V(H) and identify certain sets of vertices in N(V(H)) to get a smaller
graph G’. When a vertex v of H has two of its neighbors identified in G’, they get the same
colors in ¢’, which saves colors for v (as in the proof of the 5 Color Theorem). To color G’ by
minimality, we must ensure that G’ is planar and has no loops. Such a loop would arise from
a 3-cycle vwi;wy when wi and w, were identified. But this is typically impossible, since if w;
and w, were adjacent, then vw;w, would be a separating 3-cycle.

Definition 4.13. In this section, a coloring means a 2-fold 9-coloring. A minimal counterexample
G to Theorem is one that minimizes |G| and, subject to this, minimizes the number of non-
triangular faces; for short, we say a minimal G.

Note that a minimal G must be a plane triangulation, since otherwise adding an edge
contradicts the minimality of G. Recall, from Remark[4.4] that G has no separating 3-cycle. To
prove Theorem |4.12) we formalize the outline above in a series of four lemmas.

Lemma 4.14. Every minimal G has minimum degree 5.

Proof. Since G is a plane triangulation, 6(G) = 3. If G contains a 3-vertex, then its neighbors
induce a separating 3-cycle, a contradiction. If G contains a 4-vertex v, then two neighbors,
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say wi and wy, of v are non-adjacent, since Ks is non-planar. Form G’ from G by deleting v
and identifying w; and w,. By minimality, G’ has a coloring, which induces a coloring ¢ of
G — v where w1 and w, get the same colors. Thus, we can extend ¢ to G. Hence 6(G) = 5.
Since G is planar, it is 5-degenerate, so 5(G) = 5. O

Given a coloring ¢ of some subgraph of G, our next lemma helps us extend ¢ to an
uncolored induced K;3. In Lemma we use it to forbid numerous configurations from
appearing in our minimal counterexample G.

Lemma 4.15. Let H := Ky 3. If each leaf has a list of size 3 and the center vertex has a list of size
5, then we can choose 2 colors for each vertex from its list such that adjacent vertices get disjoint
sets of colors.

Proof. Let v denote the center vertex and wi, wo, ws the leaves. Since 2|L(v)| > |L(w1)| +
IL(w2)|+|L(ws)|, some color « € L(v) appears in [(w;) for at most one w;. If such a w; exists,
then say it is w1, by symmetry; now color v with & and some color not in [ (w7). Otherwise
color v with o and an arbitrary color. Finally, color each w; arbitrarily from its at least 2
available colors. O

Now we reach our main reducibility lemma.
Lemma 4.16. Every minimal G has none of the following three configurations:
(@) a 5-vertex with a 5-neighbor and a non-adjacent 6~ -neighbor,
(b) a 6-vertex with non-adjacent 6 -neighbors, or

(©) a 7-vertex with a 5-neighbor and two other 6 -neighbors such that all three are pairwise
non-adjacent.

Proof. Each configuration H induces either K; 5 or K; 3. To prove H is reducible, we (1) delete
V(H) and identify some vertices in N(V(H)) to get G’, (2) color G’ by minimality, and (3) use
Lemmal4.15]to extend the coloring to G. The main question is how to identify vertices of G —H
so that the vertices of H have lists large enough to apply Lemma4.15

In each diagram of Figures [4.4] and the vertices of H are v, w1, wa, and possibly ws.
Vertices to be identified in G’ are labeled with the same number. By assumption, v and its
neighbors are all distinct; however, pairs of vertices at distance two from v that are drawn
as distinct may not be. When this happens, certain prescribed vertex identifications will be
impossible, since they create loops. Seeing all the cases is unenlightening, so we focus on the
harder instances, those where prescribed 6~ -vertices have degree 6, rather than 5. These are
shown in Figures and The full details are in [T03].

Let v be a 6-vertex with non-adjacent 6-neighbors, w; and wy. The 6-neighbors are either
“across”, as at the top of Figure or “offset”, as at the bottom of Figure (on either the
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left or right). If we can form G’ as prescribed in any of these figures, by identifying each pair
of vertices with the same label, then v has 5 allowable colors, since it has only two neighbors
in G’. Similarly, w; and w, each have at least 3 allowable colors, since they have only three
neighbors in G’. By Lemma [4.15, we can thus extend any coloring of G’ to a coloring of G. So
it suffices to show that we can identify vertices as prescribed in one of the three ways shown
in Figure without creating loops. Note that pairs of vertices drawn at distance 2 or 3 must
always be distinct, since G has no separating 3-cycle.

The only complication at the top of Figure[4.4]is that a vertex labeled 1 might be the same as
a vertex labeled 4 that is drawn at distance four; suppose so, and call this vertex x. By symmetry,
assume that x is formed by identifying the vertices at the top left and bottom right. This is a
problem only if also a vertex labeled 1 is adjacent to one labeled 4; so suppose this happens.
Now the top right and bottom left vertices are non-adjacent, since they are on opposite sides of
the cycle xwyvw,. Again by symmetry, we assume that x is adjacent to the bottom left vertex
labeled 1. But now G has a separating 3-cycle (consisting of x, its neighbor labeled 1, and their
common neighbor wj); this contradicts Rernark which finishes the case.

The offset case, shown at the bottom of Figure is similar. On the left, only the vertices
labeled 1 and 3 that are drawn at distance four might be the same; if so, then call this vertex x.
Now we switch to the identifications shown on the right, where the two vertices drawn in bold

Figure 4.4: Two cases of Lemma b). On top, the 6-neighbors of v, namely w; and w,, are “across”. On
bottom, the 6-neighbors are “offset” (on the right the two vertices drawn in bold are identified).
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are identified. All vertices with numeric labels are at pairwise distance at most three, due to
the extra edges incident to x. Also, the two vertices labeled 1 that are drawn at distance three
are non-adjacent, since they are separated by cycle wyvwyx. This finishes the case.

Finally, we consider the instance of case (c) on the left in Figure[4.5] By horizontal symmetry
and planarity, we assume the vertices labeled 2 that are drawn at distance 3 are neither the
same nor adjacent, by reflecting across edge vw; if necessary. (So the vertices labeled 1 and 2
drawn at distance 4 are distinct.) Hence, in forming G’ we can identify all vertices labeled 2;
we can also identify all vertices labeled 3.

As in the previous cases, it is straightforward to check that no vertex labeled 2 or 3 is the
same as any other labeled vertex. So we only need to consider the vertices labeled 1 and 4.
The only possible problem is if some pair of vertices labeled 1 and 4 that are drawn at distance
four are actually the same vertex y. Further, this only causes difficulty if another pair labeled
1 and 4 are adjacent. So, suppose this is the case.

If these identified and adjacent pairs are not disjoint, then two vertices with the same label
(either 1 or 4) are adjacent. But now G has a separating 3-cycle, a contradiction. So assume
the pairs are disjoint. Thus, the top vertices labeled 1 and 4 are the same vertex. Now x; is
neither the same as, nor adjacent to, the top vertex labeled 2, since they are separated by a
cycle through the pair labeled 1 and 4 that contains the top vertex labeled 1. If x; and x3 are
distinct, then we neglect the vertices labeled 1 and 4 altogether; instead we label x; as 2 and
x3 as 3. Due to the identified and adjacent pairs labeled 1 and 4, we can easily check that G’
is loopless, as above.

Assume instead that x; and x3 are the same vertex, denoted by bold on the right in
Figure Now we switch the vertex identifications we use to form G’. Delete v, w1, wo, and
ws. Identify the two vertices labeled 4. Also identify the two neighbors of w; labeled 2, the
top vertex that was labeled 3 (now 2), and x; /3 (the bold vertex), as on the right in Figure
As in the previous cases, we can check that G’ is loopless. This finishes the case. O]

Figure 4.5: A harder case of Lemma c): a 7-vertex with a 5-neighbor and two 6-neighbors that are
pairwise nonadjacent (on the right x; and x3 are identified).
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Finally, we prove unavoidability, which completes the proof of Theorem [4.12]

Lemma 4.17. No planar graph without separating 3-cycles satisfies the conclusions in both Lem-
mas and[4.16) So no minimal counterexample exists, and Theorem is true.

Proof. Suppose that G is a planar graph with no separating 3-cycles and that G satisfies the
conclusions of Lemmas |4.14| and To reach a contradiction, we use vertex charging and
rules (R1)-(R4), listed below.

Before providing the details, we offer some motivation. Recall that each 5-vertex must
receive at least 1. Each 6-vertex must receive at least as much as it gives, and each 7" -vertex
v must give at most d(v) — 4. Intuitively, we would like to give 1/4 from each 7% -vertex
to each 5-neighbor. If we do this, 8*-vertices will not lose too much. So we must check
that each 7-vertex does not lose too much, and that each 5-vertex receives enough (hopefully,
because of Lemmal4.16). This admittedly optimistic approach does not quite work, but a modest
refinement of it does.

We need a few definitions. For each vertex v, let H,, denote the subgraph induced by the
5-neighbors and 6-neighbors of v. If some w € V(H, ) has dy,(w) = 0, then w is an isolated
neighbor of v; otherwise w is a non-isolated neighbor. A non-isolated 5-neighbor of a vertex v
is crowded (with respect to v) if it has two 6-neighbors in H,,. We use crowded 5-neighbors to
ensure that 7-vertices end happy, specifically for the configuration in Figure We have the
following 4 discharging rules.

(R1) Each 8" -vertex gives % to each isolated 5-neighbor and % to each non-isolated 5-neighbor.

(R2) Each 7-vertex gives % to each isolated 5-neighbor, 0 to each crowded 5-neighbor, and %
to each remaining 5-neighbor.

(R3) Each 7' -vertex gives % to each 6-neighbor.

(R4) Each 6-vertex gives % to each 5-neighbor.

From Lemmal4.14} we know that §(G) = 5. And from the comment following Deﬁnition
we know that G is a triangulation. Recall that every face (which is a triangle) starts and ends
with charge 0; so we need not consider faces. To show that every vertex v ends happy, we
consider the possibilities for d(v).

Case1: d(v) =2 8. Now d(v) — 6 = @. Suppose that v gives % to each neighbor, rather
than giving charge by (R1) and (R3). Now let each isolated 5-neighbor w take also the % that
v gave to its neighbor that (clockwise around v) follows w. Each neighbor of v receives at least

as much as by (R1) and (R3), and v gives away 4v) g6 when v gives charge by (R1) and (R3),

4
v gives at most d(4v) , and ends happy.

Case 2: d(v) = 7. Suppose that v has an isolated 5-neighbor w. Let x,y € N(v) be
the two 7" -vertices that are common neighbors of v and w. We show that the total v gives
to N(v) \ {w, x,y} is at most % By Lemma (c), these four remaining vertices include at
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most two 6~ -vertices. So, if v gives them a total of more than %, then one of them is another
isolated 5-neighbor. But now the final 6 -neighbor of v must be at distance 2 from these first
two 5-neighbors, violating Lemma (c).

So assume instead that v has no isolated 5-neighbors. Thus, if v loses more than 1, then
v loses charge to at least five 6~ -neighbors, since they each take %. So assume that |H,| = 5.
Hence, H,, consists of either (i) a 7-cycle or (ii) a single path or (iii) two paths. Recall from
Lemma [4.16)(b), that no 6-vertex has non-adjacent 6~ -neighbors. So every vertex of degree 2
in H, is a 5-vertex; thus, every vertex on a cycle or in the interior of a path in H,, is a 5-vertex.

In each of cases (i)-(iii), H, has an independent set of size 3 containing at least one 5-
vertex; the only exception is when H, consists of a path on two vertices and a path on three
vertices, and the only 5-vertex is the internal vertex on the longer path. But then the 5-vertex
is a crowded neighbor of v, as in Figure and receives no charge from v. So v ends happy.

Case 3: d(v) = 6. By Lemma (b), v has at most two 6 -neighbors. So v loses at most
2(%) by (R4), and gains at least 4(%) by (R3), and ends happy.

Case 4: d(v) = 5. Since v begins with —1, it must gain at least 1. If v has at least two 6-
neighbors, then it gains at least 2(%), by (R4); so assume v has at most one 6-neighbor. If v has at
least four 6 -neighbors, then it gains at least 4(%), by (R1) and (R2) and (R4), and ends happy
(v has at most one 6-neighbor, so none of its 7-neighbors see v as crowded). Instead assume v
has at least two 5-neighbors. By Lemma[4.16|@a), these 5-neighbors must be adjacent and v has
no 6-neighbors. But now one of Vs three 7' -neighbors sees v as an isolated 5-neighbor, so it
sends v % Thus, v gains at least % + 2(%), by (R2) and (R4), and ends happy. O

It is typical, in discharging proofs, that vertices needing charge get at least as much from
neighbors of higher degree as from those of lower degree. In contrast, here each 6-vertex gives
each 5-neighbor 1, while each 7-vertex may give a 5-neighbor % or even 0. It is this observation
that each 6-vertex can afford to give each 5-neighbor % (because of Lemma (b)) that
motivates (R2), and that ultimately makes the discharging portion of this proof so simple.

Figure 4.6: A 7-vertex v does not give
any charge to a crowded 5-neighbor.
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4.3 The Folding Lemma: Graph Homomorphisms

By Grotzsch’s Theorem, every triangle-free planar graph G is 3-colorable. And if G contains an
odd cycle, then x(G) = 3. So what more can we say? Even cycles are bipartite. Intuitively, if
G has no short odd cycle, then G is more “nearly bipartite” than K3 or Cs. We formalize this
idea with a few definitions.

Definition 4.18. The odd-girth of a graph G is the length of its shortest odd cycle. A graph
homomorphism from G to H is a map ¢ : V(G) — V(H) such that if vw € E(G), then
@(v)e(w) € E(H); that is, @ preserves edges. If G admits a homomorphism into H, then G
maps into H, and we write G — H. If G; — G3 and Gy — Gg, then composing the maps
shows that G; — Ggs. Figure [4.7]shows the case when Gi, G2, G3 are Cy, Cs, C3. Recall that
a k-thread in G is a path with k internal vertices, each with degree 2 in G.

Figure 4.7: C; — Cs (with labels 1,2,3,4,5) and also Cs — C3 (with labels a,b,c). Compos-
ing these maps shows that C; — C;3 (with labels a,b,c).

Note that G is k-colorable exactly when G — Ky; further, the homomorphisms from G to
Ky are in bijection with the k-colorings. For this reason, we often call a map ¢ : G — H an
H-coloring. But there is no need to only consider maps into cliques. The Kneser Graph K, . has
as its vertex set the k-element subsets of [n], and two vertices are adjacent when their subsets
are disjointff] So Theorem says that every planar graph maps into Kg.5. But when does
a graph map into Cyy, 1 for some large k? Pavol Hell conjectured the following, and it was
proved [262] shortly thereafter.

Conjecture 4.19 (Proved). There exists a function f(k) such that G — Coyi, 1 whenever G is
planar with odd-girth at least f(k).

When we replace ‘odd-girth’ by ‘girth’, this conjecture becomes easy to prove, by discharging.
Every such G contains a cut-vertex or a long thread, both of which are reducible. But how do
we handle a short even face? As with 4-faces in the proof of Grétzsch’s Theorem, we identify
some pair of vertices at distance two along the face. In a sense, the Folding Lemma (which we
will prove soon) just extracts that step and generalizes it.

4The most famous examples of Kneser graphs are the cliques K,,, which can be written as K,.;. The next most
famous example is the Petersen graph, which is Ks.,.
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Lemma 4.20 (Folding Lemma). Let G be a connected plane graph with odd-girth g. If v1 - - - vy
is a face boundary in G and r # g, then there exists i € [r] such that identifying vi_1 and vi 1
(with subscripts modulo 1) produces a graph G’ with odd-girth g.

The Folding Lemma gives the following immediate corollary.

Corollary 4.21. If G is planar with odd-girth g, then G — G” for some G with odd-girth g and
with every face of length g.

Proof. Assume not, and choose a counterexample G minimizing |G|. If G is disconnected, then
we identify one vertex from each component, which gives a smaller counterexample. So G is
connected and has a face f with {(f) # g. By the Folding Lemma, G — G’ for some smaller
G’ satisfying the corollary’s hypothesis. By minimality G’ — G’ for some G” satisfying the
corollary’s conclusion. But now G — G’ — G”/, so G is not a counterexample. O

Definition 4.22. For walks P and Q, with Q starting at the end of P, form PQ by appending
Q to P. For a directed cycle D with vi,v; € V(D), let viDvj denote the directed subpath
of D from v; to vj. When the orientation of D is unspecified, we assume that its indices are
increasing. Note that viDvj; # v;Dvy; in fact, (viDv;)(v;Dv;) = D. For example, in Figure
path v;{Dvj contains v;; and vy, but not v; ;. In contrast, v;Dv; contains v;_1, but neither
vit1 nor vi. For a graph G with odd-girth g and a specified face f with boundary vy - - - vy,
where v # g, let C be the directed cycle v; - --v,. Form G; from G by identifying vi_; and
vit1 (with subscripts modulo 1) in the interior of f

A critical cycle for v; (and f) is a g-cycle that has as a subpath vi{_1v;ivi41. If G; has odd-girth
less than g, then this is precisely because G contains a critical cycle for v; and f. Given C, as
above, and a critical cycle D for v; and f, the swath of D is its longest directed subpath v;Cvy
such that vi_1v{viy1 C v;Cvy. Let D be a directed cycle, P a directed subpath of D, and Q a
walk with the same endpoints as P. Now splice(D, P, Q) denotes the closed walk formed from
D by replacing the edges of P with those of Q (if Q starts where P ends, and vice versa, then
we traverse Q backwards). In Figure splice(D, v;Dvy, v Cvj) is the directed cycle that
follows D along the top of the figure and follows C (backwards) along the outside and bottom.

For clarity, we split the proof of the Folding Lemma into two lemmas. Assuming a coun-
terexample, the first says the following. When we take a critical cycle with longest swath, P,
and a critical cycle for one endpoint of P, the endpoints of the two swaths must alternate along
C. In other words, the case shown in Figure is impossible. The second lemma says that
when this happens, we can get a critical cycle with a longer swath, which is a contradiction.

Lemma 4.23. Suppose G is a counterexample to the Folding Lemma. Now G must contain a face
f with £(f) > g and distinct vertices Vi, Vj, Viyp,Vj+q (in that cyclic order) such that both (@)
viCvip is a longest swath among all critical cycles for f and also (b) v;Cvj,q is a swath of a
critical cycle for vip.

5In G; vertex vy is not on the face arising from f, though it is on every other face that it is on in G.

ViDV]'

C, Gy

critical cycle for vi

swath



124 CHAPTER 4. VERTEX IDENTIFICATION: COLORING PLANAR GRAPHS

D
s )
Vj Vi—1 Vi Vi1 Vk
C
f
|\ ( J

Figure 4.8: D is a critical cycle for vi. The swath of D is v;Cvy, which equals v;Dvy. Now
splice(D, v;jDvy, v Cv;) is the directed cycle formed by following D from vy to v; and following C
(backwards) from v; to vy.

The possible problem (when trying to prove Lemma is that v; and v;, 4 may be
“nested inside of” v{ and v; p, so the order of the vertices is vi, Vj ¢, Vj, Vitp, as in Figure
However, in this case E(viCviyp) U E(v;Cvjyq) = E(C); in particular p > (Z(Tf) So we must
prove this cannot happen; assume it does. When {(f) is even, we go around f the other way, to
get a shorter cycle, a contradiction. When £(f) is odd, we do something similar, splicing from

another critical cycle.

Proof. Suppose that G has a face f with {(f) > g such that G; has odd girth g — 2, for each
i € [£(f)]. (Notice that G must be 2-connectedﬂ) Let D, be a critical cycle for C with longest
swath; choose i and p so the swath is viCv;i . Since Gip has odd girth g — 2, there exists
a critical cycle Dy for vi; choose j and ¢ so that the swath of Dy is vjCvj . If vj; 4 is an
interior vertex of vi 1, Cvy, then we are done, since the vertices are distinct and appear in cyclic
order vi, Vj, Vit p,Vj+q-

So assume that vj ;4 is on v{Cvj (and possibly vj;q4 = v;) as is shown in Figure
This implies that E(viCviyp) U E(vjCvjq) = E(C); in particular p + q > {(f), so p >

@. If £(f) is even, then we go around f the other way to get a shorter cycle. Formally,

®If not, then consider vertices v;_1, vi, vi 41 that are successive on the boundary of a face f, where v; is a cut-vertex
and v;_; and v;; are in distinct blocks. Now G; has no (g — 2)-cycle, a contradiction.
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Figure 4.9: Vertices v, Vj_q, Vj, Vi+p cannot appear around f in the order shown.

splice(D1, viCviyp, vi1pCvi) is an odd cycle with length less than g, a contradiction. So
assume that £(f) is odd.

Now we will show that splice(D1, vj+ qD1Vj, vj+ qD2vj) is an odd closed walk, with length
less than g, a contradiction. Note that v;Davjq = vjCvj 4. Recall that {(C) and {(D,) are
both odd. Further, {(D3) = g and {(C) > g. Thus, {(vjqCvj) — £(vj4qD2vj) is positive
and even. Since vjqD1v;j = vj4 ¢Cvj, we get that splice(D1,vj4 qD1vj, vj+qD2v;) is an odd
closed walk of length less than g. This gives the desired contradiction. O

Lemma 4.24. If face f and indices i, j, p, q are as in Lemma then f has a critical cycle with
a swath of length longer than p, a contradiction.

Let D; and D, be the two critical cycles from the proof of Lemma Since G is planar,
and D; and D, intersect on f, they also intersect outside of f, say at some vertex w. We direct
and label the walks as in Figure so Q1P1P2Qs and Q2P2P3Q4 are Dy and Dy. We show
Q1P1P2P3Qy4 is also a critical cycle; but its swath, PPy Ps, is longer than P, Py, a contradiction.

Proof. Since G is planar, the two critical cycles intersect outside of f, say at a vertex w. Let
Py :=v;iCvj, P2 := v;Cvi p, and P3 := vi,Cvj 4. Let D; and D> denote, respectively, the
critical cycles with swaths vi Cvi, and v;Cvj 4, and let Q1, Q2, Q3, Q4 denote paths ending
at w such that D; = Q1P1P2Q3 and D, = Q3P2P3Qy4; see Figure Note that every odd
closed walk must contain an odd cycle. Since G has odd-girth g, every odd closed walk must
have length at least g.
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w
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Figure 4.10: Critical cycles Q;P;P,Q3; and Q,P,P3Q4, and the vertex w where they intersect
outside cycle C.

Case 1: Q,P2Qj is even. Necessarily {(Q3) = £(P2Q3); otherwise splice(D1, P2Qs3, Q2) is
an odd closed walk with length less than g, a contradiction. Similarly, we have £(Q3) = £(Q2P2).
Adding these two inequalities, we get £(Q2) + £(Q3) = £(P2Q3) +£(Q2P2) = £(Q3) +€(Q2) +
2£(P3), so £(P2) < 0; this is a contradiction, since v; and v;, are distinct.

Case 2: Q2P2Q3 is odd. Let W := Q1P1P2P3Q4. Now E(W) = E(Q1P1P2P3Q4) =
€(D1) + €(D3) — £(Q2P2Q3); since Dy and D are odd, so is W. Further {(D;) = {(D2) = g,
and £(Q2P2Q3) = g, since Q3P2P3 is odd. But this implies that {(W) < 2g — g = g. Since W
is a closed odd walk with length g, it is a g-cycle; so it is a critical cycle for v;. Further, it has
swath longer than v; Cvi ,, which gives the desired contradiction. O

Lemmas and prove the Folding Lemma. Now we can prove Conjecture [4.19
Theorem 4.25. If G is planar with odd-girth at least 10k — 3, then G — Cagjy1.

Proof. Assume not, and let G be a counterexample minimizing |G|. If G is not 2-connected,
then B — Cy¢.1, for each block B of G. Since Cytyq is vertex transitive, we assume that the
maps for all the blocks agree on the cut-vertices (this is analogous to permuting color classes of
a coloring); together these maps give a map for G. So G is 2-connected. Let g be the odd-girth
of G. By Corollary|4.21, we also assume that every face of G has length g.

Suppose G has an induced path P of length 2k (a so-called (2k — 1)-thread). Form G’ from
G by deleting the internal vertices of P. By minimality, G’ has a map ¢’ to Cor 1. Let v and
w be the endpoints of P. To extend ¢’ from G’ to G, we find a walk of length 2k from ¢’(v)
to @’(w) in Cyxy1. Let C denote a directed (2k + 1)-cycle with vertices v1,...,Vax 1. For
distinct i,j € [2k + 1], the lengths £(v;Cvj) and {(v;Cv;) sum to 2k + 1, and each is at most
2k. So let W be an even walk in C between v; and v;, with {(W) < 2k. If (W) < 2k, then
we go back and forth on the final edge until we reach length 2k. Walk W shows that we can
extend ¢’ to G, a contradiction. Thus, G has no induced path of length at least 2k.
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Form Gq from G by replacing each maximal thread with a single edge (that is, suppressing
each 2-vertex). Note that 8(Gg) = 3, so G has a 5~ -face fy, by face charging. Let D be the
boundary of the face in G corresponding to fo. By Corollary[4.21, D has length g > 10k — 3.
Since {(fp) < 5, cycle D has an induced path of length [(10k — 3)/5] = 2k, a contradiction. [J

We should note that Theorem fails if we require only that G embeds in §, for any
surface S other than the plane. Youngs [425] and Klavzar and Mohar [261] constructed 4-
chromatic graphs with odd-girth arbitrarily large, that embed in the projective plane and torus
(respectively). One place where the proof breaks down is Lemma |4.24] since now our two
critical cycles for face f need not intersect outside of f.

4.4 Correspondence Coloring: 3-Choosability

The goal of this section is to prove the following theorem.

Theorem 4.26. If G is planar with no cycles of lengths 4 to 8, then G is 3-choosable.

4.4.1 Overview and Discharging

Theorem [4.26]is similar to Theorem [1.44}; the only difference is that now we allow 9-cycles. So
our plan is simple: copy the proof of Theorem see what goes wrong, and add technical
finesses to overcome the difficulties. There we used face charging and three discharging rules:
(R1) Each 3-face takes 1 from each incident vertex; (R2) Each 3-vertex v incident to a 3-face
takes % from each other face incident to v; (R3) Each 10" -face f takes % from each incident
4+ -vertex v such that exactly one edge incident to v and f is on a 3-face. We use the same rules
now, but substitute 9" -face for 10" -face in (R3). So what goes wrong?

All vertices end happy, as so do all faces, except for possibly 9-faces. But not all 9-faces are
troublesome; only 9-faces with at least 7 incident 3-vertices that are each incident to a 3-face.
This motivates the notion of a tetrad, 3-vertices v1, v, V3, V4 that are consecutive along a face,
and such that edges viv2 and vsv,4 are both in 3-faces; see the right of Figure It is easy to
check that every 9-face that finishes negative contains the vertices of a tetrad. So it suffices to
show that tetrads are reducible for Theorem

Fix a graph G satisfying the hypothesis of Theorem a 3-assignment L, and a tetrad
H in G. Since we cannot extend an arbitrary L-coloring ¢’ of G — H to all of G (why not?),
we must somehow constrain ¢’, to make it easier to extend ¢’ to G. The key idea is vertex
identification. Rather than L-coloring G — H, we form a graph G’ from G — H by identifying a
pair of vertices. Since ¢’ gives both vertices the same color, we can more easily extend ¢’ to G,
much like for Lemmal4.7]in our proof of Grétzsch’s Theorem. This approach raises two obvious
questions: (a) What list do we assign to this new vertex? (b) When we identify vertices, how
do we avoid creating short cycles, so that we can L-color the smaller graph by minimality?

To answer (a), we need a truly innovative idea, which occupies much of the proof; we get
to this soon. To answer (b), we reuse an idea from our proof of Grotzsch’s Theorem. If G
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Figure 4.11: Correspondence assignments for K3 and C,4. The assignment for C,
illustrates that even cycles have X oy > 2.

has a separating 127 -cycle D, then we restrict G to the subgraph Dy,, induced by the vertices
of D and its interior. By refining the discharging argument above, we find a tetrad H inside
the “innermost” separating 127 -cycle. Now the vertices of H do not lie on any separating
12~ -cycle so identifying vertices to form G’ cannot create any cycle of length 4 to 8. Thus, by
the minimality of G, we can L-color G’.

What we need for (a) is a new type of coloring, correspondence coloring. We describe
it informally now, and more precisely in Definition Every vertex v gets the same list
[k]. Coloring a vertex v with any color o € [k] forbids at most one color on each neighbor
w of v, although the color forbidden by « may vary from one neighbor to another. Intuitively,
correspondence coloring is “like list-coloring, but also allows vertex identification.” Lemma|4.32
justifies this intuition.

Definition 4.27. A correspondence assignment for a graph G consists of a list assignment L and
a function C that to every edge vw € E(G) assigns a partial matching C,.,, between {v} x L(v)
and {w} x L(w). (We use the Cartesian product to distinguish between vertices of C,,,, when
the same color appears in both L(v) and L(w).) See Figure E An (L, C)-coloring of G is a
function ¢ that assigns to each v € V(G) a color ¢(v) € L(v) such that for every vw € E(G)
the vertices (v, @(v)) and (w, @ (w)) are non-adjacent in Cy,,. Now G is (L, C)-colorable if such
an (L, C)-coloring exists.

First, notice that correspondence coloring generalizes list coloring. For each edge vw we
simply let Cy,, match (v, «) and (w, «), for every o« € L(v) N L(w). Now an (L, C)-coloring
is simply an L-coloring. When proving that a configuration is reducible, we want to identify
vertices. For this identification to make sense, these vertices must have the same list. This
insight motivates our next step.

The actual colors in a list L(v) do not matter at all; we only care how they are matched to
the colors in lists for neighbors of v. More precisely, suppose that (L, C) is a correspondence
assignment for graph G, with « € L(v) and B ¢ L(v). Form (L’,C’) from (L, C) by letting
L’(v):=L(v)\{o}U{PB} and letting 3 replace « in every matching C,.,, where w is a neighbor
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of v. We call this process renaming a color at v. Given any (L’, C’)-coloring ¢’, we can get an
(L, C)-coloring ¢; simply let @ := ¢, except that if ¢’(v) := 3, then we let @(v) := «. Two
correspondence assignments are equivalent if we can form one from the other by some sequence
of renamings. Figure center and right, shows an example. The following observation is
easy to check by induction on the length of the renaming sequence.

Observation 4.28. If correspondence assignments (L, C) and (L’, C’) are equivalent, then G is
(L, C)-colorable if and only if G is (L', C’)-colorable.

Since we can rename colors at one vertex independent of those at others, by induction on
the order of the graph, we get the following.

Observation 4.29. If (L, C) is a correspondence assignment for G and |L(v)| = k for all
v € V(G), then G has an equivalent assignment (L', C’) with L’(v) = [k] for allv € V(G).

Definition 4.30. A [k]-correspondence assignment for G is a function C that assigns to each edge
wvw € E(G) a partial matching C,,, between {v} x [k] and {w} x [k]. In this case we write
C-coloring and C-colorable rather than (L, C)-coloring and (L, C)-colorable. The correspondence
chromatic number, denoted Xcorr(G), of G is the smallest integer k such that G is C-colorable
for every [k]-correspondence assignment C.

Let (L, C) be a correspondence assignment for a graph G, and let vivy - - - v¢ with v¢ = vq
be a closed walk in G; call the walk W. The assignment (L, C) is inconsistent on W if there
exist colors «1, - - - , ¢ such that oy € L(vy) foralli € [t] and (vi, o) (Viy1, %4 1) is an edge of
Cyvivy,, foralli e [t —1], but oy # 1. Otherwise (L, C) is consistent on W. A correspondence
assignment is consistent if it is consistent on every closed walk in G. On the left in Figure
the assignment (L, C) is inconsistent on the walk vwxv, as shown by the colors 1, 1, 1, 2. But
(L, C) is consistent on the walk wxvw.

The following easy observation will be useful.

Observation 4.31. Let (L,C) and (L’,C’) be equivalent correspondence assignments for a
graph G. For every closed walk W in G, assignment (L, C) is consistent on W if and only if
assignment (L', C’) is consistent on W.

Theoremfollows from a more general result on correspondence coloring, Theorem|4.33
(with P = (). Its proof comprises Lemmas To emphasize the high-level structure of
the argument, we state the theorem and lemmas now, and give the proofs soon.

Lemma 4.32. A graph G is k-choosable if and only if G is C-colorable for every consistent [k]-
correspondence assignment C.

Theorem 4.33. Let G be a plane graph with no cycles of lengths 4 to 8. Fix P C V(G) such
that either (i) |[P| < 1 or (ii) P consists of all vertices incident with some face of G. Let C be a
3-correspondence assignment for G that is consistent on every closed walk of length 3. If |P| < 12,
then for any C-coloring @q of G[P], there is a C-coloring ¢ of G such that ¢ restricted to P is @g.

renaming

equivalent

[k]-
correspondence
assignment
C-coloring
C-colorable
correspondence
chromatic number

inconsistent on W

consistent on W

consistent

Po



minimal
counterexample

130 CHAPTER 4. VERTEX IDENTIFICATION: COLORING PLANAR GRAPHS

Proof of Theorem Let G satisfy the hypotheses of Theorem[4.26] and let C be a consistent
[3]-correspondence assignment. By Lemma it suffices to show that G is C-colorable. This
follows from Theorem with P = (). O

The point of P, short for precolored, in Theorem |4.33| is to handle cut-vertices and short
separating cycles. By symmetry, we assume P is on the outer face. If G contains a separating
127 -cycle D, then we get a coloring @qyr of Doyt, by minimality. Also by minimality, we get a
coloring @j, of Dj,, where now Py, := V(D) and g is the restriction of @qy to V(D). Together
©out and @i, give a C-coloring of G. (To prove that all planar graphs are 5-choosable, we use
the same precoloring idea in the proof of Theorem when the boundary of the outer face
has a chord.) Handling cut-vertices is similar.

To prove Theorem we naturally choose G to minimize |G|; but we go further. Col-
oring G is also easier when more of its edges are induced by P, since their constraints are
already satisfied. Furthermore, we want to maximize vaeE(G) |domain(C,, )|; this is akin
to triangulating a plane graph, as in the proof of Theorem

Definition 4.34. Let G, P, C, and g satisfy the hypotheses of Theorem but not its
conclusion, and let B := (G, P, C, @g). Without loss of generality, when P is non-empty we
assume that its vertices are on the outer face, fo. We choose B to minimize |G| and, subject to
that, to minimize |G| — || G[P]|| and, subject to that, to maximize } ., ¢ g)|domain(Cy)l.

We call such a 4-tuple B a minimal counterexample.

The next lemma states some properties of a minimal counterexample B that we use to prove

Lemmas and In reality (contrary to our order of presentation), we begin by trying to
prove these lemmas and discovering which properties of B are helpful to complete the proofs.

But for ease of exposition, we present the properties first.

Lemma 4.35. Every minimal counterexample (G, P, C, @) to Theorem 4. 33|satisfies the following
seven properties:

@ V(G) #P,
(b) G is 2-connected,
(©) G has no separating 12~ -cycle,

(d) if e; and ey are distinct chords of a 127 -cycle D, then e and ey are not on a common
3-face,

(e) all 2~ -vertices of G are in P,
(f) the outer face fy is bounded by an induced cycle and P = V(fy), and

(g) if ] is a path in G of length 2 or 3 with both ends in P and no internal vertex in P, then no
edge of ] is in a triangle that intersects P in at most one vertex.
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12 13 23

12 13 23

Figure 4.12: From left to right: A 2-list assignment L for Ks 3, the correspondence assignment that arises
naturally from L, and an equivalent 2-correspondence assignment.

Now we define our primary reducible configuration.

Definition 4.36. In a minimal counterexample B, Lemma [4.35/(c) implies every 3-cycle is a
3-face; we call this a triangle. A tetrad consists of 3-vertices v, Vo, V3, V4 that are consecutive
along a face, with edges v1vy and v3v4 both in triangles; see the right of Figure [4.17]

Lemma 4.37. If (G, P, C, @¢) satisfies (a)-(g) of Lemma then G contains a tetrad with no
vertex on the outer face.

Lemma 4.38. In a minimal counterexample to Theorem every tetrad has a vertex on the
outer face.

Now we give the proofs. Proving Theorem is easy, once we have the lemmas.
Lemma |4.35| uses standard reducibility arguments. And Lemma |4.37|is also straightforward,
though a bit tedious. For each tricky part of the proof, some property in Lemma gives just
what is needed. Most of our work goes into proving Lemmal4.38} that every tetrad disjoint from
the outer face is reducible. For this we must better understand properties of correspondence
coloring, which we study in the next section.

Proof of Theorem Suppose the theorem is false, and (G, P, C, @) is a minimal counterex-
ample. By Lemmas |4.35) and |4.37, G contains a tetrad with no vertex on the outer face,
contradicting Lemma Thus no counterexample exists, and Theorem is true. O

Proof of Lemma4.32] Suppose G is C-colorable for every consistent k-correspondence assign-
ment C. (Figure4.12|transforms a 2-list assignment for K3 3 into a consistent [2]-correspondence
assignment C. Since K3 3 has no L-coloring, it also has no C-coloring.) Let L be a list assignment
with |L(v)| = k for all vertices v. For each edge vw and each « € L(v) N L(w), let C,,, match
(v, «) to (w, «). Clearly, C is consistent. By Observation [4.29] the correspondence assignment
(L, C) is equivalent to a [k]-correspondence assignment C’. By Observation the assign-
ment C’ is consistent. So, by hypothesis, G has a C’-coloring, ¢’. Finally, by Observation [4.28}
coloring ¢’ implies that G has an (L, C)-coloring ¢. Thus, G is k-choosable.

Now suppose that G is k-choosable, and let C be a consistent k-correspondence assignment.
(Essentially we reverse the transformation in Figure [4.12]) Let H be the graph with vertex set

triangle
tetrad
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V(G) x [k] and edge set U, (g)Ce. Since C is consistent, for each v € V(G) every component
of H intersects {v} x [k] in at most one vertex. Number the components of H arbitrarily, and
let L(v) the numbers of all components of H that intersect {v} x [k]. Clearly |L(v)| = k for all
v € V(G). Since G is k-choosable, G has an L-coloring ¢. To convert ¢ to a C-coloring, we
color v with the unique « € [k] such that (v, &) is in the component of H numbered ¢(v). O

Proof of Lemma We prove each property in turn. Note that (a) is trivial, since if V(G) = P,
then @ is the desired C-coloring, a contradiction.

Consider (b). If G is disconnected, then by minimality each component G; of G has a
C-coloring @; extending the restriction of @ to Gj; the union of these @; is a C-coloring of G.
So suppose that G has a cut-vertex v. Let H be one component of G —v, and let G; := G — H
and G, := G[V(H) + v]. First suppose that v € P. For each Gi, by minimality we have a
C-coloring @; extending the restriction of @ to Gi. Together these @; give a C-coloring of
G extending ¢o. Assume instead that v ¢ P. By symmetry, assume that P N V(Gs) = (. By
minimality, G; has a C-coloring 4. Also G3 has a C-coloring @, that agrees with @1 on v.
Together @1 and @, give a C-coloring for G extending g, a contradiction. This proves (b).

Consider (c). Suppose that G has a 127 -cycle D with vertices both inside and outside of D.
Denote by Doy (resp. Di,) the subgraph induced by V(D) and the vertices outside (resp. inside)
of D. By minimality Doy has a C-coloring @y extending @g. Also Dj, has a C-coloring @i,
that extends the restriction of @ to V(D), again by minimality. Since Dj, and D, agree on
V(D), together they give a C-coloring of G extending @y, a contradiction. This proves (c).

Consider (d). Suppose that D is a 127 -cycle vy - - - v¢, and that e; and e, are chords of
D in a triangle. By symmetry, assume that e; = v1v; and e3 = v1vi,1, for some i such that
3 <1< 6. To avoid a cycle viv; ... v; of length 4 to 8, we must have i = 3. But now v1vyv3vy
is a 4-cycle, using e, as its final edge, which is a contradiction. This proves (d).

Consider (e). Suppose that G has a 27 -vertex v not in P. By minimality, G — v has a
C-coloring ¢ extending @g. Since d(v) < 2, we can choose a color for v that is not forbidden
by any color used on its neighbors in ¢, which is a contradiction. This proves (e).

Consider (f). We first show that P = V(fy). By assumption in Definition [4.36] P C V(fo),
so assume that |P| < 1. If P = (), then we add to P an arbitrary vertex on fg; so assume |P| = 1.
First suppose that v is contained in a 127 -cycle D. Now (c) implies that D is a face boundary.

D] D2

Figure 4.13: Two cases from the proof of (g) in Lemmam
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So we redraw G with D as the outer face, let P := V(D), and choose g to be an arbitrary
C-coloring of P (g exists by minimality when V(D) # V(G); and if V(D) = V(G), then we
contradict (e), since V(D) has at least two 2-vertices). Our ability to decrease ||G|| — ||G[P]]|
contradicts the minimality of B, so v cannot be in a 127 -cycle. Now redraw G with v on the
outer face fo, and let w and x be its neighbors on fy. Let G’ := G + wx, drawn so that vwx is
the outer face. Let P’ := {v, w, x} and ¢} be an arbitrary C-coloring of v, w, x. By minimality
(G’,C’,P’, ¢4) has a C’-coloring ¢’, where C’ is formed from C by letting C,x be null. But ¢’
is a C-coloring of (G, C, P, @), which is a contradiction. This proves (f).

Consider (g). Let | be a path in G of length 2 or 3, with both ends in P and no internal
vertex in P. Suppose that an edge of | is contained in a triangle T that intersects P in at most
one vertex. Let D be the boundary of fy, and let D1 and D5 be the two cycles in D U J distinct
from D; see the left of Figure If one of them, say D1, is a 3-cycle, then the symmetric
difference of Dy and E(T) is a 4-cycle, which is a contradiction. So neither D; nor D is
a 3-cycle. Since G has no cycles of lengths 4 to 8, we have [D1| = 9 and |D,| = 9. Also,
|D1| + |D2| = |D| 4 2||J|| < 12+ 2(3). So J has length 3 and D; and D, are both 9-cycles; see
the right of Figure But now one Dj has an edge of T \ E(]J) as a chord, giving a cycle of
length 4 to 8, a contradiction. This proves (g). O

To prove Lemma we generally follow the outline sketched at the start of this section.
Recall that a face ends negative only if it contains the vertices of a tetrad. The main difference
from our sketch is in how we give charge to vertices on the outer face, fo. In standard face
charging, the initial charges sum to —12. Here we give f; an extra 12 to ensure that if a face
ends negative, then no vertices in its tetrad lie on fj.

Since the sum of the initial charges is 0, we assume that each tetrad in G contains a vertex
of P, and reach a contradiction by showing that fy ends positive and all other vertices and
faces end happy. This proves the lemma. Most of this analysis is straightforward. The hardest
case is a 9-face with an incident 2-vertex; this is the only place in the proof that we need

Lemma [4.35|(c,d).

Proof of Lemmalq.37 Recall that P = V(fy), by Lemma [4.35((f). Each vertex v starts with
2d(v) — 6, each face f (other than fy) with £(f) — 6, and fo with {(fy) + 6. These charges sum
to 0, by Euler’s formula. We use these 5 discharging rules, shown in Figure [4.14}

(R1) Each 3-face, other than fy, takes 1 from each incident vertex.
(R2) Each 3-vertex v € P takes 1 from f.
(R3) Each 3-vertex v ¢ P that is incident to a 3-face takes % from each other incident face.

(R4) Each 97 -face f takes % from each incident 41 -vertex v such that exactly one edge incident
to v and f is on a 3-face.

(Rs) Each 2-vertex takes % from fy and takes % from its other incident face.
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5 1 1/2 ~ | 1/2

Figure 4.14: The 5 discharging rules in the proof of Lemma 4

For an arbitrary vertex v, let s and t denote (respectively) its degree and number of incident
triangles. Since G has no 4-cycles, t < %s. Now v gives at most t by (R1) and at most %(s —1t) by
(R4), for a total of % (s+t), which is at most %s. Thus v ends with at least 2s — 6 — %s = %s —6,
which is positive when s = 5. If s € {3,4} and t = 0, then v ends with 2s — 6, and is happy.
If s =4and t = 1, then v ends with at least 2(4) —6 —1 — 2(%) = 0, by (R1) and (R4). If
s =4 and t = 2, then v ends with 2(4) —6 — 2(1) = 0, by (R1). Suppose s =3 and t = 1. If
v ¢ P, thenv ends with 2(3) —6 —1+ 2(%) =0, by (R1) and (R3). If v € P, then v ends with
2(3)—6—1+1 =0, by (R1) and (R2). Finally, suppose s < 2. By hypothesis, 6(G) = 2 and
every 2-vertex v is on fo. Since G[P] is a chordless cycle, by Lemma (f), no 2-vertex lies on
a 3-face. So v ends with 2(2) — 6 + % + % =0, by (R5). Thus, every vertex ends happy.

Now we consider faces; we start with fy. Lemma (a,f) gives P = V(fg) and P £ V(G
Since G is 2-connected, at least two vertices on fy are 37 -vertices. Thus, fy ends with at least
[P|+6— %(IPI —-2)—-2(1)=7—5 |P| this is positive, since [P| < 12. So now we consider a face
f other than fo; let s := {(f). Ifs = 3, then f ends with 3 — 6 4+ 3(1) = 0, by (R1). Otherwise f
ends with at least s — 6 — %s, which is nonnegative when s = 12. So we must consider 9-faces,
10-faces, and 11-faces. Let f be such a face.

Let V4 denote the set of 3-vertices on f that are not in P and that are incident to 3-faces. Let
ny denote the number of 2-vertices on f, and let n{ = [V{|. Note that ny + nj < |f|. Further, if
ny > 0, then ny +nj < |f|—2, since G is 2-connected, so the two 3*-vertices nearby a 2-vertex
on f must both be in P. Thus, if n, > 0, then f ends with at least s — 6 — %(s —2) = %s —5,
which is enough when s > 10. Suppose that ny = 0. If s = 11, then nj < 10 (by parity), so
f ends happy. If s = 10 and n} < 8, then again f ends happy. If instead s = 10 and nj > 9,
then f contains a tetrad with no vertex on fy. The analysis of 9-faces is more detailed.

Suppose that s = 9 and ny = 0. If n{ < 6, then f ends happy, so assume nj > 7.
Let vi,...,vg denote the vertices of f, in order. See the left of Figure By assump-
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fo

Figure 4.15: Instances from the final three paragraphs of the proof of Lemmaﬂ

tion, no tetrad has all its vertices in V4. So by symmetry we assume that vi,ve ¢ V4 and
Va2, V3, V4, Vs, V7, Vg, Vg € V4. Further, we must have each of edges viva, v3v4, Vsve in a triangle.
By symmetry between v; and vg, we also assume that v;vg is in a triangle. Since vs,v; ¢ P,
if d(ve¢) = 3 then vg ¢ P, which implies that v¢ € V3, a contradiction. So d(ve) = 4. Since
d(v7) = 3 and v;vg is in a triangle, vgV7 is not in a triangle. Thus, f takes % from vg, by (R4).
Hence f ends with at least 9 — 6 — 7(%) + % =0.

Finally, suppose that s = 9 and ny > 0. If ny +nj < 6, then f ends happy, so assume
ny+nj4 > 7. Since G is 2-connected, at least two 3" -vertices of f are notin V4. Sony+nj = 7.
Further, the 2-vertices of f form a subpath of its boundary. See the center of Figure If
ny = 7, then V(f) C V(fy). Either fy has a chord or V(f) = V(fy) = P, so V(G) = P; this
contradicts Lemma [4.35(a,f). Thus, ny < 7 and V4 # 0. Let ] be the path formed from f by
deleting all its 2-vertices; let H be the cycle in f U fy other than f and fy. Now all internal
vertices of ] are in V4, since ny +nf =7 = [f| — 2.

Suppose n} < 3. Now [H| = [fo| — ny +nj < [fol. By Lemma [4.35(f), the outer face fo is
a 127 -cycle, so H is also. By Lemma (c), G has no separating 127 -cycle, so V/(fy) U V3 =
V(G). Since [fo] < 12, and the vertices of Vj are 3-vertices, G contains a cycle of length
between 4 and 8, a contradiction (we can verify this by a short case analysis based on the value
of n}; it is helpful to note that [fo| = 4, which implies |fo| = 9). So instead assume nj > 4.
Conversely, since G has no tetrad with all its vertices in V3, and V3 induces a path, n; < 4.
Hence n} = 4. See the right of Figure

Let v1, ..., Vg denote the vertices of f, in order, with V4 = {v3,v3,v4,vs}. Since no tetrad
has all its vertices in V., edges vi1va, v3v4, and vsve must each be in a triangle; denote the
first and last of these triangles by vivow; and vsvgwe. If vi or vg is a 4T -vertex, then it
sends % to f by (R4), so f ends happy. Thus, v; and vg are 3-vertices, which implies that
wi,We € P. Recall that G has no separating 127 -cycle. By applying this fact to the cycles in
E(fo) U E(wivavsvgvswe), we conclude that V(fp) U V4 = V(G). But now the edges of the
triangle containing vs and v4 (other than vsv4) are chords of a 127 -cycle, which contradicts
Lemma[4.35/(d). This completes the proof. O
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4.4.2 Reducing Tetrads: Properties of Correspondence Coloring

To prove Lemma |4.38 we need more lemmas to shrink the number of cases we must consider.

Definition 4.39. Two [k]-correspondence assignments C and C’ are equivalent if there exists a
permutation 7, : [k] — [k] for each v € V(G) such that for every edge vw and each « € [k],
we have 7, (Cyw () = C/,, (7, («))). In other words, we can follow the matching C,,, and
afterwards permute the result, or we can first permute the colors at v and afterwards follow
the matching C/,, ; both choices give the same outcome.

A vertex v is fixed in this equivalence if 7, is the identity. An edge vw is straight in a
k-correspondence assignment C if Cy, () = « for every « € domain(C,.,). Given a [k]-
correspondence assignment C, a vertex v, and edge vw, to straighten edge vw, we form an
equivalent correspondence assignment C’ by taking 7t, = id (the identity map) forallx € V—w

and taking 7, such that 7t,,,(Cy,) = id. An edge vw is full if domain(Cy,,,) = [k].

Lemma 4.40 (Equivalence Lemma). Let C and C’ be equivalent k-correspondence assignments
for a graph G. If ¢ is a C-coloring of G, then there exists a C’-coloring ¢’ of G such that
@' (v) = @(v) for every fixed vertex v. In particular, G is C’-colorable if and only if G is C-
colorable; here the second equality uses the definition of equivalent.

Proof. Let m,, for all v € V(G), be the permuations showing that C and C’ are equivalent.
So 7w (Cyw () = Cl,,(my(a))) for every vw € E(G) and « € [k]. For a C-coloring ¢ of
G, the function ¢’ given by letting ¢’(v) := m,(@(v)) is a C’-coloring of G that matches ¢
on every fixed vertex v. Since @(w) # Cyw(@(Vv)), we get C{,, (@' (v)) = Cl,,(mu(@(v)) =
T (Cow (@(V))) # T (@w)) = @' (). O

Fix a graph G and a k-correspondence assignment C. The following lemma allows us to
“straighten” edges of a subgraph H, as long as C is consistent on H, and all edges of every cycle
in H are full. If we drop the hypothesis that the edges of every cycle in H are full, then the
lemma becomes false. We leave the details to Exercise [4

Lemma 4.41 (Straightening Lemma). Let G be a graph with a [Kk]-correspondence assignment
C. Let H be a subgraph of G such that for every cycle D in H the assignment C is consistent on
D, and all edges of D are full. Now there exists a k-correspondence assignment C’ equivalent to C
with all edges of H straight in C’, and all vertices not in H fixed.

In each component of H we straighten edges one by one, so that the subgraph induced by
straightened edges is always connected.

Proof. For each component of H we only need to straighten the edges of a spanning tree T of
H. We order the edges of T so that for each i € [||T||] the subgraph induced by the first i edges
is connected. On step i, we straighten edge 1i, say it is vw, where v is incident to an already
straightened edge and w is not. (For edge 1, we pick the fixed endpoint, v, arbitrarily.) We
keep each vertex fixed except for w. Given 7, we choose 7, so that vw becomes straight. If,
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Figure 4.16: The proof of Lemma Left: Adding an edge to the matching C,,,, when
vw is not on a triangle. Near Right: Finding an inconsistent walk of length 3, when
2 ¢ domain(C,, ). Far Right: Adding an edge (shown in bold) to the matching C,,,, without
creating an inconsistent walk of length 3, when 2 € domain(C,,y).

after straightening all edge of T, some edge vw in H remains unstraightened, then we combine
vw with a v, w-path in T to get a closed walk for which C is inconsistent. Such an inconsistent
walk contradicts the hypothesis, which proves the lemma. O

Lemma 4.42. Let (G, P, C, @¢) be a minimal counterexample. If vw is an edge of G that does not
join two vertices of P, then |domain(Cy,)| = 2. If vw is also not in a triangle, then vw is full,
i.e., [domain(Cyw )| = 3.

Proof. Suppose instead that vw is not full and not in any triangle. Choose «, 3 € {1, 2, 3} such
that « ¢ domain(C,,,,) and B ¢ domain(C,,, ). Form C’ from C by adding the correspondence
Cyw () = B; since vw is not in any triangle, C’ is consistent on all closed walks of length 3.
Thus C’ contradicts the minimality of (G, P, C, @o). This proves the second statement.

Now we consider the first statement. Suppose that vw is in a triangle vwx (note that x is
unique, since G has no 4-cycles). If [domain(C,,)| = 0, then we delete vw, which contradicts
minimality. So instead assume that |domain(C,,,, )| = 1. By the Straightening and Equivalence
Lemmas, we assume that Cy., (1) = 1. We will show that we can add a correspondence on
edge vw, and thus contradict minimality. For all o, § € {2, 3}, form C*P from C by adding the
correspondence Cy, (o) = 3. Clearly any C*P-coloring is a C-coloring; so no C*P-coloring
exists. Thus, by minimality, each correspondence assignment C*P must be inconsistent on
some closed walk around the 3-cycle vwx.

For a walk W longer than a single edge, let e denote its first edge and let W’ denote the
rest. Now let Cy/() := Cw(Ce()). This is the iteratively composed correspondence along the
walk, from one endpoint to the other.

Suppose 2 ¢ domain(C, ). Now for each f € {2, 3}, assignment C*>P must be inconsistent
on VWXxv; so 2 € domain(C%’V%w) and B € domain(Cyyxy ). Furthermore, Cy,x\(2) # 2 and
Cyvxv(3) # 2, so either Cyyxy(2) = 1 or Cryxv(3) = 1, which implies Cyxw (1) € {2, 3}. Recall
that Cy (1) = 1. Now Cryvxw (1) = Cyxw (1) € {2, 3}; thus C is inconsistent, a contradiction.

So assume 2 € domain(C,); by symmetry between 2 and 3 (and v and w) we know {2, 3} C
domain(C,) Ndomain(C,yy ). By Pigeonhole, there is § € {2, 3} with € domain(C,xw ) and
Cuoxw(B) €{2,3). So CP-Cvxw(B) js consistent on triangle vwx, a contradiction. O

CxP
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Figure 4.17: Left: A triangle with two 3-vertices not in P, in the proof of Lemma Right: A tetrad
with none of its vertices in P, in the proof of Lemma 4.38}

To prove that tetrads are reducible, we focus on triangles with two incident 3-vertices not
in P. For these we can further strengthen Lemma |4.42

Lemma 4.43. Let (G, P, C, @g) be a minimal counterexample. If T is a triangle vivovs with at
least two v; that are 3-vertices not in P, then all edges of T are full in C.

Proof. Assume the lemma is false. Let v; and vy be 3-vertices not in P, and let w; and
wy be their neighbors outside of T, as on the left in Figure By the Straightening and
Equivalence Lemmas, we assume that all five edges induced by {v1, v2, v3, w1, Wy} are straight
(though perhaps not full), except for possibly vov3. Lemma |4.42| implies that there exists
« € domain(C,,y,) N domain(C,,,); by symmetry, we assume that « = 1. Since v;v, and
vivs are straight, Cy,y,(1) = Cy,1,(1) = 1. Since C is consistent on T, either Cy,,,(1) =1
or else 1 ¢ domain(C,,y,) and 1 ¢ domain(C,,,,). In the latter case, we form C’ from C by
adding the correspondence Cy,,.(1) = 1; this contradicts the minimality of (G, P, C, @o). So
assume we are in the former case.

Form C’ from C by changing the correspondence on E(T) to be straight and full. By
minimality, there exists a C’-coloring ¢’ of G; but ¢’ must not be a C-coloring. Since all
edges of T other than vovs are straight in C, by symmetry between colors 2 and 3 we assume
that ¢’(v2) = 2, ¢'(v3) = 3, and Cy,\,(2) = 3. If 3 ¢ domain(Cy.,), then we modify
¢’ by uncoloring v; and v,, and greedily coloring v, followed by v;. So we assume that
Cyvzv, (3) = 3. By Lemmal4.42| [domain(C,,v, )| = 2; since viv, is straight, either Cy,,(2) = 2
or Cy,v, (3) = 3. But now Cy,,yyvqv, (2) = 3 or Cyyvgviv, (2) = 3; in each case C is inconsistent,
which is a contradiction. O

Now we can prove Lemma |4.38, which completes the proof of Theorem |4.33

Lemma 4.38. In a minimal counterexample to Theorem every tetrad has a vertex on the
outer face.

Proof. Let (G, P, C, @o) be a minimal counterexample. Assume instead that v1vov3Vy is a tetrad
disjoint from the outer face fy; recall from Lemma (f) that P = V(fy). Let vivowq and
v3vawy be the 3-cycles of the tetrad, and let x; and x4 be the other neighbors of v; and v4; see
Figure (right). We will (1) form G’ from G — {v1, v, v3, v4} by identifying w1 and x4, (2)
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color G’ by minimality, and (3) extend the coloring to G. To color G’ by minimality, we must
show that it contains no cycles of lengths 4 to 8; we must also ensure that the restriction of
@0 to G’ is a proper coloring of the vertices of its outer face. The first criteria is satisfied since
G has no short separating cycles (as we will show) and the tetrad is disjoint from P. For the
second, it suffices that either (i) w1, x4 ¢ P or (ii) w; ¢ P and also w; has no neighbors in P.
We now show that either (i) or (ii) holds.

Suppose that w1, w4 ¢ P. By symmetry, if x; ¢ P, then we are done; so assume x; € P.
For every neighbor y of wy, applying Lemma (g) to path x;v1wyy shows thaty ¢ P; so (ii)
holds, and we are done. Thus, w; € P or wy € P (or both). But applying Lemma [4.35|(g) to
W1VovsWy shows that either wy ¢ P or wy ¢ P; by symmetry, assume that wi ¢ P and wy € P.
Applying Lemma [4.35((g) to w4v4x4 shows that x4 ¢ P. Now (i) holds, so we are done.

Since either (i) or (ii) holds, when we form G’ from G, we do not create any new edges
between vertices of P. We must also check that we do not create short cycles. Now G —
{v1,Vva,V3,v4} cannot contain any path of length from 4 to 8 between wj and x4. If it did,
then, together with w1v,v3v4x4, such a path would form a cycle D of length at most 12 in G,
where D encloses two edges of either triangle vivow; or triangle vsv4wy. If neither v nor
wy lies on D, then D is separating, which contradicts Lemma [4.35|(c); otherwise we contradict
Lemma (d). Thus, (G’, P, C, @¢) is smaller than our minimal counterexample, so it admits
a coloring ¢’, which induces a C-coloring of G — {v1, V2, V3, v4}. Lemmas and imply
that all edges in G incident to {v1, va, V3, v4} are full; and the Straightening and Equivalence
Lemmas allow us to assume that under C these edges are also straight. To extend ¢’ to G, we
first greedily color v; and v,. Since vy and x4 use distinct colors, we can further extend the
coloring to v3 and v4, which is a contradiction. O

Notes

The 5 Color Theorem was proved in 1890 by Heawood [212], using Kempe swaps, which we
present in Chapter Our proof here follows Kainen [235].

In 1852 Francis Guthrie, a mapmaker, asked his brother Frederick, a mathematician, whether
every map was 4-colorable. This problem appeared in the Athenzum in 1854 [296]], and
Cayley announced it to the London Mathematical Society in 1878. Proofs were published by
Kempe [243], in 1879, and Tait [[370]], in 1880, but both were later shown to be erroneous. The
first correct proof was due to Appel and Haken (working with Koch) [21, 24]], in 1977. Their
proof was revolutionary in its use of computers for extensive case-checking. But as a result,
many doubted its validity [22, 23].

In 1993 Robertson, Sanders, Seymour, and Thomas [344]] reproved the 4 Color Theorem,
following the same paradigm of reducibility and unavoidability. Their proof was simpler and
written to encourage external verification, and it is now widely accepted. Thomas [373]]
provides an accessible introduction to the problem. In 2005 Gonthier [180]] encoded the 1993
proof to be checked by a formal proof checker. A history of the problem is discussed in
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Wilson [415]]. For more on the technical aspects, we recommend the treatments of Thomas [373]]
and Steinberger [366].

Grotzsch’s Theorem was first proved in 1959 [[185]]. It was generalized by Aksenov [6] and
Griinbaum [186], as follows: Every planar graph with at most three triangles is 3-colorable.
This is best possible, due to K4. In fact, there are infinitely many planar 4-critical graphs with
exactly 4 triangles. These were characterized by Borodin, Dvordk, Kostochka, Lidicky, and
Yancey [55]. In Chapter [12} we discuss this result of Aksenov and Griinbaum, as well as other
extensions of Grotzsch’s Theorem.

Our proof of Grotzsch’s Theorem follows Dvorak, Kral’, and Thomas [133], who gave the
first algorithm to color triangle-free planar graphs in linear time. Their proof was based on a
result of Thomassen [377]: Every planar graph with girth at least 5 is 3-choosable (we prove
this result in Section [11.4). As in the proof of Theorem he proves a stronger result that
allows precoloring the vertices of a short outer face (this helps to handle short separating
cycles). Thomassen also extended this result to other surfaces, even proving an exponential
lower bound on the number of 3-list colorings; see [382] and its references.

This precoloring method pioneered by Thomassen has also been used to prove many other
results. We study it in depth in Chapter [11] but here we just mention one that is closely related
to material we studied in the present chapter. Borodin, Glebov, Raspaud, and Salavatipour [59]]
proved the 3-colorability of planar graphs with no cycles of lengths 4 to 7. (Later, it was
shown [418}, [58]] that forbidding cycles of lengths 4, 5, and 7 is enough.) This is similar to
Theorem which also forbids 8-cycles and 9-cycles, but the proof is harder. In addition to
tetrads, they also need two other reducible configurations. For more examples of the precoloring
method, we recommend the habilitation of Dvorak [127].

In Section we defined the fractional chromatic number, x¢. In short, we phrased the
coloring problem as an integer program and considered its linear relaxation. This “rational-
ization” process can be applied to most graph parameters [356]] and this approach is attractive
for numerous reasons. (1) The resulting min/max theorems are often more elegant and have
simpler proofs. (2) Determining the values of these fractional parameters, such as Xy, is often
easier in practice. (3) We always have x¢(G) < x(G), which frequently provides helpful insight
into a particular problem of interest.

It is noteworthy that, despite the advantages mentioned above, computing x ¢ is still NP-hard,
as shown by Grotzschel, Lovész, and Schrijver [184]. However, computing ¥}, the fractional
chromatic index, can be done in polynomial time. This is in large part because the matching
polytope (see Section[A.12) is so well-behaved.

The % Color Theorem is due to Cranston and Rabern [103]. We form a graph W from an
8-cycle by adding the four “diagonals”. Wagner [408]] showed that every Ks-minor-free graph
can be formed from planar graphs and copies of W by repeatedly pasting along cliques of size
at most 3, and possibly deleting some edges. Since W has a 2-fold 9-coloring, the % Color
Theorem extends to Ks-minor-free graphs. By the 4 Color Theorem, every planar graph maps
into K4. We may also seek a graph H and a proof, independent of 4CT, such that every planar G
maps into H. Clearly, the smallest such H is Ks. If we require that w(H) = 4, then the smallest
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known H has 180 vertices; it is the “categorical product” Ks x Kg.5 (see [[103] for more details).

We asked when G — Cyi 41 (for an input planar graph G and fixed k). To attack this
question, we relied heavily on the Folding Lemma, which was proved by Klostermeyer and
Zhang [262]]. The question also fits into a larger context. A circular (p, q)-coloring of G is a map
¢ : V(G) — [p] such that q < [f(u) — f(v)| < p — q whenever uv € E(G). We represent [p] as
points equally spaced around a circle, and we must map the endpoints of each edge to points on
the circle at least q apart. The circular chromatic number, X.(G), of G is the minimum % such
that G has a circular (p, q)-coloring. Note that a circular (k, 1)-coloring is just a k-coloring,
so Xc(G) < x(G). In fact, always x(G) = [xc(G)]|. Zhu [432] gives an extensive survey of
circular coloring; see also Hell and Nesettil 214, Chapter 6].

It is easy to check that G — Cjx.1 precisely when G has a circular (2k + 1, k)-coloring.
This condition is equivalent to x.(G) < 2 + % Jaeger [226]] suggested the following.

Conjecture 4.44. Every planar graph with girth at least 4k has x.(G) < 2+ %
This was generalized by Zhang [1428]].
Conjecture 4.45. Every planar graph with odd-girth at least 4k + 1 has x.(G) < 2+ %

Both conjectures were actually posed more generally, in terms of flows, which we study in
Chapter @ Devos constructed planar graphs Gy with girth 4k — 1 and x.(Gx) > 2 + % (see
Exercise[1). Thus, the girth and odd-girth hypotheses in these conjectures cannot be weakened.
For k = 1, both conjectures are equivalent to Grotzsch’s Theorem. For k = 2, Conjecture |4.45
says that every planar graph with odd-girth at least 9 maps into Cs. Using the Folding Lemma,
Dvotdk, Skrekovski, and Valla [141] showed that such graphs map into the Petersen graph.
Zhu [433]] proved that G — Cjyx 41 when G is planar with odd-girth at least 8k — 3. Borodin et
al. [63]] showed that G — Csy 1 when G has girth at least 6k—2 and mad(G) < 2+W6_4. This
proves Conjecture for graphs with girth at least 20];7_2. When k = 2, Borodin et al. [60]]
strengthened this to triangle-free graphs with mad(G) < 15—2, which includes planar graphs of
girth 12 (we present a proof in Section [12.2). The strongest result towards Conjecture is by
Lovasz, Thomassen, Wu, and Zhang [291], who proved the conjecture for planar graphs with
girth at least 6k. They proved this result, which we study in Section in the more general
context of nowhere-zero flows.

Correspondence coloring has been studied broadly. Thomassen showed that each planar
graph is 5-choosable, and when its girth is at least 5 it is 3-choosable. Dvordk and Pos-
tle [139] noted that analogous results hold for correspondence coloring, essentially by mim-
icking Thomassen’s list-coloring proofs. Bernshteyn, Kostochka, and Pron [39] studied the
analogue of degree-choosability for correspondence coloring. Now each vertex v can be col-
ored from [d(v)], and still each color for a vertex v forbids at most one color from use on
each neighbor. For a degree correspondence assignment C, a connected graph may fail to be
C-colorable only when each block of G is a clique or a cycle (not necessarily odd). Recall that
even cycles have correspondence chromatic number 3. This fact is important because it shows

circular
(p, q)-coloring

circular chromatic
number
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that no analogue of the Alon-Tarsi Theorem holds for correspondence coloring. Likewise,
the Kernel Lemma, an important list-coloring tool that we see in Chapter |5, has no analogue
for correspondence coloring. Dirac proved a lower bound on the number of edges in an n-
vertex k-list-critical graph. Using correspondence coloring, Bernshteyn and Kostochka [38]]
characterized the graphs where Dirac’s bound holds with equality.

Exercises

4.1.

4.3.

4.4.

4.5.

For each positive integer k, construct a planar graph Gy with girth 4k — 1 that has no
homomorphism into Cay 1.

. Prove a version of Brooks’ Theorem for correspondence coloring.

(a) Show that every k-degenerate graph is correspondence (k + 1)-colorable. (b) Mimic
the proof of Theorem 11.1]to show that every planar graph is correspondence 5-colorable.

Show that the Straightening Lemma becomes false if we drop the hypothesis that all
edges are full.

A degree-correspondence assignment assigns to each vertex v a list L(v) with [L(v)| = d(v)
and to each edge vw a matching between elements of L(v) and L(w). A graph G is
degree-correspondence colorable if every degree-correspondence assignment (L, C) admits
an (L, C)-coloring. For a simple graph H, let H* denote the multigraph with every edge
of multiplicity k and with H as its underlying simple graph. (a) Show that neither KX
nor CK is degree correspondence colorable. Let G; and G, be arbitrary graphs, with
v1 € V(G1) and vy € V(G3). (b) Form G from G; and G; by identifying v; and v,.
Show that G fails to be degree correspondence colorable if and only if both G; and G-
do. So, by induction, a graph fails to be degree-correspondence colorable if each block is
CY or Kt (where t and n can vary between blocks). In fact, these are the only graphs
that do.



Chapter 5

The Kernel Method

To many, mathematics is a collection of theorems. For me,
mathematics is a collection of examples; a theorem is a statement
about a collection of examples and the purpose of proving theorems
is to classify and explain the examples..."

—John B. Conway

Our coloring methods so far have been mainly local. Our reducible configurations have
usually had bounded size. And Kempe swaps, although they can recolor long paths, only
change the colors available at the two endpoints. Here we explore a more global approach.

5.1 Planar Bipartite Graphs are 3-Choosable

Definition 5.1. A kernel of a digraph D is an independent set S such that every vertex not
in S has an outneighbor in S. A digraph D is kernel-perfect if every induced subgraph of D
has a kernel. A digraph is strongly connected if each vertex has a directed path to each other
vertex. Let N (x) (resp. N~ (x)) denote the set of outneighbors (resp. inneighbors) of x, and
N(x):= N (x) UN"(x).

We study kernel-perfect orientations because of the following lemma. (See Figure|s.1)

Lemma 5.2 (Kernel Lemma). Let D be a digraph with G as its underlying simple graph. Let | be
a list assignment such that [L(v)| > d{5(v) for all v. If D is kernel-perfect, then G is L-colorable.

Proof. We assume G is connected; otherwise we consider each component separately. We use
induction on |G|, with base case |G| = 1. For the induction step, choose & € U, cy/(g)L(v). Let
D be the subgraph of D induced by all vertices v with o € L(v). Since D is kernel-perfect,
D, has a kernel, U. Forallv € V(G)\ U, let L’(v) := L(v) \ {a}. Eachv € D4 \ U has an
outneighbor in U, so [L’(v)| > dg\u(v) for all v € V(G) \ U. Thus, by hypothesis, G — U has
an L’-coloring ¢. To get an L-coloring of G, start with ¢ and use « on each vertex of U. [
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Figure 5.1: An example of the proof of the Kernel Lemma.

Lemma 5.3 (Richardson’s Theorem). If a digraph D has no directed odd cycle, then D is
kernel-perfect.

The key idea is to find V; C V(D) and S; C V; such that all outneighbors of S; are in V;
and also S; is a kernel for the subgraph induced by V3. By induction, D — V; — N(S7) has a
kernel T. Now S; U T is a kernel for D.

Proof. Let D be the class of digraphs with no directed odd cycle. Suppose the lemma is false
and choose a counterexample D € D with fewest vertices. By the minimality of D, each of its
proper induced subgraphs has a kernel, since D is hereditary. So to reach a contradiction we
only need to show that also D has a kernel.

If two strongly connected subgraphs have a common vertex, then their union is also strongly
connected. Solet Vi,..., Vi be a vertex partition such that each V; induces a maximal strongly
connected digraph D;. By symmetry, assume each v € V; has all its outneighbors in V7. (If
each V; has outneighbors outside V;, then merging some V;’s gives a larger strongly connected
subgraph, contradicting our assumption about the partition Vi, ..., Vi.)

Given v,w € Vi, every directed v, w-walk must have the same parity as every directed
w, v-walk. If not, then directed v, w- and w, v-walks of opposite parity combine to give an odd
closed walk, which contains a directed odd cycle, contradicting the hypothesis. Similarly, every
directed v, w-walk must have the same parity. For if two have opposite parities, then one will
combine with a directed w, v-walk (which exists, since D; is strongly connected) to give an
odd closed walk, again contradicting the hypothesis.

The argument above implies that D1 is bipartite. That is, V7 has a partition into Sg and S,
with each edge of D; between Sy and S1, as follows. Pick an arbitrary vertex v € D1. For each
w € Vi, let f(w) denote the parity of all directed v, w-walks. Since D is strongly connected,
the argument above shows that f is well-defined. Let S; := {w : f(w) = i} for each i € {0, 1}.
Now D is bipartite with parts So and S1, as we now show. Suppose, to the contrary, that there
exist w,x € So with wxX € E(D;). Let P be a directed v, w-walk, of even length. Now P + wx
is an odd directed v, x-walk, contradicting that x € Sg. So Sy is independent; the same is true
for S;. Thus, D1 is bipartite, as claimed.
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Figure 5.2: An example of the proof of Richardson’s Theorem.

Since D is strongly connected, each vertex of S has an outneighbor in S1, so S; is a kernel
for Dq. Recall that N*(S1) C Vi, s0 N(S1) \ Vi € N~ (S7). By the minimality of D, subgraph
D —V; —N(S;) hasakernel T. So TU S is a kernel of D. O

We typically list-color from lists with equal sizes. So, to apply the Kernel Lemma, among
kernel-perfect orientations, we seek one with the smallest maximum outdegree, A™.

Lemma 5.4. If mad(G) < 2k, then G has an orientation D with A" (D) < k.

Proof. Let G be a graph with mad(G) < 2k. Let D be an orientation that minimizes the
maximum outdegree and, subject to that, minimizes the number of vertices with maximum
outdegree. We call a vertex v excessive if dJ]5 (v) > k. If D has no excessive vertex, then we are
done. So suppose D has an excessive vertex, and let v be one of maximum outdegree.

Let W be the set of all vertices that are reachable by some directed path from v. If W
contains a vertex w with d$ (w) < d$ (v) — 2, then reversing a directed path from v to w
reduces the number of vertices with maximum outdegree, contradicting our choice of D. So
assume instead that every vertex w € W has df; (w) > df;(v) — 1 > k. Consider the subgraph
H induced by W (including v). Since dg (w) = k for all w € W, we have ||H|| = k|[H| + 1.
Thus d(H) > 2k, contradicting our assumption that mad(H) < 2k. O

excessive

A%
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This lemma holds in a more general form. See Exercise

Theorem 5.5. If G is bipartite with mad(G) < 2(k — 1), then G is k-choosable.

Proof. Let G satisfy the hypotheses. By Lemma G has an orientation D with maximum
outdegree at most k — 1. Since G is bipartite, D has no directed odd cycle. So Richardson’s
Theorem (Lemma [5.3) implies that D is kernel perfect. Now the Kernel Lemma (Lemma
shows that G is k-choosable. 0O

Theorem [5.5]is strikingly sharp. In Section [2.8.1 we construct bipartite graphs G such that
mad(G — e) < 2(k — 1), for every edge e € E(G), but x¢(G) > k.

Corollary 5.6. If G is planar and bipartite, then G is 3-choosable.

Proof. If G is planar with girth at least 4, then Lemma [1.6implies that mad(G) < 4. O

5.2 Bipartite Graphs are A-Edge-Choosable

Below is the most famous conjecture on edge list-coloring.
Conjecture 5.7 (List Coloring Conjecture). Every graph G satisfies x;(G) = x'(G).

In this section we use the kernel method to prove Conjecture for all bipartite graphs.
Our proof uses the following definitions and theorem.

Definition 5.8. Consider a set of n men and a set of n women, in which each man and woman
has ranked all members of the opposite sex (with distinct ranks from 1 to n) in order of who
they most prefer to marry. These rankings are preference lists. We aim to pair men and women
into n married couples but avoid having any man and woman who are not married to each
other but each prefer the other over their current partner. Such a pairing is a stable matching.

Theorem 5.9 (Proposal Algorithm). Given n men and n women, for every set of preference lists
there exists a stable matching.

Proof. We use the following Proposal Algorithm, which proceeds in rounds. On each round,
each unengaged man proposes to the woman he most prefers, among those who have not yet
rejected him (including women who are tentatively engaged). After all the men propose, each
woman says “maybe” to the proposal she most prefers and “no” to all others, including possibly
the man to whom she was tentatively engaged from the previous round.

Each woman who said “maybe” is then tentatively engaged to that man to whom she said
it, and he is tentatively engaged to her. All other men and women remain unengaged. This
process repeats until a round when no man is rejected. At that point, each tentatively engaged
couple becomes married, and the algorithm ends.

To show this algorithm yields a stable matching, our proof consists of three claims.
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Figure 5.3: 7 rounds of the Proposal Algorithm with the preference lists for the women as a:ijhk, b:ikjh,
c:hkji, d:hkij and those for the men as h:abcd, i:cbad, j:bcad, k:bacd. We only depict rounds during
which one or more tentative engagements change.

(o

Claim 1. The algorithm terminates.

Proof. On each round except the last, some man is rejected and so the total number of rejections
increases. Each man is rejected at most once by each woman, and so the algorithm terminates
after at most n? + 1 rounds (in fact fewer). &

Claim 2. Everyone ends up married.

Proof. Suppose a man and woman are both unmarried. At some point, the man must have
proposed to the woman. And she rejected him only if she had a proposal she preferred more.
In that case, she is now married. Thus, every woman ends married. Since the numbers of men
and women are equal, so does every man. &

Claim 3. The algorithm produces a stable marriage.

Proof. Suppose that a man m and a woman w each prefer each other over their current partner.
As some point, m proposed to w (before proposing to his current wife). And if w rejected
m (either immediately or later on), then she had a proposal she preferred more, and is thus
married to someone she prefers more than m. &

Claim [3| proves the theorem. O

Below we will need a generalization of Theorem Now each man and woman ranks all
members of the opposite sex, but we allow unequal numbers of men and women and also allow
each person to designate some of these members as “unranked”; these are the ones that he or
she refuses to marry. We call these lists generalized preference lists.
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Lemma 5.10 (Generalized Proposal Algorithm). For all sets of men and women (possibly of
unequal sizes) and all generalized preference lists, there exists a stable matching.

Proof. We simply apply Theorem but first we modify the original generalized preference
lists as follows. For each person, the candidates they left as unranked appear at the end of
their preference list, in arbitrary order. Further, if woman w has man m as unranked, then
we modify the preference list of m to also have w as unranked, and vice versa. Consider a
matching M resulting from the proof of Theorem Now if both people in a marriage of M
had the other as unranked, then we view both as being unmarried. We can easily check that
M remains stable when we account for this possibility of being unmarried.

If we have more women than men, then we add “fake” men so that the numbers of men
and women become equal. When we extend the preference lists, each woman lists each fake
man as unranked. (The case with more men than women is analogous.) O

Theorem 5.11. Every bipartite graph G satisfies x;(G) = x'(G).

Proof. We apply the Kernel Lemma to the line graph L(G) of G. So we need an orientation D
of L(G) where D is kernel-perfect and d* (x) < A(G) — 1 for each x € V(L(G)). Let U and W
denote the parts in the bipartition of G. We refer to edges of G equivalently as vertices of L(G).

We form D as follows. Let ¢ be a A(G)-edge-coloring of G with colors {1,...,A(G)}; such
a coloring exists by Konig’s Theorem. Choose arbitrary x,y € V(L(G)). If x and y are adjacent,
then they correspond to edges in G with a common endpoint either in U or in W. Suppose
@(x) > @(y). If x and y have a common endpoint in U, then orient the edgd|in L(G) as
xy, and if in W, then as yX. Let & := @(x). Now x has at most ot — 1 out-edges in L(G)
toward edges in G with a common endpoint in U and at most A(G) — & toward edges with a
common endpoint in W. So x has outdegree in D at most A(G) — 1. Since x was arbitrary,
df (x) < A(G) — 1 for every x € V(L(G)).

(The left of Figure shows the line graph of K33 oriented as described in the previous
paragraph. Edges with a common endpoint in U appear in the same column and those with a
common endpoint in W appear in the same row. So the three vertices in the kernel at the first
step are edges colored 3 in the edge-coloring of K3 3. Now Figure|5.1/in its entirety shows how
to find an edge-L-coloring for the edge list-assignment shown there.)

Now we must show that orientation D is kernel-perfect. For this we use Lemmals.10} Since
bipartite graphs form a hereditary class, it suffices to show that D has a kernel. Let x; := u;ws,
X2 = UpWj, Y1 = UzWaq, and Yy := uzws, where uj,us, ug € U, wi,wa,wg € W, and
X1,%2,Y1,Y2 € L(G). We view xax; € D as meaning that w; prefers u; over u,. Similarly,
U1y means that uz prefers ws over wy. If uw ¢ E(G), then u is unranked for w and vice versa.
In this way, every orientation of a line graph of a bipartite graph gives rise to a set of generalized
preference lists. A stable matching for these preferences corresponds to a kernel S in D, since
a vertex x of L(G) is excluded from S whenever one of its outneighbors is included. O

'If x and y are parallel edges in G, then in L(G) they are joined by two edges; we orient them as xij and as yx.
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To close this section, we briefly mention a strengthening of list-coloring.

Definition 5.12. Given a graph G and a list assignment L for G, a list-coloring packing is a set
of functions @1,..., @p such that

@ @i(v) € L(v) forallv € V(G) and all i € [p], and
() @i(v) # @i(w) for all v, w such that vw € E(G), and
© @i(v) # @;(v) forall v € V(G) and all distinct 1,j € [p].

The list-coloring packing number x§ (G) is the minimum k such that if [L(v)| = kforallv € V(G),
then G has a list-coloring packing @1, ..., @x.

It is not immediately clear that x7 is well-defined for all graphs, so we include a short proof.
(Note that X7 (G) < xj(K|g|) for all G, since a list-coloring of K| gives a list-coloring of G.)

Theorem 5.13. x; (K, ) = 1 for every positive integer .

Proof. The lower bound is easy: x; (Kn) 2 X¢(Kn) = x(Ky) = n. Now we prove the upper.

Fix positive integers m and n with m > n, and an m-assignment L for K,,. We de-
note the vertices of K, by wy,...,wn. Let H := K, ,0K;; (this is the Cartesian prod-
uct), where vertices of H are denoted (vi,w;) with i € [m] and j € [n] and E(H) =
{(v1, w1) (v, ws) if either (a) vi = vo and wy # wy or (b) vi # v, and w; = ws}. (The right
of Figure [5.4{shows K30K3.) Let L be an m-assignment for H given by L (v, wj) == L(wj).

It suffices to show that H is [-colorable, as follows. Given an [-coloring ¢ of H, we let
@i(wj) = @(vi,w;j). That is, each @; is a restriction of ¢ to a (disjoint) copy of Ky. It is
easy to check that ¢1,..., @y is indeed a list-coloring packing of K,,. To get ¢, note that
H is the line graph of the complete bipartite graph K, . Thus, by Theorem [5.11] we have
)SE(H) = X¢(Kmn) = X' (Kn) = max{m,n} = m = [L(vi, wj)| for all i,j. Hence, H has an
L-coloring ¢, as desired. O

1,2,3

2,3,4 1,2,4

Figure 5.4: Left: A 3-assignment L to K3. Right an i-coloring of K3oKs;, which
corresponds to an L-coloring packing of K.

list-coloring
packing
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5.3 An Easy Strengthening and an Application

In this section we sketch a proof of the following result.
Theorem 5.14. The List Coloring Conjecture is true for all line-perfect multigraphs.

A multigraph G is line-perfect if its line graph ] is perfect; that is, x(H) = w(H) for each
induced subgraph H of ] . Theorem[s.14]generalizes the main result from the previous section,
since bipartite graphs form a proper subclass of line-perfect graphs. The proof relies heavily on
the following theorem (which we restate and prove in the appendix, as Theorem [A.10).

Theorem 5.15. For a multigraph G, the following properties are equivalent.
@) G is line-perfect.
(b) G does not contain any odd cycle with length at least 5.

(¢) Every block of G has as its underlying simple graph either (i) a bipartite graph, (ii) Kg4, or
(iii) the complete tripartite graph Ky i, for some integer t = 1.

The idea of the proof of Theorem is to color the edges one block at a time, and to order
the blocks to make this as easy as possible. We pick an arbitrary block to be the root in the
block tree and color the blocks in order of increasing distance from the root. So, when we color
each block B, at most one cut-vertex of B is incident to edges already colored. We formalize
this approach after our next lemma, which ensures that we can color each additional block.

Lemma 5.16. Let G be a 2-connected multigraph with underlying simple graph either (i) bipartite,
(ii) Ky, or (ii)) Ky, for some integer t = 1. Fix a vertex w and an edge list-assignment L
such that |L(e)| = d(w) if e is incident to w and |L(e)] = x'(G) otherwise. Now G has an
edge-L-coloring.

Proof sketch. We give the full proof in cases (i) and (ii). The proof for case (iii) uses ideas
similar to those for (ii), but is much more complicated, so we omit the details (see [329] [330]]).

The proof for (i) is nearly the same as the proof of Theorem In that proof, we
showed that every proper edge-coloring of a bipartite graph gives rise to a kernel-perfect
orientation of its line graph. But we didn’t really use the flexibility we have in choosing our
edge-coloring. Here we choose a A(G)-edge-coloring ¢ such that the colors used incident to

w are precisely 1,..., d(w). Further, we assume that w is in part W. Suppose e = uw and
@(e) = a. So the outneighbors of e in D that share endpoint u have colors in 1,..., 0 — 1
and the outneighbors of e in D that share endpoint w have colors & + 1,...,d(w). Thus,

dj(e) < (x—1) + (d(w) — ) = d(w) — 1. The remainder of the proof is exactly the same.
Now consider (ii). We let t({v1vavs}) := u(viva) + w(vivs) + n(vavs) and also let t(G) :=

max t({v1v2vs}), where the maximum is over all distinct v, v2,v3 € V(G). By Theorem|s.15} G

is line-perfect. For every line graph ] of a graph H we have w(]J};) = max{A(H), t(H)}. Thus,
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)=8,A(G)=11,and d(w)=5A(G)=8,and d(w)=4A(G)=7ad d(w)=2,A(G)=>5,and
t(G)fmaX{9,10,9,12}712 t(G)=max{6,7,6,9}=9  t(G)=max{5,6,5,8}=8 t(G)=max{3,4,3,6}=6

Figure 5.5: An example of 6 successive applications of the inductive step in the proof of Lemma ii).
Bold edges indicate the good 2K,; numbers indicate edge multiplicities.

x'(G) = max{A(G), t(G)}. Fix an edge list-assignment L as in the statement of the lemma
(for K4). A good 2K,, wrt. L and G, is a matching eq, e; such that there exists some color
o € L(er) NL(ey). If some ey, e; form a good 2K, then we use « on e; and e, and proceed
by induction, since x’(G) = 1+ /(G — e; — e3). Our base case is when no good 2K, exists.
Now we use Hall’s Theorem to give every edge its own color. Consider a set S of edges. Let
L(S) denote UecsL(e).

Suppose S has no 2K,. So either all edges of S have a common endpoint or they all lie on
a triangle (with endpoints among the same three vertices). If all edges are incident to w, then
for an arbitrary e’ € S, we have [L(S)| = [L(e’)| = d(w) > |S|, as needed. Otherwise, some
e’ € S is not incident to w, so [L(S)| = |L(e’)] = x/(G) = max{A(G), t(G)} > |S|, as needed.

So assume instead that S has a 2K5; call it e, e, and assume that e; is incident with w.
Denote the other vertices of the K4 by x,y,z. Since ej, ez is not a good 2K,, we know that
L(e1) NL(ex) =0. So|L(S)| = |L(e1)| + |L(e2)] = d(w) + t({xyz}) = [E(G)| = |S|, as needed.

Since always |L(S)| = |S|, by Hall’s Theorem, we can give each edge its own color. O

Now we combine Theorem and Lemma to prove Theorem [5.14]

Proof of Theorem [5.14 Fix a line-perfect multigraph G and an edge list-assignment L with
IL(e)l = x'(G) for all e € E(G). By Theorem [5.15] each block of G satisfies (i), (ii), or (iii)
in that theorem. We use induction on the number of blocks in G. The base case follows
immediately from Lemmals.16

For the induction step, consider a leaf block B in the block tree of G, and let v be the unique
cut-vertex in B. By hypothesis, G — (B — v) has an L-edge-coloring ¢. For each e € E(B)
that is incident to v, form L’(e) from L(e) by removing all colors used by ¢ on edges incident
tov. So [L’(e)] = |L(e)] — (dg(v) — dg(v)) = dg(v). For each e € E(B) not incident to
v, let L’(e) := L(e). So [L’(e)| = |L(e)| = x'(G) = x'(B). Thus, by Lemma |[5.16] B has an
L’-edge-coloring ¢’. Finally, ¢ U ¢’ is an L-edge-coloring of G. O

good 2K
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5.4 A Harder Strengthening and 3 Applications

5.4.1 The Strengthening

We will soon present 3 applications. For these the following strengthening of Theorem [5.11]is
more useful for proving that various bipartite subgraphs are reducible.

Theorem 5.17. Let G be a bipartite graph, with parts U and W. For each edge e = uw, let
f(e) := max{d(u), d(w)}. Now G is f-edge-choosable. (Figureshows an example.)

The proof follows the same outline as that of Theorem The key difference is that
we now find an edge-coloring ¢ of G such that in the orientation D arising from ¢, we have
df;(e) < f(e) for each edge e € E(G), rather than only df;(e) < A(G). To do this, we use
Lemmas and below.

Lemma 5.18. Let G be a bipartite graph with parts U and W, and no isolated vertices. If
[U| < |W]|, then G has a non-empty matching M such that for each edge uw € E(G), withu € U
andw € W, if w € V(M) then u € V(M).

Figure 5.6: An example of Lemma

One way to prove Kénig’s Theorem (Theorem|3.3) is by induction on A: we find a matching
M saturating all vertices of maximum degree, color M with a single color, and repeat this
process on G — M. To prove Theorem [5.17, we want our matching M to have slightly different
properties. The present lemma guarantees that this M exists.

Proof. Let X be a minimal subset of W such that [N (X)| < |X|. This set X exists, sinceany Y C W
with [Y| = |U] satisfies [N(Y)| < |Y|. We construct the matching M by letting V(M) N W = X
and V(M) NU = N(X); see Figure If X| = 1, then |N(X)| = 1, since G has no isolated
vertices; so M exists. Assume instead that [X| = 2. By the minimality of X, every non-empty
Y ¢ X satisfies [IN(Y)| > |Y|. So the desired matching M exists by Hall’s Theorem. O

Definition 5.19. Let G be a bipartite graph with parts U and W. For an edge-coloring ¢ of G,
edge e; defers to edge e, if either (i) @(e1) < @(ez) and e; and e, share an endpoint in U or
(ii) @(e1) > @(e2) and ey and e, share an endpoint in W. Let m, (e) denote the total number
of edges that e defers to with respect to ¢. Given a function f : E(G) — Z*, an edge-coloring
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¢ of G respects f if m,(e) < f(e) for every edge e € E(G). (In the line graph, a vertex has as
its outneighbor exactly the edges that it defers to w.r.t. @.)

Now we can construct the desired edge-coloring of G.

Lemma 5.20. For a graph G, let f(uw) := max{d(u), d(w)} for each edge uw. If G is bipartite,
then G has an edge-coloring @ that respects f.

Before proving Lemma we use it to prove Theorem by slightly modifying our
proof of Theorem |5.11

Proof of Theorem The proof is nearly the same as that of Theorem 5.11} but we replace the
arbitrary A(G)-edge-coloring there (guaranteed by Konig’s Theorem) with an edge-coloring ¢
that respects f, from Lemma Note that ¢ may use arbitrarily many colors. But since ¢
respects f, graph G is L-edge-colorable for every f-assignment L. O

Proof of Lemma|s.20} Our proof is by induction on ||G||, and Figure shows an example.
Suppose that [U] < [W|. Let M be the matching guaranteed by Lemma Let X :=

Figure 5.7: The proof of Theorem run on Kg4 — 2K,. In the final edge-
coloring, each edge defers to at most three adjacent edges, and the left and right
vertical edges each defer to only two adjacent edges.

respects

M, X
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V(M)NW, and recall that N(X) = V(M)NU. Let G’ := G—M. For each edge uw € E(G)—M,
let f'(uw) := max{dg/(u), dg/(w)}. By induction, G’ has an edge-coloring ¢’ that respects f’.
Let « be a color smaller than all colors used by ¢’. To extend ¢’ to G, color M with «; call
this coloring ¢. Now each edge uw € M defers to no edges at w and defers to d(u) — 1 edges
at u. Thus, mg (uw) < d(u) < f(uw).

Instead consider an arbitrary edge uw € E(G—M). If w € X, thenu € N(X). Sodg/(u) =
dg(u) —1 and dg/(w) = d(w) — 1, which implies f’'(uw) = f(uw) — 1. Now uw defers to
no new edges at u and at most one new edge at w. So, Mg (Uw) < my(uw) + 1 < fluw),
as desired. Assume instead that w ¢ X. We may have u € N(X), in which case uw shares an
endpoint in U with an edge e of M. However, uw does not defer to e, since @(e) < @(uw).
So uw defers to at most f’(uw) edges. Thus, ¢ respects f.

Assume instead that |W/| < |U|. The proof is nearly the same as above. Now we find X C U
and matching M such that V(M) N U = X and V(M) N W = N(X). Given a coloring ¢’ of
G — M that respects f’, we color the edges of M with a color larger than all colors used by ¢’.
Again, the resulting coloring ¢ respects f. O

5.4.2 Planar Graphs with A > 12 are A-Edge-Choosable

Now we will prove that x; = A for every planar graph with A > 12.

A 2-alternating cycle is an even cycle on which every second vertex has degree 2. It is
easy to check that such cycles are reducible for A-edge-choosability. Lemma allows us to
significantly generalize this reducibility argument.

Definition 5.21. The weight of an edge uw is d(u) + d(w). An i-alternating subgraph H
of a graph G is a bipartite subgraph with parts U and W such that dy(u) = dg(u) < i
and 1 < dy(w) < dg(w) for all u € U and w € W. The left of Figure shows a 4-
alternating subgraph. A 3-alternator is a bipartite subgraph H of a graph G such that (i)
2 < dy(u) = dg(u) < 3forallu € U and (ii) for each w € W either (a) w has at least
three H-neighbors in U or (b) w has exactly two H-neighbors in U, both with degree exactly
14— dg(w). (Condition (ii.b) is only possible when dg (w) € {11,12}.) The right of Figure|s.8|
shows a 3-alternator.

Figure 5.8: Left: A 4-alternating subgraph, with U on bottom and W on top. Thin edges are excluded from
the subgraph. Vertices in W may have more incident edges. Right: A 3-alternator, where labels prescribe
degrees of vertices in the whole graph.
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Lemma 5.22. If G is a minimal graph such that x; > A, then G contains neither (@) an edge of
weight at most A+ 1 nor (b) an i-alternating subgraph. Further, if A =2 12, then G also contains
no 3-alternator.

Proof. Let G be a minimal graph (under subgraph inclusion) such that x; > A, and let L be an
edge A-assignment such that G has no edge L-coloring.

(@) If G contains an edge e of weight at most A + 1, then G — e has an edge L-coloring ¢,
by minimality. Since edges incident to e forbid at most A 4+ 1 — 2 colors, we can extend ¢ to
e, a contradiction. This proves (a).

(b) Instead suppose G has an i-alternating subgraph H. By minimality, G — E(H) has an
edge L-coloring ¢. We can easily check that each uw € E(H) has a list of remaining available
colors of size at least max{d(u), d(w)} (this is a simpler version of our next case, so we omit
the details). So Theorem allows us to extend the coloring ¢ to E(H). This proves (b).

Finally, suppose G contains a 3-alternator H. By minimality, G — E(H) has an edge L-
coloring ¢. To extend ¢ to E(H), we again use Theorem So we must check that each edge
has enough available colors. Consider an edge uw € E(H). If w satisfies (ii.a) in Definition|s.21]
then edge uw loses no colors to edges incident to u and at most dg(w) — dy (w) colors to
edges incident to w, so [L(uw)| = dy(w) = 3 = diy(u). Now assume instead that w satisfies
(ii.b). If dg(w) = 12, then the same argument shows that |L(uw)| = dy(w) = 2 = dy(u).
Suppose instead that dg(w) = 11. Now |[L(uw)| =2 A — (dg(w) —dn(w)) = 12— (11— 2)
3 =dp(u) > dp(w). So, again [L(uw)] is big enough to apply Theorem 5.17}

O

In view of Lemma the following lemma will imply that x; = A for every simple planar
graph with A = 12. (For completeness, we give the details after proving the lemma.) We
phrase the theorem to include multigraphs, since this simplifies the proof.

Lemma 5.23. Let G be a plane multigraph embedded such that every face has length at least 3
and no 2-vertex separates two 3-faces. If 5(G) = 2, then G contains (i) a 2-alternating cycle, (i)
a 3-alternator, or (iii) an edge uw such that d(u) + d(w) < 13.

We assume the theorem is false, and let G be a counterexample that minimizes |G| and,
subject to that, maximizes ||G||. To motivate the details of the proof, we first sketch the
discharging argument. We use vertex charging.

Each 57 -vertex v needs charge. Since G has no edge of weight at most 13, we let v take
charge % from each neighbor. This takes care of 4T -vertices, but 2-vertices and 3-vertices need
more charge. For each 3-vertex v, we assign one 117" -vertex to “sponsor” v, by sending it 2
(rather than %). Similarly, for each 2-vertex v, we assign one 127" -vertex v and one 4" -face
to sponsor v, each of which send 2. The key is to assign these sponsors so that no 117" -vertex
sponsors too many 3~ -vertices. This is where the absence of 2-alternating subgraphs and 3-
alternators will help. More generally, we need to show that 11" -vertices don’t lose too much
charge. The argument is simpler when the graph is a triangulation, or close to it, which is why
we allow G to be a multigraph and why we chose G to maximize ||G]||.
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Proof. We assume the theorem is false, and let G be a counterexample that minimizes |G| and,
subject to that, maximizes ||G||. For every 2-vertex v, its neighbors w and x must be adjacent,
since otherwise we could add edge wx near path wvx, contradicting the maximality of ||G]||.
Form H from G by deleting all its 2-vertices. Now H is a triangulation, as follows. Suppose to
the contrary that H has some 4" -face f. Choose v, w,x consecutive along the boundary of f
so as to minimize dg(w). If dg(w) < 6, then dg(v) = 8 and dg(x) = 8, so we can add the
edge vx while still satisfying the hypotheses of the theorem. This contradicts the maximality
of ||G||. Similarly, if dg(w) = 7, then also dg(v) = 7 and dg(x) = 7, so we can again add
edge vx. Thus, H is indeed a triangulation.

Similarly, in G each 2-vertex v lies on a 3-face and on a 4-face or 5-face. This follows from
the fact that H is a triangulation, and that G has no 2-alternating cycle. Specifically, each 3-face
f of H contains at most two 2-vertices in G. And if f contains exactly two 2-vertices, then they
have distinct neighborhoods.

Now we assign sponsors to each 2-vertex and 3-vertex. Consider the subgraph | induced
by all edges incident to 3~ -vertices. Note that ] is bipartite; call its parts Ul and W, where all
3~ -vertices are in U. Since | is not a 3-alternating subgraph or a 3-alternator, by definition,
some w € W has at most two neighbors in U, at most one of which has degree 14 — dg(w).
(An 11-vertex w has no 2-neighbor by (iii). Thus, each 11-vertex w has at most one neighbor
x in J; if x exists, then dg(x) = 3.) We assign w to sponsor its neighbors in U. Form J’ from
] by deleting w U Ny (w). Now ]’ is also not a 3-alternating subgraph, so we can again find
some vertex in W and assign it to sponsor its at most two neighbors in W N V(J’). Repeating
this process, we eventually assign each u € U a sponsor.

We use vertex charging and the following three discharging rules, shown in Figure

(R1) Each 2-vertex takes 2 from its sponsor and 2 from its incident 4 -face.
(R2) Each 3-vertex takes 2 from its sponsor and % from each other neighbor.
(R3) Each 4-vertex and 5-vertex takes % from each neighbor.

We must show that all vertices and faces end happy.

(R1) (R2) (R3)

Figure 5.9: The three discharging rules in the proof of Lemma Here ——
denotes a charge of 1/2 and >>>> denotes a charge of 4/2 = 2.
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Each 3-face starts and ends with 0. Each 4-face has at most one incident 2-vertex, so it
ends with at least 2(4) — 6 — 2 = 0. Each 5-face has at most two incident 2-vertices, so ends
with at least 2(5) — 6 — 2(2) = 0. The maximality of ||G|| implies that G has no 6™ -faces.

Each 2-vertex gets 2 from its sponsor and 2 from its incident 4 -face, so ends with 2 — 6 +
2+ 2 = 0. Each 3-vertex gets 2 from its sponsor and % from each other neighbor, so ends with
3—6+2+ 2(%) = 0. Each 4-vertex and 5-vertex get % from each neighbor. So 4-vertices end
with 4 —6+ 4(%) = 0 and 5-vertices end with 5 — 6 + 5(%) > 0. Each 6-vertex starts and ends
with 0. For 7 < s < 10, each s-vertex starts and ends with s — 6 > 0.

Since H is a triangulation, and each edge of G has weight at least 14, each 117 -vertex
in G gives charge to at most half of its neighbors in H. So each 11-vertex ends with at least
11-6—2— (%)5 > 0. Each 12-vertex sponsors at most two 3~ -vertices. And if exactly two,
then one is a 3-vertex. So each 12-vertex ends with at least 12 — 6 — 2(2) — (%)4 = 0. Finally,

for s > 13, each s-vertex ends with at least s — 6 — 2(2) — (%)(%(s —2)) = %s —95>0. O

Theorem 5.24. Every simple planar graph G with A > 12 satisfies X;(G) = A.

Proof. We prove a more general statement, which implies the theorem: Every simple planar
graph G satisfies x;(G) < max{12,A}. Suppose this statement is false. Choose a counterex-
ample G that minimizes ||G|| and an edge k-assignment L such that G is not L-edge-colorable,
where k := max{12,A}. Lemma implies that each edge has weight at least A 4+ 2, so
d(G) = 2. Since G is simple, no 2-vertex separates two 3-faces. So G satisfies the hypotheses
of Lemma Thus G contains either a 2-alternating cycle, a 3-alternator, or an edge with
weight at most 13. However, each of these subgraphs is reducible, by Lemma which
contradicts the minimality of ||G||. O

5.4.3 Bounded Mad

Recall that an i-alternating subgraph is a bipartite subgraph H with parts U and W such that
dy(u) =dg(u) <iforallie Uand dy(w) =1iforallw e W.
Next we generalize results from Section to sparse graphs that need not be planar.

Theorem 5.25. If G is a graph with mad(G) < |V2A|, then G contains either (@) an edge uw
with d(u) + d(w) < A+ 1 or (b) an i-dlternating subgraph, for some i < 3A. Thus, if G has
mad(G) < |V2A], then x;(G) = A.

The second statement follows directly from the first, by Lemma The proof of the first
statement is similar to that of Theorem The absence of (a) implies 6(G) = 2. Since our
hypothesis is in terms of mad(G), we give each vertex v initial charge d(v). Let r := |/2A].
Since mad(G) < 1, to reach a contradiction we discharge so that each vertex ends with at least
. As before, low degree vertices are assigned sponsors, which send them their needed charge.

The main difference is that now r — $(G) may be unbounded. As a result, vertices of low
degree need to receive lots of charge. Our solution is to use multiple rounds of discharging,



d;-choosable
BK-free
fy(v)

158 CHAPTER 5. THE KERNEL METHOD

rounds 2 through r — 1. On round 1, each i~ -vertex v is assigned a sponsor that sends 1 to v.
Thus, each r~-vertex finishes with exactly r. The absence of i-alternating subgraphs allows us
to assign sponsors so high degree vertices do not lose too much charge.

Proof. Assume the first statement is true. If the second is false, then a minimal counterexample
contradicts either the first statement or Lemma This proves the second.

Now we prove the first statement. We give each vertex v initial charge d(v), and we use
multiple rounds of discharging. Let v := |v/2A]. On round i, for each i € [r— 1], let H; denote
the subgraph induced by edges incident to i~ -vertices, and let U and W be its parts. Since
each edge has weight at least A + 2, graph H; is bipartite whenever i < %A. By assumption, G
has no i-alternating subgraph. Since dy,(u) = dg(u) < i for each u € U, some w € W has
dn, (w) < i—1. Let w send 1 to each neighbor in U. Now delete from H; vertex w and its
neighbors in U. By repeating this process, each vertex in U receives 1, while each vertex in W
sends at most i — 1.

By assumption, d(u) + d(w) = A + 2 for each edge uw. Thus, an s-vertex v sends charge
only on rounds A + 2 — s through r — 1. An (s + 1)-vertex has initial charge 1 more than
a s-vertex, but on round A 4+ 1 — s it may send an additional A — s. So, it suffices to check
that A-vertices finish with enough charge. That is, we need A — (1 + ...+ (r—2)) = r. This
inequality is satisfied when 2A — 2 > 2 — v, which holds because r < v/2A. O

5.4.4 The Borodin—-Kostochka Conjecture for Line Graphs of Multigraphs

Borodin and Kostochka conjectured that if a graph G satisfies w(G) < A and A = 9, then
x(G) < A — 1. To conclude this chapter, we prove the choosability analogue of the their
conjecture for the class of line graphs (of multigraphs), when A is sufficiently large.

Theorem 5.26. Let G be the line graph of some multigraph H. If w(G) < A(G) and A(G) = 135,
then x¢(G) < A(G) — 1.

Before proving this theorem we need a definition and an easy lemma.

Definition 5.27. A graph is di-choosable if it has an L-coloring whenever |L(v)| = d(v) — 1 for
all v. A connected graph G is BK-free if it contains no induced subgraph ] that is fj-choosable,
where fj(v) := A(G) —1—(dg(v) — dj(v)) for all v € V(]). In particular, if G is BK-free, then
it contains no d;-choosable subgraph.

Intuitively, fj(v) is a lower bound on the number of colors remaining available for v if
we start with lists of size A(G) — 1 and color all vertices in G — V/(]). This definition is
motivated by the following lemma. (We note the similarities between the proof below and that

of Lemma[10.8])

Lemma 5.28. If G is a minimal counterexample to Theorem[5.26] then G is BK-free. In particular,
5(G) = A(G) — 1.
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Proof. The first statement implies the second, as follows. If any vertex v has degree at most
A(G) — 2, then by letting ] := G[{v}], we have fj(v) = A(G) — 1 — (A(G) —2—0) = 1. Since
] is choosable from every non-empty list, we contradict that G is BK-free.

To prove the first statement, suppose it is false. Let G be a minimal counterexample
to Theorem and let | be an induced subgraph of G that is fj-choosable, with fj as in
Deﬁnition Let G’ := G — V(J). Since ] is fj-choosable, we can extend any coloring of G’
to G. So it suffices to color G’.

If A(G') = A(G), then G’ is (A(G) — 1)-choosable, by the minimality of G. If A(G’) =
A(G)—1, then w(G) < A(G) —1 =A(G’), so G’ is (A(G) — 1)-choosable by the list-coloring
version of Brooks’ Theorem, that is, Theorem Finally, if A(G’) < A(G) — 2, then G’ is
(A(G) — 1)-choosable by greedy coloring. Thus, G is (A(G) — 1)-choosable, contradicting that
G is a counterexample to Theorem [5.26) O

The key step in proving Theorem [5.26]is to show that H is 8-degenerate, which implies that
mad(H) < 16. We prove the theorem now under this assumption, and justify the assumption
in the three lemmas that follow.

Proof of Theorem Suppose the theorem is false, and let G be a counterexample minimizing
|IG||. Choose H such that G is the line graph of H. If A(H) > 128, then Theorem
(with Lemma shows that x;(H) = A(H) < w(G) < A(G) — 1. So we will show that
A(G) = 135 implies A(H) = 128. Let u be a vertex of minimum degree in H and w be a
neighbor of u. Lemmals.28|implies that A(G) —1 < §(G) < dp(u) + dy(w) — pp (uw) —1 <
dy(u) + A(H) — p(uw) — 1. Since G is 8-degenerate, dy(u) < 8 which gives A(H) >
A(G)—7=135—7 = 128. O

By using more reducible configurations, and analyzing the argument more carefully, the
value 135 can be reduced to 69. The main savings in the proof of this strengthened version
come in showing that H is actually 6-degenerate.

We first prove that H is 8-degenerate under the assumption that w(H) < 3. We will justify
this assumption soon, in Lemma|5.32)

Lemma 5.29. Let G be the line graph of some multigraph H. If 6(H) = 9 and u(H) < 3, then G
is not BK-free. Thus, if G is BK-free and n(H) < 3, then H is 8-degenerate.

Proof. The second statement is implied by the first, as follows. If G is BK-free and p(H) < 3,
but H is not 8-degenerate, then some subgraph of H has minimum degree at least 9, which
contradicts the first statement of the lemma.

Now we prove the first statement. Suppose to the contrary that 5(H) = 9. Let A, B be
a partition of V(H) chosen to maximize ||A, B||, the number of edges between A and B, and
let Q be the subgraph induced by these edges. Now dg(u) = [dy(u)/2] for all u € V(H),
since otherwise moving u to the other part increases ||A,B||. Let R denote the line graph
of Q. To reach a contradiction, we apply Theorem to show that R is fr-choosable, as
in Definition For each edge uw in Q, it suffices to show that max{dq(u),dq (W)} <
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Figure 5.10: Left: A graph G and list assignment L for G, as in Lemma (Small Pot Lemma). Right:
The bipartite (vertex/color) incidence graph B(G, L), as well as the vertex subset U and the subgraph B’
of B(G,L).

dr(uw) -1 =dg(u)+dg(w)—2—(u(uw)—1)—1. Since u(H) < 3, we have dg (uw)—1 =
do(u) +dgo(w) —5 = max{dg(u), dg(w)} because dg (u) = [dy(u)/2] = [9/2] =5, and
similarly for dg (w). O

For a list assignment L, the pot is U, ¢y (g)L(Vv), the set of all colors that appear in one
or more lists. The Small Pot Lemma says that list-coloring is hardest when the pot has size
less than |G|. This lemma is often useful when proving choosability results for graphs that are
highly structured or that have small order. See Exercises[6|and

Lemma 5.30 (Small Pot Lemma). Let G be a graph and f : V(G) — [[V(G)| — 1] be a list
size assignment function. Now G is f-choosable if and only if G has an L-coloring for every list
assignment L such that [L(v)| = f(v) for all v € V(G) and | U, ey (g) L(V)| < [V(G)].

Proof. Let V := V(G). The “only if” direction is clear. Now we prove the “if” direction.

Let L be a list assignment such that |[L(v)| = f(v) for all v € V and | U,y L(v)| = |V|
and G is not L-colorable. Assume that G is [-colorable for each list assignment L such that
IL(v)| = f(v) for all v and | Uyey L(v)] < [VI. Forevery U C V, let L(U) := UycyL(v).

We construct a bipartite graph B, where one part consists of vertices in V, the other part
consists of colors in L(V), and a vertex v is adjacent to a color « if « € L(v). Foreach U C V,
let def(U) := [U| — |L(U)|. Since G is not L-colorable, B has no matching saturating V. So
Hall’s Theorem implies there exists a vertex subset U with def(ll) > 0. Choose U to maximize
def(U). See Figure[s.10]

We construct an f-assignment L’ as follows. Let A be an arbitrary set of |V| — 1 colors
containing L(U). For each v € U, let L’(v) := L(v). For each v ¢ U, let L’(v) be an arbitrary
subset of A of size f(v). Now |L’(V)| < |V, so by hypothesis G has an L’-coloring. This gives an
L-coloring of U. By the maximality of def(U), forall W C (V\U), we have |L(W)\L(U)| = |W/|.
Let B" := B\ (Uyecu{wUNg(u)). Thus, by Hall’s Theorem, B’ has a matching saturating V'\ U;
so we can extend the L-coloring of U to all of V. This contradicts that G is not L-colorable. [

Let H; V Hjy denote the join of H; and Hj, formed from their disjoint union by adding all
edges with one endpoint in each of H; and Hs.
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Wi W

Wy W3

Figure 5.11: Left: The proof of Lemma when S induces at least two edges. Right: The proof of
Lernmawhen dg(w) = A(G); this corresponds to the case on the left.

Lemma 5.31. If B contains two disjoint pairs of non-adjacent vertices, then K4\ B is di-choosable.

Proof. Suppose the lemma is false, and let G and L be a minimal counterexample, where
G :=K4V B and L is a d;-assignment. By minimalit [V(B)| = 4. Let vq,...,vs denote the
vertices of B such that vivs,vav4 € E(B). For short, let S := V(B), let T := V(K4), and denote
T by {w1,...,w4}. The left side of Figure shows an example.

By definition, |L(z)| = d(z) — 1 for all z € V(G); specifically, |L(vi)| = ds(vi) + 3 and
IL(w;)| = 6forallvi € Sand w; € T. When we have i, j, k with vi ¢4 vj and [L(v;)|+[L(v;)] >
IL(wy )|, we often use the following technique, called saving a color on wy via v; and vj. If
there exists ¢ € L(vi) N L(vj), then use c on v; and vj. Otherwise, color just one of v; and v;
with some ¢ € (L(vi) U L(vj)) \ L(wy). For each U C V(G), let L(U) := UycuL(v). By the
Small Pot Lemma, assume that |L(V(G))| < 7.

Suppose S induces at least two edges, so |L(v1)| + |[L(vz)| = 8. Now L(vy) N L(vs) # 0.
Color vq and v, with a common color c. If |L(w1) \ {c}| < 5, then save a color on wq via v3 and
v4. Now finish greedily, ending with w;.

Suppose instead that S induces exactly one edge; by symmetry, say it is vivs. Suppose that
L(v1)NL(vy) # (. Similar to the previous argument, use a common color on v; and v, possibly
save on w1 via v and vy, then finish greedily. So instead, assume that L(v;) NL(vy) = (). Since
IL(V(G))] < 7 and L(v;) N L(vy) = 0, by symmetry (between v; and vs and also between v,
and v4), we may assume that L(v1) = L(v3) ={a,b,c,d} and L(v3) = L(v4) ={e, f, g}. Also
by symmetry, a or e is missing from L(w;). So color v; with a and v, and v4 with e and v3
arbitrarily; this saves one color on each w; and a second color on w;. Now finish greedily,
ending with wj.

Assume instead that G[S] = K4. If a common color appears on 3 vertices of S, use it there,
then finish greedily. If not, then by Pigeonhole, at least 5 colors appear on pairs of vertices in
S; so, two colors appear on disjoint pairs. Color two such disjoint pairs, each with a common
color. Now finish the coloring greedily. O

2Otherwise, let B’ denote the subgraph induced by the four vertices of the non-adjacent pairs. We can greedily
L-color B \ B’. The resulting list assignment L’ for K4 VV B’ is a d;-assignment. Since B’ is smaller than a minimal
counterexample, we can extend the L-coloring of B \ B to K; \V B.

G,L
Vi,een, Vg
S, T
Wi,..., Wy

saving a color
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Lemma 5.32. If G is BK-free with w(G) < A(G) and G is the line graph of some multigraph H,
then u(H) < 3.

Proof. Suppose, to the contrary, that H has some edge e of multiplicity at least 4. Letv; € V(G)
be a vertex corresponding to e. Lemmaimplies dg(v1) € {A(G) —1,A(G)}.

Case 1: dg(v1) = A(G) — 1. Since e has multiplicity at least 4, there exists some graph
B such that G[N(v1) U{vi}] = K4V B. Because w(G) < A(G), we know that B is not a clique;
in particular, there exist vertices w1, wy € V(B) with wy <4 wy. Denote the vertex set of the
K4 by {v1,V2,v3,v4}. Let W :={v1, V2, V3, V4, w1, Wwa}and | := G[W], and note that ] = Kg —e.
We show that | is f-choosable, where f(w;) = f(wy) = 3, f(va) = f(v3) = f(v4) = 4, and
f(v1) = 5. Fix a list assignment L with |L(x)| = f(x) for each x € S. By the Small Pot Lemma,
we assume that | Uycs L(x)| < |S| = 6. By Pigeonhole, there exists a color &« € L(w1) N L(wsy).
After using « on w; and wy, we color greedily in the order v4, v3, vy, V1.

Case 2: dg(v1) = A(G). As above, there exists B such that G[N(v) U {v}]] = K4 VV B.
Since w(G) < A(G), we conclude that w(B) < |B| — 2. Because G is a line graph, B has
independence number 2. Thus, B contains two disjoint pairs of non-adjacent vertices. Now
Lemmal[5.31]implies that K4 \V B is d;-choosable, which contradicts Lemmas.28 O

Notes

The Kernel Lemma was proved by Bondy, Boppana, and Siegel (see [20, Remark 2.4] and [170],
Lemma 2.1]). Richardson’s Theorem was proved in [342]. Lemma holds more generally,
when each vertex has its own prescribed bound on outdegree; see Exercise 1l The technique of
reversing a directed path helps prove many results about orienting a graph subject to constraints
on in-degrees and outdegrees, and is also useful when working with nowhere-zero flows [

The Stable Matching Theorem is due to Gale and Shapley [168]. It has been used in
numerous applications, such as matching organ donors with recipients and matching medical
residents with residency programs. In 2012, Shapley (along with Alvin Roth) was awarded the
Nobel prize in economicsf] It is intriguing to study the maximum number of stable matchings
admitted by fixed preference lists (for n men and n women); call this number f(n). (See
Exercise [4}) This problem was posed by Knuth in 1976 [263]. When n is a power of 2, Irving
and Leather [223] showed that f(n) = (2.28™). Thurber [387] extended their construction
to prove the slightly weaker bound f(n) = Q(2.28™/cl¢™), for all n. Trivially, f(n) =
O(n!). Despite significant effort, the first simply exponential upper bound was proved only in
2018. Karlin, Oveis Gharan, and Weber [238] proved f(n) = O(2'”™). In 2021, Palmer and
Palvolgyi [[327] improved this upper bound to f(n) < 3.55™ + O(1).

Theorem|s.11]is due to Galvin [170]. Theorem|s.13|is due to Cambie, Cames van Batenburg,
Davies, and Kang [[77], but the proof we present is due to Mudrock [314]. Theorem is due
to Peterson and Woodall [329, [330] and Theorem is due to Trotter [388]]. All results in

3For example, we reuse this idea in the proof of Theorem
4Gale passed away in 2008, making him ineligible for the prize.
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Sections|s5.4.1, [5.4.2, and[5.4.3|are due to Borodin, Kostochka, and Woodall [69]]. The results in
Section are due to Cranston and Rabern [102], except for the Small Pot Lemma; versions
of it were proved independently by Kierstead [245]] and Reed and Sudakov [341].

To simplify the presentation we stated our coloring results in terms of list-coloring, rather
than paintability. However, the proofs yield the same bounds for paintability; see Exercise [g}
The one exception is our proof of Lemmal|s.31, which is valid only for list coloring. Nonetheless,
the analogous statement for paintability is also true. This is proved directly in [101], and via
the Alon-Tarsi Theorem in [102], using computers to verify that the numbers of even and odd
Eulerian subgraphs differ.

Slivnik [363]] gave a short self-contained proof of Theorem that avoids the use of
orientations and kernels. Its core ideas are essentially the same as those in Galvin’s proof. But
the presentation is streamlined, directly constructing the matching where each color is used
(these matchings are indeed the kernels of the orientation of the line graph). In fact, this
approach can be combined with Lemma to give a shorter proof of Theorem |5.17,

Exercises

5.1. Generalize Lemma as follows. Fix a graph G, and for each vertex v € V(G), let f(v)
be a prescribed bound on the outdegree of v. Show that G has an orientation D with
df (v) < f(v) for all v if and only if for each S C V(G) we have > ves f(v) = [|GIS]||.
This condition is obviously necessary, since each edge in G[S] contributes to the outdegree
of a vertex in S.

5.2. Run the Proposal Algorithm with the preference lists in Figure but with the women
proposing to the men.

5.3. Prove that the Proposal Algorithm yields a stable matching in which each man is at least
as happy as he is in any other stable matching. [168]]

5.4. (a) Construct preference lists (for n men and n women) that admit at least two distinct
stable matchings. (b) Improve the lower bound in part (a) to 2n/2,

5.5. Consider the more general version of the stable matching problem, where women or men
can leave some of the other sex “unranked”. Given a set of preference lists (wWhere every
woman ranks every man and vice versa), show how the women, by working together, can
shorten their lists so that each ends up as happy as she does in any stable matching (if
the men don’t modify their lists).

5.6. The graph Ko, is complete n-partite with each part of size 2. Use the Small Pot Lemma
to prove that X¢(Kaoxn ) = 1. [152]]

5.7. (a) Show that the graph on the left in Figure is f-choosable, where f is given by the
sizes of the lists in the picture (2 for 3-vertices and 4 for 4-vertices). (b) Show that if we
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form f’ by decreasing f(x) for any x € V(G), then there exists an f’-assignment L’ such
that G has no L’-coloring.

5.8. Use the Small Pot Lemma to show that x,(Kz23) = 3, where Ky 23 is the complete
tripartite graph with parts of sizes 2, 2, and 3.

5.9. (a) Adapt proofs in this chapter to work for paintability (assuming an analogous version
of Lemmal(s.31). (b) Prove the analogue of Lemma for paintability.

5.10. A total coloring gives colors to both vertices and edges so that two elements must receive
distinct colors whenever they are incident or adjacent. The total choice number, denoted
X¢ (G) is defined analogously. Adapt the proofs of Theorems and to give the
bound x;'(G) < A(G) + 1 for the graphs in these theorems.



Chapter 6

Deletion and Contraction:
Nowhere-Zero Flows

If you can’t solve a problem, then there is an easier problem you can’t
solve: find it.
—attributed to George Pdlya

In this chapter we generalize face coloring to graphs without faces. More precisely, we
study “nowhere-zero flows” (see Definition[6.1) which are equivalent to face colorings for plane
graphs, but which exist for many more graphs. Throughout this chapter we always allow both
loops and parallel edges, unless stated otherwise.

6.1 Background

Definition 6.1. Fix a graph G, an orientation D of G, and an abelian group H. We will mainly
study the case when H = Z or H = Z for some integer k, but we start more generally. For each
W C V(G), let 0(W) denote those edges with exactly one endpoint in W this is the boundary
of W. We write 01 (W) and 0~ (W) for the subsets of d(W) with their tails and (respectively)
heads in W. For each vertex x, we typically write 9(x), 01 (x), and 9~ (x) rather than 0({x}),
0+ ({x}), and 0~ ({x}). An H-flow (or simply flow) on G is a weight function f : E(G) — H such
that “flow in” equals “flow out” at each vertex w; formally Zeea_(w) f(e) = Zeea+(w) f(e).
A nowhere-zero H-flow is an H-flow where f(e) # 0 for each edge e. A nowhere-zero k-flow is
a Z-flow where 0 < |f(e)| < k for each edge e. We often abbreviate nowhere-zero as NZ. For
any map f : E(G) — H (not necessarily a flow), and W C V(G), the net flow into W, denoted

of(W), is equal to 3 .o (w) Fle) = 2 cco+(w) fle). Figureshows an NZ 4-flow.

Observation 6.2. If a graph G has an NZ H-flow for some orientation, then it has one for every
orientation D. This is because, given one NZ H-flow, we get one for D by repeatedly reversing
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an edge and negating its flow value. This proof also works for NZ k-flows. Typically we assume
that each graph G has a fixed orientation, D, but hereafter we will not say much about D.

Observation 6.3. For a graph G and NZ H-flow f, the net flow into any vertex set W is 0. (That
is, 0f(W) = 3_cco-(w) f(€) = 2 cco+(w) fle) = 0.) Soif G has an NZ flow, then G has no
cut-edge. The fact that 0f(V(G)) = 0 is called the zero-sum rule.

Proof. For the first statement, we have

Y - Y fla=>Y [ Y flo- Y fe]=> o=o

ecd— (W) ecdt (W) weW \ecd—(w) ecdt(w) WEW

Here the first equality holds because edges with both endpoints in W appear in both a positive
term and a negative term in the second sum, so they cancel. For the second statement, suppose
G has a cut-edge e, and let W be the vertex set of one component of G — e. By the first
statement, 0f(W) = 0. But of(W) = f(e), which contradicts that f is nowhere-zero. O

Definition 6.4. A cut-edge is also called a bridge, and a graph with no bridge is bridgeless.
(In view of Observation we will only consider bridgeless graphs.) A graph is cubic if it is
3-regular. In a bridgeless plane graph G, a face-k-coloring assigns each face a color in [k] so
that faces sharing an edge get distinct colors. The dual graph G* of a plane graph G has as its
vertices the faces of G; two vertices of G* are joined by an edge for every edge shared by the
boundaries of their corresponding faces in G. We can check that if G is a plane graph, then so
is G*, and that (G*)* = G.

The following observation is easy to verify.

Observation 6.5. A planar graph is face-k-colorable if and only if its planar dual is k-colorable.

(The 4 Color Theorem is often stated in terms of vertex coloring, but the original formulation
was for face coloring.) Tutte was interested in generalizing face coloring to graphs that are
non-planar. The following theorem shows that NZ flows accomplish this.

Theorem 6.6. A planar graph G has an NZ k-flow if and only if it has a face-k-coloring.

Given a face-k-coloring of G, the idea in the proof of Theorem|6.6]is to orient each edge so
the larger of its two adjacent colors is on its right and to assign as its flow the difference of these
two colors. Given an NZ k-flow, we can essentially reverse this process. However, verifying the
details is a bit tedious and distracts us from the flow of this chapter, so we defer the proof to
the appendix; see Theorem

Recall from Chapter |4 the 5 Color Theorem, 4 Color Theorem, and 3 Color Theorem
(Grotzsch’s Theorem). Every planar graph is 5-colorable, and proving this is easy. Every planar
graph is also 4-colorable, but proving this is hard. Finally, every triangle-free planar graph is
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Figure 6.1: A face-4-coloring of a planar graph
G and its associated NZ 4-flow.

3-colorable, and proving this is somewhere between easy and hard. To restate these results
in terms of NZ flows, for a plane graph G, we apply the vertex coloring result to G*, get
a face-coloring of G by Observation and get an NZ flow by Theorem Thus, every
bridgeless planar graph G has an NZ 5-flow and, in fact, has an NZ 4-flow. (G must be
bridgeless, since otherwise G* has a loop, and thus has no proper vertex coloring.) Further,
every 4-edge-connected planar graph has an NZ 3-flow. Here G must be 4-edge-connected]
since any 3-edge-cut in G becomes a 3-cycle in G*. Aiming to generalize these results led Tutte
to the following three conjectures.

Conjecture 6.7 (5-Flow Conjecture). Every bridgeless graph has an NZ 5-flow.

Conjecture 6.8 (4-Flow Conjecture). Every bridgeless graph with no Petersen subdivision has an
NZ 4-flow.

Conjecture 6.9 (3-Flow Conjecture). Every 4-edge-connected graph has an NZ 3-flow.

Most of this chapter will study progress made on these conjectures. Both the 5-Flow
Conjecture and the 4-Flow Conjecture are best possible, since the Petersen graph has no NZ 4-
flow. To see this, recall that (a) the Petersen graph has no 3-edge-coloring (see Theorem[A.1) and
(b) a cubic graph has a 3-edge-coloring if and only if it has an NZ 4-flow (see Exercisel4). Since
the Petersen graph is non-planaif} the class of graphs with no Petersen subdivision properly
contains the class of all planar graphs. By Theorem[6.6] the 4 Color Theorem is equivalent to the
statement that every planar graph has an NZ 4-flow. Thus, the 4-Flow Conjecture strengthens
the 4 Color Theorem.

The following theorem shows that looking for NZ H-flows reduces to looking for NZ k-
flows. But it is also helpful in attacking Tutte’s flow conjectures, since it allows us to choose
our favorite H with order k. For example, we will prefer to work with Z, x Z, rather than Zg4,
and we will prefer Z, x Z3 rather than Zg.

'Actually, 2-edge-cuts are manageable, as we we prove in Lemma
*Since the Petersen graph is cubic and has girth 5, this follows from Lemma
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Theorem 6.10. For any graph G and positive integer k, the following three statements are equiv-
alent.

(1) G has an NZ k-flow.
(i) G has an NZ Zy-flow.
(iii) G has an NZ H-flow, for any finite abelian group H of order k.

Proof. First we prove that (ii) and (iii) are equivalent. Fix two abelian groups H; and Hj, each
of order k. For a graph G, let ®(G, H) denote the number of NZ H-flows on G. By induction on
IIG||, we will prove that ®(G, H;) = ®(G, Hy). This implies that (ii) and (iii) are equivalent.
(Recall that throughout this chapter we allow both loops and parallel edges.) For the base case,
suppose that every edge of G is a loop. Now @ (G, H;) = (k— 1)ISI = ®(G, H,). Suppose
instead that G has a non-loop edge e = vw. Let G/e denote the graph formed from G by
contracting e, that is identifying its endpoints, preserving any loops this creates.

Suppose we are given an H-flow f of G/e. When we view f as a flow on G — e, we have
of(x) = 0 for all x € V(G) \ {v, w}. Further, of(v) = —0f(w). So if 0f(v) # 0, then we can
extend f to an NZ H-flow of G in exactly one way. And if 0f(v) = 0, then f is an NZ H-flow of
G —e. This shows that ®(G,H) = ®(G/e,H) —®(G —e, H). Since ||G/e|| = ||G—e|| < ||G]],
by hypothesis ®(G/e, H;) = ®(G/e, Hy) and also ®(G — e, H;) = ®(G — e, Hy). Thus

®O(G,H;) =D(G/e,H;) —D(G —e,H;) = O(G/e,Ha) — O(G — e, Ha) = O(G, Ha).

So (ii) and (iii) are equivalent.

Now we show that (i) and (ii) are equivalent. To see that (i) implies (ii), given an NZ k-flow,
we simply take the value of each flow modulo k. This gives an NZ Zy-flow. Now we show that
(ii) implies (i). Suppose f is an NZ Zy -flow. If we view the flow values from f as elements of Z,
then 0f(v) = 0 mod k for each v € V(G). We assume each flow value is positive, by possibly
reversing edges and negating their values. Further, among all such possibilities for f, choose
one to minimize the sum ZVeV(G) [0f(v)|. If this sum is 0, then 0f(v) = 0 for allv € V(G), so
f is an NZ k-flow. Assume instead that this sum is non-zero.

Since } ¢y (g) 0f(v) = 0, there exists a vertex w such that 0f(w) < 0. Let W be the set of
all vertices reachable from w by a directed path (including w). Since each edge starting in W
also ends in W, we conclude that ZyeW of(y) = 0. Since 0f(w) < 0, there exists x € W such
that 0f(x) > 0. By the definition of W, there exists a directed w, x-path P. For each edge e on
P, we reverse the direction of e and change its flow to k — f(e). Call these new flow values f’.
For each vertex y € V(G) \ {w, x}, we have 0f’(y) = 0f(y). However of’(w) = of(w) + k and
0f’(x) = 0f(x) — k. This contradicts our choice of f to minimize ZVEV(G) |0f(v)|. So when
is minimal, we have 0f(y) = O for all y, which means that f is an NZ k-flow. This shows that
(i) and (ii) are equivalent. O

Our proof that (ii) and (iii) are equivalent actually shows something stronger.
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Corollary 6.11. For every multigraph G, there exists a polynomial ® g such that for every finite
abelian group H, with order |H|, the number of NZ H-flows on G is ® g (|H|).

Proof. What we denote by @ g (|H|) here is what we called ®(G, H) in the proof of the previous
theorem. We already showed that ®g(H) depends only on [H|, rather than the structure of
H. To see that @ is always a polynomial, we note that it is in the base case, when G has
only loops, and that the induction step just takes the difference of two polynomials; thus, this
difference is again a polynomial. O

Suppose a group H is the direct product of groups H; and Hj; that is, H = H; & Has.
If f; and f5 are Hy- and Hs-flows on G, then f := (fq,f2) is also an H-flow on G (here
f(e) = (f1(e), f2(e)) for each edge e. Further, if each f; is an NZ H;-flow, then (fq, f5) is also
an NZ H-flow. But we can actually weaken our hypothesis to require only that for each edge e
either f1(e) # 0 or f3(e) # 0. This motivates the following lemma.

Lemma 6.12. Let G be a graph with t spanning trees Ty, ..., T. If each e € E(G) is omitted from
at least one Ti, then G has an NZ Z-flow. (Figure shows an example.)

Proof. For each T; we construct below a Z,-flow f; that is non-zero on E(G) \ E(T;). (Note
that for a Z,-flow, orientation is irrelevant.) Our Z}-flow f is formed by giving each edge e
the value f(e) = (f1(e),...,fi(e)). Now f is a Z5-flow because each f; is a Z,-flow, and f is
nowhere-zero because each edge e is omitted from some Ti, so has fi(e) # 0.

Let T; be a spanning tree of G, and let v be a leaf of T;, with vw € E(T;). We use induction
on |G| to construct our Z-flow that is non-zero on E(G) \ E(T;). Form G’ from G, and T/
from Tj, by contracting vw, preserving any loops or parallel edges this creates. By hypothesis,
G’ has a Zy-flow f’ that is non-zero on E(G’) \ E(T/). When we view f’ on E(G), we have
of’(x) = 0 (mod 2) for all x € V(G) \ {v,w}, and 0of'(v) = of'(w) (mod 2). If of'(v) = 1
(mod 2), then we give vw flow value 1; otherwise, we give vw value 0. Call this new flow f.
Note that 0f(x) = 0 (mod 2) for all x € V(G), as desired. O

To apply Lemma we prefer that our graph G have edge-disjoint spanning trees. To
ensure this we use Corollary[6.14, which follows easily from the so-called Tree-Packing Theorem
of Tutte and (independently) Nash-Williams. We defer its proof to the appendix (Theorem|A.11)).
Given a graph G and a partition P of V(G), let Ep denote the set of edges with their endpoints
in distinct parts of the partition.

Theorem 6.13 (Tree-Packing Theorem). A graph G has t edge-disjoint spanning trees if and
only if for every partition P of V(G), we have |Ep| = t(|P| — 1).

The condition [Ep| = t(|P| — 1) is clearly necessary, as follows. Form Gy from G by
contracting the vertices in each part of P to a single vertex (deleting loops and suppressing
multiple edges). Each spanning tree in G contracts to a spanning tree in Gy, possibly with
extra edges, so has at least |Gp| —1 = |P| — 1 edges. Since the t spanning trees in G are
edge-disjoint, so are their contractions in Gp. This means that [Ep| = |G| = t(|P] —1). So
the hard part is showing that this necessary condition is also sufficient; see Theorem [A.11}

P, Eqp
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Figure 6.2: Top left: An 8-vertex graph with 14 edges, and a decomposition into
two edge-disjoint spanning trees. Bottom left and right: Z,-flows that are non-zero
on all edges outside of one of these two spanning trees. (We depict each Z,-flow as
the subgraph induced by edges with flow value 1.) Top right: An NZ Z3-flow given
by these Z,-flows.

Corollary 6.14. Every 2t-edge-connected graph G has t edge-disjoint spanning trees.
Proof. Fix a partition P of V(G) with parts Pq, ..., Ps. Let d(P;) be the number of edges with
exactly one endpoint in P;. Since G is 2t-edge-connected, d(P;) = 2t for every i. So

1 ¢ 1
|Ep| zizld(?l) 25(2t) st = t|P|

Now the result follows from Theorem [6.1 O
Theorem 6.15. Every 4-edge-connected graph has an NZ 4-flow.

Proof. By Corollary[6.14] G has two edge-disjoint spanning trees. By Lemma with t = 2,
G has an NZ Z3-flow. So Theorem implies the result. O

Corollary[6.15]is due to Jaeger. He also used the same approach to show that every bridgeless
graph has an NZ 8-flow (equivalently, by Theorem an NZ Z3-flow). First he showed that
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it suffices to consider 3-edge-connected graphs, which we prove in Lemma Given such a
G, we form 2G by replacing each edge with two parallel edges. Since 2G is 6-edge-connected,
it contains three edge-disjoint spanning trees. Each edge of G is omitted from at least one of
these trees. So Lemma gives the desired NZ Z3-flow.

6.2 The Nowhere-Zero 6-Flow Theorem

In this section we prove that every bridgeless graph has an NZ 6-flow. Before embarking on
that journey we need some preparation.

When a vertex v has d(v) = 4, we will often lift two of its incident edges. That is, if
wv,vx € E(G), then we delete wv and vx and add the new edge wx. Call this new graph G’.
(If dg/(v) = 2, then we also lift its two remaining edges, and delete v altogether.)

Given any NZ k-flow in G’, we get an NZ k-flow in G by assigning both wv and vx the
value of wx in G’. Since |G’| < |G|, we often can proceed by induction. Because our theorems
frequently require certain edge-connectivity, we want to lift edges in a way that preserves this.
We use the following lemma of Mader. Its proof is long and subtle, so we defer it to the

appendix: Theorem [A.16]

Lemma 6.16 (Mader’s Splitting Off Theorem). Suppose that v is a non-cut-vertex in a graph
G, and d(v) = 4. We can lift some pair of edges incident to v, so that for every pair of distinct
vertices w,x € V(G) \ {v}, the maximum number of edge-disjoint w, x-paths does not decrease.

Next we show that it suffices to prove our main result for all 3-connected cubic graphs.

Lemma 6.17. Fix k = 3. If there exists a bridgeless graph G with no NZ k-flow, then, when we
take G to minimize |G| + ||G||, the graph G is simple, cubic, and 3-connected.

It is easy to check that K4 has no NZ 3-flow, which verifies the lemma for k = 3. For k = 4,
recalP| that the Petersen graph has no NZ 4-flow. However, it requires more work to check that
the Petersen graph minimizes |G| + ||G]|.

Proof. Let G be bridgeless with no NZ k-flow and, subject to that, |G| + ||G|| is minimum.

Suppose G has a 2-edge-cut {eq, ex}. By minimality, G/e; has an NZ k-flow f. As in the
proof of Theorem [6.10| this corresponds to an NZ k-flow either on G or on G —e;. Butin G —e;
edge e, is a bridge, so no NZ k-flow exists. Thus, f gives an NZ k-flow on G, a contradiction.
So G is 3-edge-connected. (In particular, 5(G) = 3.)

Similarly, suppose G has parallel edges, e; and e, and let G’ := G — e;. Since G’ is 2-
edge-connected, by minimality, G’ has an NZ k-flow f;. Let f, be an NZ 2-flow on the subgraph
induced by eq, e; (with ey oriented as in f;). Now either f; — fy or f; + 3 is an NZ k-flow of
G. Thus, G is simple.

3We sketch a proof of this in the paragraph following Conjecture

lift
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Suppose there exists v € V(G) with d(v) = 4. By Lemma we can form a new graph
G’ by lifting two edges incident to v so that for all distinct w,x € V(G) — v, the maximum
number of edge-disjoint w, x-paths does not decrease. So if G’ has a bridge, e, then e separates
v from V(G) — v. But this is impossible, since dg/(v) = dg(v) — 2 = 2. Thus, G’ is bridgeless.
But now G’ contradicts the minimality of G. So G must be cubic.

If v has a cut-vertex v, then some edge incident to v is a bridge, since d(v) = 3. So G is
2-connected. Suppose G has a cut-set {v1, vo}. For each v; some component of G —{v1, vy} has
in G only a single incident edge e; that is also incident to v;. But now {ej, es} is a 2-edge-cut,
contradicting above. Thus, G is 3-connected. O

Now we can prove that every bridgeless graph G has an NZ 6-flow. Before presenting
the details, we outline and motivate our approach. By Lemma it suffices to consider
3-connected, cubic graphs. And by Theorem it is equivalent to show that every cubic
graph has an NZ Z, x Zs-flow. Similar to how we proved Lemma we will find a Z,-flow
fo and a Zs-flow f3 such that every edge e € E(G) has (fz(e), f3(e)) # (0,0). Our proof will
use induction on ||G||. Since deleting edges makes the graph no longer cubic, we consider the
larger class of 2-edge-connected subcubic graphs, those with A < 3. Suppose we find an NZ
Zy x Zs-flow in G — e for some edge e. If we add a non-zero flow on e, this results in a non-zero
net flow into each endpoint of e, which is not what we want. So instead we consider a larger
class of pseudo-flows.

Similar to flows, a pseudo-flow orients each edge e of a subcubic graph G and prescribes a
flow value f(e), so that the net flow into each 3-vertex is 0. The difference from flows is that
now each 2-vertex may have non-zero net flow. This has the following benefit. When we delete
an edge e, we pick f3(e) € {1,2} and in G — e we require a pseudo-flow with prescribed net
flows in f3 at both endpoints of e, so that when we restore e, with flow f3(e), the net flows
into its endpoints each become 0. Something similar works if we delete a 2-vertex that has two
3-neighbors. An unusual feature of the induction is that when we delete an edge e, we pick the
value of f3(e) before invoking the induction hypothesis, but pick f2(e) afterward.

To proceed by induction, we must ensure that our smaller graph G’ is also 2-edge-connected.
To guarantee this, whenever G has a non-trivial 2-edge-cut 0(W) we use a different induction
step. We form Gy, from G by contracting W to a single new vertex w. Similarly, we contract
W to get Gy with a new vertex W We want to find good pseudo-flows for Gy and Gy, and
take their union to get a pseudo-flow for G. For this to work, these pseudo-flows must agree
on 0W; see Figure This motivates our final wrinkle, which is allowing a single 2-vertex z
to have flow values prescribed on its incident edges By symmetry, we assume that z € W. By
induction we get a good pseudo-flow for Gyy. Now in Gy;; we take W to be the new instance of
z, and prescribe the flow values on its incident edges (which are the edges of 9W). This allows
us to merge the pseudo-flows for Gy and Gy, as desired.

4These contractions are similar to those we used when proving Hadwiger’s Conjecture for line graphs of multi-
graphs (Theorem 3.16)) and also when proving Menger’s Theorem (Theorem [A.6).
5This is similar to the precoloring we use to prove Theorems|4.5/and Also, see Chapter
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To formalize the outline above, we use the following technical lemma.

Lemma 6.18. Let G be a directed (loopless) 2-edge-connected subcubic graph, with a specified
2-vertex z as its root. Fix functions w: V(G) — Z3 and f}(z) : 9(z) — Zy, for each k € {2, 3}.
If the properties (0)—(v) below hold, then we can extend f;, to fy : E(G) — Zy, for each k € {2, 3}
that satisfies properties (1)—(4) below.

0] ZVeV(G) w(v) =0 (mod 3).
(i) w(v) = 0 for each 3-vertex v.
(iii) The net flow into z specified by {5 equals p(z).
(iv) If u(z) = 0, then the net flow into z specified by f3 equals o.
) (f2(e), f3(e)) # (0,0) for each e € 0(z).
The four guaranteed properties of fo and fs are as follows.
(1) fx(e) = fy(e) for each e € 9(z) and each k € {2, 3}.
(2) For eachv € V(G), the net flow into v from f3 equals p(v).

(3) Foreach v € V(G), if u(v) = 0, then the net flow into v from fy equals o. (In particular,
this is true for every 3-vertex.)

(4) (f2(e), f3(e)) # (0,0) for each e € E(G).
Before proving the lemma, we use it to prove the NZ 6-flow theorem.

Theorem 6.19 (6-Flow Theorem). Every bridgeless graph has an NZ 6-flow.

Proof. Figure shows an example. By Lemma [6.17, it suffices to consider cubic graphs. And
by Theorem it is equivalent to show that every cubic graph has an NZ Z; x Zs-flow. Let
G be a bridgeless cubic graph, and form G’ from G by subdividing a single edge, and call this
new 2-vertex z. Orient G’ arbitrarily, let 1 be identically 0, and let f3(e) = 1 for each e € 9(z).
Also fix f3(e) for each e € 0(z) so that z has net flow 0 in f3. It is easy to check that G’ is
2-edge-connected and p, f7, f3 satisfy properties (i)-(v). By Lemma G’ has pseudo-flows
fo and f3 satisfying (1)-(4).

By possibly reversing one edge (and negating its flow values), we assume that z has indegree
1, so both of its incident edges have the same flow value. By suppressing z we get a Zy X Zs-
pseudoflow f for G. Property (4) ensures that f(e) # (0, 0) for each edge e, so f is nowhere
zero. And property (3) ensures that each 3-vertex has net flow 0. Thus, f is an NZ Z; x Z3-flow
for G, as desired. O
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Figure 6.3: An example of the proof of Theorem that every bridgeless graph has an NZ 6-flow. The
diagrams should be read using a depth-first search (branching left), from top left. Flow values that are
highlighted in gray are known the first time a diagram is reached; if a flow value is highlighted for the
first time when an edge is bold, and that bold edge is deleted in the next diagram, then only the second
coordinate of that flow value is known initially. Flow values that are not highlighted are only known when
we return to the diagram after visiting more diagrams.
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The value p(v) in Lemma should be viewed as capturing the flow into each 2-vertex v
that will be added later, when we restore an edge incident to v that we previously deleted. (In
particular, p(v) = 0 whenever d(v) = 3.) Now we prove the lemma.

Proof of Lemmal6.18] Let G be a loopless, 2-edge-connected subcubic graph, and p, f3, 3
satisfy the hypotheses of the lemma. We use induction on ||G||. We first present the induction
steps, of which we have four, since they are more interesting. We defer to the end the base
cases, which are a bit tedious to verify.

(A) Suppose L(v) = 0 for some 2-vertex v with v # z, and |G| = 3. We form G’ from G by
contracting some edge e incident to v (but not z), and get the desired Z; x Z3 pseudo-flow for
G’. When we uncontract e we give it the same flow values as the other edge incident to v. By
(iii) and (iv), this gives the desired Z; x Zs-flow for G. Henceforth we assume that pu(v) # 0
for every 2-vertex other than z.

(B) Suppose G has no 2-vertex other than z, so u is identically 0. Let G’ := G — v1vy, for
some edge viv, € E(G—2z). Note that G’ is 2-edge-connected, since G has only the single trivial
2-edge-cut 0(z), and vivy ¢ 0(z), since d(v1) = d(va) = 3. Let u/(v1) := 1, u/(v2) := —1,
and p'(x) := p(x) for all x € V(G) \ {v1,v2}. By induction on G’, with p’, f3, and f3, there
exists a pseudo-flow (f7, f;) satisfying properties (1)-(4). To extend (fj,f}) to G, we pick
f3(viva) € {1,2} and f5(v1v2) € {0,1} so that 0fy(vi) = O for each k € {2,3} and i € {1, 2}.
(This is possible by (2) and (3), since  is identically 0 in G.)

(C) Suppose G has a 2-vertex v, distinct from z, and denote its neighbors by v; and vs;
suppose also that G has no non-trivial 2-edge cut. (We can further assume that vv; and vv,
are both oriented away from v.) Pick fs: d(v) — {1,2} so that dfs (v) = u(v) (mod 3). Let
1w (vi) := u(vi) — f3(wy), and p'(x) := p(x) for all x € V(G) \ {v,v1,v2}. Let G’ := G —v.
Since G has only trivial 2-edge-cuts, G’ is 2-edge-connected. By induction on G’, with p/, f3,
and f3, there exists a pseudo-flow (f3, ;) for G’ satisfying properties (1)-(4). To extend this to
the desired pseudo-flow for G, for each i € [2], let f3(vvy) := f3(vvi) and let fo(vvy) == ofs(vi).

(D) Suppose G has a non-trivial 2-edge-cut d(W), as in Figure By symmetry we assume
z € W. Form Gy from G by contracting W to a single vertex w, and let p(w) := Y cw 1(v),
and all other vertices inherit p from G. Form Gy, and its p analogously. By induction, Gy,
has a pseudo-flow (f}, f}) satisfying properties (1)-(4). For Gy, let W be the new z (since the
original z is contracted away) and let f;/* specify values on 0(W) to agree with f . We must
show that Gy with f{<’ * satisfies hypotheses (i)—(v).

This is clear for all but hypothesis (iv), and (iv) holds trivially if w(w) # 0. So suppose
u(w) = 0. Hypothesis (i) implies that p(w) = —pu(w) (mod 3); so w(w) = 0. Thus, if
w(w) = 0, then p(w) = 0. By (3) for Gyy the net flow into w from f} is 0. But 0Gy (W) =
0g(W) = 0g,, (w), so the net flow into W by f7* is also 0. That is, (iv) holds for Gyy.
By induction, Gy has a pseudo-flow (f3, f§') satisfying properties (1)-(4). Since (f3, f3) and
(fy, ) agree on OW, they combine to give the desired pseudo-flow for G.

Now we consider the base cases. Each of (A), (B), and (C) decreases ||G|| by at most 2 before
its recursive call. And (D) may decrease ||G|| arbitrarily much, but ensures that || Gy/|| = 3 and
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(W)

Gw | > © = Gy

Figure 6.4: A non-trivial 2-edge-cut 9(W) and the graphs Gy and Gy formed from G by
contracting W and W (respectively).

|Gw Il = 3. Thus, for the base cases, we may assume that |G| € {2, 3}.

Suppose ||G|| = 2, and V(G) = {v,z}. Since each edge of G is in 9(z), we simply let
fi = fy for each k € {2,3}. Now (1) is immediate, and hypothesis (v) implies (4). By the
zero-sum rule: 0fy(v) = —0fyx(z), for each k € {2,3}. So properties (2) and (3) follow from
(iii) and (iv), together with (i).

Now suppose instead that ||G|| = 3, and V(G) = {v,w, z}. All flows are prescribed by f}.
except for those on edge vw. Choose f3(vw) so that 0f3(v) = u(v) and of3(w) = p(w). This
is possible by (i) and the zero-sum rule. Let fo(vw) = 1, which ensures that f(vw) # (0, 0).
This choice cannot violate (3), since (A) implies that p(v) = 0 and p(w) # 0. O

6.3 Exponentially Many Nowhere-Zero Zy-flows

In Theorem we proved that every 4-edge-connected graph has an NZ Z4-flow. In Theo-
rem we proved that every 2-edge-connected graph has an NZ Z¢-flow. In this section we
prove that such graphs have exponentially many NZ flows. But we must be careful. A cycle of
any length has only 5 NZ Zg-flows. More generally, subdividing an edge does not change the
number of NZ flows. So, if we want exponentially many NZ Z¢-flows in a 2-edge-connected
graph, then this count must be exponential in something other than the graph’s order. This
motivates the following 2 results.

Theorem 6.20. If G is 4-edge-connected, then it has at least 2/C/3 NZ Z4-flows.

Theorem 6.21. If G is 2-edge-connected, then it has at least 2G1=1G1/3 NZ Z¢-flows.

By Corollary[6.11, counting NZ Z4-flows (resp. NZ Ze-flows) is equivalent to counting NZ
Zy X Zy-flows (resp. NZ Zs X Zo-flows). To find many Zy. x Z,-flows, we start with a single one,
say (@1, ©2), where @1 is a Zy-flow and @3 is a Z,-flow; we allow the possibility of ¢;(e) =0
for some edges e, as long as (p1(e), @2(e)) # (0,0). Let E; be the set of edges with ¢;(e) # 0,
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and let @3 be a Z,-flow such that @3(e) = 0 for all e € E(G) \ E;. Consider (@1, @2 + @3).
Clearly it is a Zy x Zy-flow. Further, it is NZ, since each e € E; has ¢1(e) # 0 and each e ¢ E;
has @3(e) + @3(e) = @2(e) # 0. Thus, to find many NZ Z X Zy-flows, it suffices to find many
Zy-flows like @3 above. We do this in Lemmal6.25] But first we need a little preparation.

Lemma 6.22. Let G be a directed graph and let H be an abelian group. Fix F C E(G) such that F
induces a (directed) forest. If @1 and @2 are H-flows on G and @1(e) = @z(e) foralle € E\F,
then @1 = Q.

Proof. Since @, and @, are H-flows, so is ¢@; — @3. But now @; — @, must be identically O,
since the net flow into every vertex is 0, by Observation [6.3] O

We will only need the following lemma in the case k = 2, but we prove it more generally,
since the proof is nearly identical.

Lemma 6.23. The number of Zy-flows (perhaps not NZ) in a connected graph G is exactly
klIGlI—IGI+1

Proof. Fix an arbitrary orientation of G and a spanning tree T. We show that every map
@ : E(G) \ E(T) — Zy extends to a Zy-flow of G in exactly one way. Such a ¢ extends in at
most one way by Lemma So now we prove that it extends in at least one way.

Letﬂfd(G) :=||G|| — |G| + 1. We use induction on fd(G). If f{d(G) = 0, then G is a tree, so
the only Zy-flow on G is identically 0. Suppose instead that fd(G) = 1. Pick e € E(G) \ E(T).
Let C be the single cycle in G. We can assign any value to e, and must then also assign the
same value to each other edge of C, and assign 0 to each edge outside C. (We assume that C
is oriented consistently, by the comment following Definition [6.1})

For the induction step, suppose that fd(G) = s. Choose e € E(G)\E(T), andlet G’ := G—e.
Fix amap ¢ : E(G) \ E(T) — Zy and let ¢’ denote its restriction to E(G’) \ E(T). Since
fd(G’) = s—1, by hypothesis ¢’ extends to a Zy-flow @; on G’. Again, let C denote the unique
cycle contained in E(T) U e. Let @, be the Zy-flow that assigns ¢(e) to each edge of C and
assigns 0 elsewhere. Now @1 + @3 is a Zy-flow in G. O

Definition 6.24. The support of a flow ¢, denoted supp(¢), is the set of edges where @ is
nonzero. That is, supp(¢) :={e: @(e) # 0}

Lemma 6.25. Fix a graph G. Let @1 : E(G) — Zyx and @3 : E(G) — Zy be flows with
supp(@1) U supp(@2) = E(G). Let t := |supp(@2)l. Now G has at least 21GI-IGI=t/k Nz
Zy X Zo-flows.

We follow the outline after the statement of Theorem By Lemma we want the
support of the Z -flow to be large. So we begin by modifying it to ensure this.

®It is easy to check that the collection of Zi-flows on G is a vector space over Zy. So fd is short for flow dimension,
the dimension of that vector space.

supp( )
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Proof. Let @1, @2, and t be as in the statement of the lemma. We first modify ¢ to get a new
Zy.-flow @] such that (@7, @2) is still an NZ Zy x Zy-flow, but now also [supp(¢1)| = |G| —t/k.
We can write @5 as the disjoint union of edge sets of cycles Cy, ..., Cs (we assume that each
C; is oriented consistently). For each Cji, let ¢; be a Zy-flow with value 1 on each edge of
C; and value 0 elsewhere. For each e € E(C;), there is exactly one value j € {0,...,k — 1}
such that @1(e) + jdi(e) = 0. By Pigeonhole, there exists j; such that @i(e) + jidi(e) =0
for at most [E(Cy)|/k edges e € E(Ci). Solet ¢ := @1+ Y ;_;jidi. Clearly, [supp(¢;)| =
161 — X5y ICill/k = 16l — t/k.

Let G’ := Glsupp(¢})] and note that ||G’|| > ||G|| — t/k. By Lemma [6.23} G’ has at least
2llGlI=t/% 7, flows. Let @3 be one of these Z,-flows. Clearly, (@], @2 + @3) is a Zy X Zy-flow.
Further, it is NZ, since ¢j(e) # 0 for each e € supp(@]) and @z(e) + @3(e) = @2(e) # 0 for
each e ¢ supp(o7). O

Now we can prove Theorem For easy reference, we restate it.
Theorem 1.19. If G is 4-edge-connected, then G has at least 2/G1/3 NZ Z4-flows.

Proof. Let G be a 4-edge-connected graph. By Corollary[6.11] counting NZ Z4-flows is equivalent
to counting NZ Zy x Zy-flows. By Theorem [6.15] G has an NZ Zy x Zy-flow. Let Eq, Ep, E3
denote the sets of edges with flow values (0,1), (1,0), and (1, 1), respectively. Because of
the structure of Z, X Z,, at each vertex the numbers of incident edges in each E; are either
all even or all odd. So swapping the flow values on the edges in any two E; yields another
NZ Zy x Zy-flow. Thus, we can assume that |E;| = ||G||/3. Call this flow (¢1, @2). Since
G has minimum degree at least 4, |G| = 4/G|/2 = 2|G|. Now we apply Lemma with

supp(¢@2) = |G| — |[E2| < 2||G||/3. Thus, the number of NZ Z; x Zy-flows in G is at least
2l GlI-I1GI-(21G[1/3)/2 — 92/|G]l/3-1Gl > 9/GI/3. -

Next, we turn to proving Theorem The main extra complication is getting an NZ
Z3 X Zo-flow (@1, ¢2) with a good upper bound on |supp(¢z)|. Our solution is to show that
we can restrict the problem to cubic graphs. If G is cubic, then ¢, is a disjoint union of

cycles, so [supp(¢2)| < |G|. Now the number of Z3 x Z-flows guaranteed by Lemma is
SIGI-IGI-IGI/3 _ 9IG1/6 _ (IGI-IGN/3

Lemma 6.26. Let G be a graph and let { := ||G||—|G|. If G is 3-edge-connected, then there exists a
3-edge-connected cubic graph G’ with |G’| = 2 such that G can be formed from G’ by contracting
a set of edges F C V(G) that induces a forest. (See the right of Figure|6.5])

Proof. Let f(G) := Zvev(G)(d(V) — 3). We use induction on f(G). If f(G) = 0, then G is
cubic, so let G’ := G. Instead assume f(G) = 1, and choose v € V(G) with d(v) > 4.

We will use the following operation. To expand at v, we pick edges vw; and vw, and form
G” from G —{vw7, vw,} by adding a new vertex v’ and edges v/, v/w1, and v/wj; see the left
of Figure Clearly, f(G’) = f(G) — 1. Also, G’ /v’ = G. So, to complete the induction step,
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Figure 6.5: Forming G’ from G, as in Lemma Left: Expanding at a vertex v. Right: A 3-edge-connected
graph G (no bold edges) with |G| = 7 and ||G|| = 15, so £ := 15 — 7 = 8. And a 3-edge-connected cubic
graph G’ (9 bold edges) with |G| = 2¢ = 16. Note that G’ is formed from G by expanding at each vertex
v exactly dg (v) — 3 times.

it suffices to show that we can choose edges vw; and vw, so that G” is 3-edge-connected, since
by the induction hypothesis such a G’ has the desired graph G’ and F C E(G’). (Since w' is
not a loop, the edge set F U{vv'} induces a forest in G’.) To show that G” is 3-edge-connected,
it is helpful to note that, for every choice of edges vw; and vws, if G” has an edge-cut E’ with
|[E’'| < 2, thenvv’ € E'.

Consider the edge-connectivity of G —v. If G—v is disconnected, then v has at least 3 edges
to each of its components. So we choose w; and ws in distinct components of G — v, and G”
is 3-edge-connected. Suppose instead that G — v is connected, but has a cut-edge e. Since G
is 3-edge-connected, v has at least 2 neighbors in each component of G —v — e; let w; and wo
be neighbors of v in distinct components. Note that G’ is 3-edge-connected. Finally, suppose
that G — v is 2-edge-connected. Now let w; and w; be arbitrary neighbors of v. Again, G” is
3-edge-connected. This concludes the induction step. O

Theorem 6.27. If G is 2-edge-connected, then G has at least 2UIGII=1G1)/3 Nz Z¢_flows.

We can assume that §(G) = 3. If not, then we form G’ from G by contracting an edge
incident to a 2-vertex. Now proving the result for G’ also proves it for G. As explained
above, we want to reduce to the case when G is cubic. Since Lemma requires that G is
3-edge-connected, we begin by handling 2-edge-cuts.

Proof. We use induction on |G|. If |G| = 1, then each edge is a loop, and can be assigned any
nonzero value in Zs X Zy. The number of NZ flows is thus 561 > 20IGII=1)/3 — 2(lIGI—IG))/3,

Now we consider the induction step. First suppose that G contains a 2-edge-cut {ej, es}. Let
G’ := G/e;. By hypothesis, the theorem holds for G’. Furthermore, each NZ Z3 x Z,-flow in
G’ naturally maps to an NZ Z3 x Zy-flow in G, by giving e; the same value as e, (assuming e;
and ey are oriented oppositely). This proves the theorem for G, since ||G|| — |G| = ||G’|| — |G’|.

Suppose instead that G is 3-edge-connected. Form G’ from G as in Lemma By

Theorem [6.19, G’ has an NZ Z3 x Za-flow (@1, @2). Since G’ is cubic, [supp(@2)| < |G].
By Lemma [6.25, the number of Z3 X Zy-flows in G’ must be at least 2/G'lI=IG"1=IG"/3 —



Zy
Zy-boundary

3-orientation

lift

180 CHAPTER 6. DELETION AND CONTRACTION: NOWHERE-ZERO FLOWS

231G'1/2—1G"[-1G"1/3 — 9lG'l/6 — 28/3  Recall that there exists F C E(G’) such that F induces a
forest and contracting F in G’ yields G. Given any NZ Z3 X Zy-flow on G’, contracting F yields
an NZ Z3 X Zy-flow on G. We only need to check that distinct flows in G’ map to distinct flows
in G. Since F induces a forest, this follows directly from Lemma |6.22 O

6.4 The Weak 3-Flow Conjecture

In this section we make progress toward’s Tutte’s 3-Flow Conjecture. In fact, we prove a much
more general statement, given in Theorem [6.28

Fix a graph G and an odd integer k = 3. Recall that Z, ={0,1,...,k—1} Fixp: V(G) —
7y such that ZvEV(G) B(v) =0 (mod k). We call 3 a Zy-boundary of G. Any orientation D
of G such that d (v) — dp (v) = B(v) (mod k) for all v € V(G) is a B-orientation.

Theorem 6.28. Fix a graph G, an odd integer k = 3, and a Zy-boundary of G. If G is (3k — 3)-
edge-connected, then G has a {3-orientation.

This theorem has the following result as a special case.
Theorem 6.29 (Weak 3-Flow Theorem). If G is 6-edge-connected, then G has an NZ 3-flow.

Proof. Let k = 3 and consider the Zs-boundary 3 with $(v) = 0 for all v € V(G). By
Theorem|[6.28] graph G has a 3-orientation D. Further, D naturally yields an NZ Zs-flow (if we
give each edge flow value 1). So Theorem [6.10]implies that G has an NZ 3-flow. O

Before we prove Theorem we need some preparation. Recall what it means to lift
edges vw and wx incident to a vertex w. We delete viw and wx and add vx. And if either vw
is oriented as VW or else wx is oriented as WX, then the new edge is oriented as VX.

To prove Theorem [6.28] as if often the case, we use induction (equivalently, minimal coun-
terexample) to prove something stronger. Our induction is on the number of edges. Typically
we proceed by deleting an edge, contracting a vertex subset, or (occasionally) lifting a pair of
edges. Thus, a key step is phrasing our hypotheses so that they continue to hold when we
perform any one of these operations. Before stating the theorem, we introduce a function T,
which allows us to state our hypotheses.

6.4.1 The Definition and Properties of T

The definitions and properties in this subsection are essential to the proof of Theorem in
Subsection [6.4.2)

Fix a graph G, an odd integer k > 3, and a Zy-boundary 3 of G. Define T : V(G) —
{0,+1,+2,..., £k} such that, for each vertex v € V(G), we have
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| Bv) (mod k)
Tv) = { d(v) (mod 2). (6.1)
If B(v) = 0 and d(v) is odd, then |t(v)| = k, so we can let either T(v) := k or T(v) := —k

(for now we chose t(v) arbitrarily, but we will revisit this case in Claim . Otherwise, (6.1) is
equivalent to the following:

(V) = { B(v) if d(v) — B(v) is even ©62)

B(v) —k ifd(v)— B(v) is odd.

Example 6.30. The table below shows the value of T, when k = 7, for each pair (a, $(v)),
where a := d(v) mod 2. Note that each value in {0, £1,..., £k} maps bijectively to a pair
(a, B(v)), except that k and —k both map to the pair (1, 0). O

1 +7 1 -5 3 -3 5 -1

Figure 6.6: Values of T for pairs (a, $(v)) where a := d(v) mod 2 and
B(v) €{0,...,6}

Suppose v € V(G) and d(v) = |t(v)]. Now implies that d(v) — |t(v)| is even. So
a natural way to achieve d*(v) — d~(v) = B(v) (mod k) is to first orient (d(v) — |t(v)])/2
incident edges into v and also (d(v) — |t(v)])/2 incident edges out of v. Next we direct all
remaining edges of d(v) either out of v (if T(v) is positive) or into v (if T(v) is negative).
Our challenge is to orient the edges as above simultaneously for every vertex v. However, if
d(v) — |t(v)] is large, then we have significant freedom in how we orient each set 9(v).

We will often want to contract vertex subsets, so we extend our definition of T as follows.
For each W C V(G), let (W) := >, cw B(w) (mod k) and d(W) := [0(W)|. Analogous to
(6.1), for each W C V(G), we define t(W) to be the element of {0, +1,+2,..., +k} such that

p(W)  (mod k)

(W) _{ dW)  (mod 2). 6.3)

Note that T(W) also satisfies a statement analogous to ([6.2). We close this subsection with
two easy observations about T.

Observation 6.31. Form a graph G’ from G by deleting some edge e incident to a vertex v.
Further, let B/(v) := B(v) + 1 or B’(v) := B(v) — 1. Now |t/(v)| — |t(v)| € {—1,1}. Also, if
e € 0(W), then |t/(W)| — [T(W)] € {1, 1}.
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Proof. Suppose d(v) — B(v) is even. Now d’(v) — B’(v) is also even. So t(v) = B(v) and
1/(v) = B’(v) = B(v)=*1, as desired. Assume instead that d(v)—f(v) isodd. Now d’(v)—p’(v)
is also odd. Thus, |[t/(v)] —|Tt(V)| = (k —B'(V)) — (k—B(v)) € {—1,1}.

Note that d’(W)—p/(W) = d(W)—B (W) (mod 2). So either t(W) = (W) and v/ (W) =
B'(W) or else T(W) = B(W) — k and /(W) = B/(W) — k. Thus, either |[t/(W)| — |[t(W)]
B'(W)—B(W) =B’ (v)—B(v) € {~1, 1} orelse [t'(W)|—|t(W)| = (k—B'(W))—(k—B(W))
B(W) =B (W) =p((v)—B'(v) e {11}

Observation 6.32. If d(W) = 3k — 3, then also d(W) = (2k — 2) + |t(W)|.

(W
p

O

Proof. If|t(W)| < k—1, then we are done. So assume |t(W)| = k. Since k is odd, equation (6.1)
implies that d(W) is also odd. Thus, d(W) = 3k — 3 implies the stronger inequality d(W) =
3k — 2, which yields the desired inequality. O

6.4.2 The Main Result

Now we can state the main result of this section.

Theorem 6.33. Fix an odd integer k = 3. Let G be a (loopless) multigraph with a Z\-boundary
B. Fix z € V(G) and an orientation Dg of (z). Let Vg :={v € V(G) \{z} | T(v) = 0}. If Vo # 0,
then let v be a vertex of Vy with smallest degree. We can extend Dy to a [3-orientation D of all of
G provided that the following two conditions hold.

1) d(W) = (2k — 2) + |t(W)| whenever ) € W € V(G) \ {z} and W # {vq}.
i) d(z) < (2k —2) + |t(2)| and dgo(z) — dBO(z) = B(z) (mod k).

Whenever we write d(z) or d(W), both in Theorem and below, we refer to degrees in
G (which are unaffected by the orientation Dy).
It is easy to prove Theorem from Theorem [6.33] so we start with that.

Proof of Theorem from Theorem Suppose we are given an odd integer k > 3, a (3k —
3)-edge-connected graph G, and a Zy-boundary 3 for G. Choose an arbitrary edge e € E(G)
and subdivide it by adding a vertex z; call this new graph G’. Let 3’(z) := 0 and B'(v) := B(v)
forallv € V(G). Orient 0(z) so that d*(z) = d~(z) = 1.

Since G is (3k — 3)-edge-connected, for each W C V(G’) \ {z} with [V(G’) \ W| > 1,
we have d(W) > 3k — 3. So Observation implies that d(W) = 2k — 2 + |t(W)|. Thus,
Theorem guarantees that G’ has a B/-orientation D’ that extends the orientation of d(z).
Now suppressing z gives the desired (3-orientation of G. O

Before proving Theorem[6.33} we give some intuition. A crucial step in the proof is Claim[i]
which shows that d(W) = 2k+|t(W)|forevery W C V(G)\{z}suchthat 1 < |[W| < |V(G)\{z}.
Note that this is d(W) = 2k + |t(W)|, rather than d(W) = (2k — 2) + |[t(W)], as in hypothesis
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(i) of the theorem. This claim plays the role of a gap lemma in proofs using the potential
method (see Chapter [12). It allows us to slightly modify G (by deleting an edge or lifting an
edge pair) and get the desired orientation by induction, since the modified graph still satisfies
the hypotheses of the theorem. The key is that our modification can decrease d(W) by at most
2, for every set W.

It is our need to prove Claim [1| that motivates us to introduce vertex z, in hypothesis (ii). If
Claim [if fails for some set W, then the edge cut 9(W) is “small”. We contract each of W and
V(G) \ W in turn, getting good orientations for each of the two resulting smaller graphs. To
get a good orientation for G, we want to combine these good orientations for these smaller
graphs. For this idea to work, these orientations must agree on d(W). It is this need to have
the orientation agree on d(W) that motivates our choice in the statement of Theorem to
allow a prescribed orientation/| Do of 9(z).

In Claim[2we show that Vo = (). So we include V, and vy in the statement of Theorem[6.33
largely for technical reasons. Algorithmically, we think of choosing a vertex of V{ of smallest
degree and repeatedly lifting pairs of incident edges until vy has degree 0. (This works precisely
because 3(vo) = 0 and d(vg) is even.) At this point we delete v and repeat this process for the
vertex in V with current smallest degree. Eventually we delete all vertices in Vj, which justifies
our claim that Vy = (). (We must also consider the case that vy has only a single neighbor,
particularly if it is z, but this is not too difficult.) This algorithmic view helps explain why we
require W # {vo} in hypothesis (i). As we repeatedly lift edge pairs incident to vg, eventually
d(vg) gets arbitrarily small, culminating with d(vg) = 0, just before we delete vy.

Proof of Theorem [6.33] We can assume |G| > 3, as follows. The case |G| = 1 is trivial, since G
is loopless. So assume |G| = 2. Now E(G) = 0(z), so all edges are oriented by Dg. Further,
since ZVQV(G) B(v) =0 (mod k), the condition in (ii) that dgo(z) — dBO(z) = B(z) (mod k)
implies that the other vertex of G, call it x, satisfies d}; (x) —dp, (x) = dp (2) —df (2) =
—B(z) = A(x) (mod k). Thus, we assume |G| = 3.

Assume the theorem is false. We partially order the graphs (with z specified) by the value
of |G| + ||G — z||. Let M be the set of of all counterexamples (G, 3, z) to the theorem that are
smallest in this partial order. For most of the proof we prove certain properties of every element
of M. Near the end we chose an element of M that also minimizes |G| and show that it is not
a counterexample. That is, we show that M = (.

Claim 1. f W C V(G) \ {z} and 1 < |W| < |V(G) \ {2}, then d(W) = 2k + |T(W)|.

Proof. Fix W as in the hypothesis and suppose d(W) < 2k + [t(W)|. Since d(W) = |[t(W)]
(mod 2), by we have d(W) < (2k—2) + |t(W)|. Form G, from G by contracting W to a
new vertex w, similar to Figure except that now we only have [9(W)| < (2k — 2) + |t(W)].

7Akin to what we mentioned in Section this prescribed orientation Dy plays the same role as (a) the two
precolored adjacent vertices on the outer face in the proof of Theorem (that planar graphs are 5-choosable)
and (b) the precolored vertices on the outer face in the proof of Theorem [4.26] (that planar graphs with no cycle of
length 4 to 8 are correspondence 3-colorable).
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Since |Gw/| < |G| and ||Gw — z|| < ||G — z||, graph G has a -orientation Dyy that extends
Do (here B(w) := 3 ,cw B(v) (mod k)). Note that all edges of (W) are oriented by Dyy.
Similarly, we can contract W to get Gy;; with a new vertex w. Now we let W play the role of
z; this is possible, since d(w) = [0(W)| < 2k — 2 + |t(W)| = 2k — 2 + |t(W)|. Further, we
orient each edge of d(w) in Gy as the corresponding edge of 0(W) in Dyy. Again, Gy has
a [3-orientation D+;; that extends the orientation of d(W). Since 9(W) = 9(W), orientations
Dw and Dy, agree on (W), so they combine to give the desired 3-orientation D of G.

Claim 2. V; = ().

Proof. Suppose Vo # () and choose vy € Vj to minimize d(vo). By definition, t(vy) = 0, so
d(v) = 0 (mod 2). If vy has at least two distinct neighbors, then we lift one pair of edges
incident to vy (that are not parallel); call the resulting graph G’. Clearly |G’ —z|| < ||G — z||,
and (ii) holds trivially for G/, since d’(z) = d(z) and |t/(z)| = |t(z)|. (This is where we use the
condition W # {vo} in hypothesis (i), since perhaps d(vo) = 2k —2+ 0| and d’(vo) = 2k —4.)
Note that d’(W) € {d(W), d(W) — 2} for all W C V(G) \ {z}. Since d’(W) = d(W) (mod 2),
also /(W) = t(W). So hypothesis (i) also holds for G’, since Claim [if implies d’'(W) =
dW)—222k—2+[t(W)| =2k — 2+ |t/ (W)|.

Assume instead that vg has only a single neighbor x. If x = z, thenwelet W := V(G)\{vy, z},
so that T(W) = —t({z,v}) = —1(z). Now hypothesis (i) gives d(z) = d(W) + d(vg) =
(2k — 2) 4 |[T(W)| + 2 = 2k + |t(2)|, contradicting hypothesis (ii). So x # z.

Now let G’ := G —vg and B’ := f for all v € V(G’). By minimality, we will show that
G’ has a B’-orientation D’. To extend D’ to a -orientation of G, we orient d(vg)/2 edges
into vg and d(vg)/2 edges out of vo. Clearly, G’ is smaller than G. Thus, it suffices to show
that G’ satisfies the hypotheses of the theorem. Hypothesis (ii) holds, since d’(z) = d(z) and
1/(z) = t(z). So we consider (i). Suppose W C V(G’) \ {z} and [V(G’) \ W| > 1. Now
d’ (W) € {d(W),d(W U {vo})} and d(W) = d(W U {vo}) (mod 2). Since B'(W) = B(W) =
B (W U{vp}), Definition gives /(W) = (W) = t1(W U {vp}). Thus (i) holds for G’. So,
by minimality G’ has a 3’-orientation, which we can extend to a 3-orientation for G. &

Claim 3. G — z is connected.

Proof. Suppose that G — z is disconnected, and let U and W be the vertex sets of two of its
components. Recall, from Claim [2 that Vo = (). So hypothesis (i) gives d(U) > 2k — 2 and
d(W) = 2k — 2. Summing these inequalities gives d(z) = d(U) + d(W) = 2(2k — 2) >
3k—2 = (2k—2) +|t(z)|, which contradicts hypothesis (ii); here the strict inequality uses that
k > 3. See the left of Figure %

Claim 4. d(z) = k.

Proof. Suppose instead that d(z) < k— 1. Form G’ from G by replacing some edge vw of G —z
with two directed edges vZ and zw, and letting B’ := . See the right of Figure Clearly
|G’ =|Gland |G’ —z|| < ||G—z||. Now d’(z) S k—1+2 < 2k—2 < (2k—2) +|t'(2)|. S0 G’
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G G’

Figure 6.7: Left: In Claim we assume (to get a contradiction) that G — z is disconnected. Right: In
Claim[4} we replace undirected edge vw with directed edges vZ and zw.

satisfies hypothesis (ii). Finally, d’(W) = d(W)+2ifv,w € W and otherwise d'(W) = d(W).
This implies that T/ (W) = t(W) for all W. Thus, G’ satisfies hypothesis (i). Since G’ is smaller
than G, by minimality G’ has a ’-orientation D’. Now lifting the edge pair vz, zw gives the
desired {3-orientation of G. &

It is convenient now to define 2 vertex subsets. Let V' :={v € V(G)\{z}: 1 < t(v) < k—1}
and V- :={ve V(G)\{z}: 1 -k <1(v) < -1}

Claim 5. Either V(G) \ {z} = VT orelse V(G) \{z} = V™.
Proof. Suppose that T must satisfy
T(v)T(W) > 0forallv,w € V(G) \ {z}. (6.4)

By Claim[2) Vo = ). So t(v) # 0 for every vertex v # z. If there exists w € V(G) \ {z} with
B(w) = 0 and d(w) odd, then we can take either T(w) = k or T(w) = —k. So, for any edge
vw, we can choose t(w) so that vw violates ((6.4). Thus, we assume that 1 < |t(v)| < k—1 for
everyv € V(G) \{z}. Thatis, V(G) = VT UV ™. By Claim G \ {z} is connected, so if VT # ()
and also V— # (), then there is some edge vw withv € V* and w € V, and this edge violates
(6.4). So to prove the claim, it suffices to prove Condition (6.4). We do this now.

Suppose instead that there exist v,w € V(G) \ {z} with t(v)t(w) < 0; among all such
pairs v, w, choose one to minimize the distance from v to w. By Claim [2, we know Vy = (), so
we assume T(v) > 0 and t(w) < 0. By Claim |3, we know G — z is connected, so it contains
a v,w-walk. At some point along this walk, T changes sign. Since we chose v and w at
minimum distance, we must have vw € E(G). Let G’ :== G —vw. Let B’/(v) := B(v) — 1, let
B’(w):=B(w)+1,and B’(x) := B(x) for all x € V(G) \ {v, w}. See the left of Figure[6.8|

We will show that (G, 3/, z) satisfies the hypothesis of the theorem. Since G’ is smaller
than G, this means G’ has a 3’-orientation D’ that extends D. By restoring edge vw, we get
the desired p-orientation of G. So it suffices to show that (G’, 3’,z) satisfies hypotheses (i)
and (ii). Hypothesis (ii) holds trivially, since d’(z) = d(z) and B’(z) = B(z), so t/(z) = 1(z).

Now we consider hypothesis (i). If v,w € W or v,w € W, then d'(W) = d(W) and
B'(W) = B(W), so T/ (W) = 1(W); thus, (i) holds. Instead assume [W N {v,w} = 1
and 1 < [W| < |G — z|. For v, we have d’(v) = d(v) — 1 and B’(v) = B(v) — 1. Thus,

v, v-

G B’
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v/(v) = 1(v) — 1 and |t/(v)| = |t(v)] — 1, since T’(v) > 0. Similarly, d’(w) = d(w) — 1 and
B'(w) = B(w)+1. Sot’(w) = t(w)+1, but |t’(w)| = |t(W)|—1. Thus, |t/ (x)| = |T(x)|—1 for
each x € {v,w}. Note that |t/(x)| = |t(x)| — 1 even when |t(x)| = k. Now d'(W) = d(W) —1,
and B’(W) = B(W) £ 1. By Observation[6.31} also t/(W) = t(W) £ 1. By Claim[i} d’(W) =
dW)—1=22k+|t(W)|—1 = (2k—2) + [t(W)| + 1 = (2k — 2) + |t/ (W)|. So hypothesis (i)
holds. Thus, t(v)t(w) > 0, as desired. &

Remark. Note that Claims [iHs|above hold for every member of M. For the rest of the proof we
choose (G, 3, z) to be an element of M that minimizes ||G||.

Claim 6. We can assume, for all v € V(G) \ {z}, that d(v) = (2k —2) +t(v) and 1 < T(v) =
B(v) <k—1

Proof. By Claim [s|, we assume that V(G) \ {z} = V*. If this is not the case, then we form G’
from G by reversing all edges in 9(z), and we let B/ (v) ;== k — B(v) for all v € V(G). It is easy
to check that (G’, B/, z) is also an element of M that minimizes ||G||. For all v € V(G) \ {z}, we
know v € V*; so 1 < 1(v) < k — 1, which implies t(v) = (v). Finally, hypothesis (i) gives
div) = (2k — 2) + 1(v). O

Claim 7. d(z) = k + B(z), and all edges in 0(z) are oriented away from z.

Proof. Claim[4]gives d(z) > Kk, so z has a neighbor, x. And Claim[6|gives 1 < t(x) < k—1. If xz
is directed as xZ, then let G’ := G — X2, let B/ (x) := B(x) — 1, and let B'(z) := B(z) + 1. Now
(G, B’, z) satisfies the hypothesis of the theorem (the proof follows that of Claim|[s). Since G’
is smaller than G, by the remark before Claim[6 we know G’ has a ’-orientation D’, which
we can extend to a {3-orientation of G. So G is not a counterexample.

Thus, all edges in 0(z) are oriented away from z. So 3(z) = d(z) —ck, where c is the largest
integer such that d(z) — ck = 0. Hypothesis (ii) gives d(z) < (2k —2) + |t(z)| < 3k — 2, and
Claimgives d(z) =2 k.Sol<c<2 If2k < d(z) < 3k—2,thenc = 2,s0d(z) — p(z) = 2k,
which is even. Now implies T(z) = B(z). Thus, d(z) = B(z) + 2k = |t(z)| + 2k, which

contradicts hypothesis (ii). Hence, ¢ = 1, and d(z) = k + B(z). &
v v z z
T(v) >0 o) T(v) =0
> : > k—1
T(w) <0 S ' (w) <0
w w X X
G G’ G G’

Figure 6.8: Left: In Claim G’ := G —vw. Right: In Claim G’ is formed from G —zxX
by adding k — 1 parallel edges from x to z.
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Claim 8. (G, B, z) is not a counterexample.

Proof. By Claim [7} vertex z has a neighbor x and an incident edge zX. Form G’ from G by
deleting zX and adding k — 1 edges directed from x to z; see the right of Figure Let
B’ := B. If G’ has a 3’-orientation D’, then in D’ we replace k — 1 edges oriented from x to
z with the edge zX. The resulting orientation is a 3-orientation of G, which contradicts that
(G, B, z) is in M. Thus, G’ must have no 3’-orientation.

If (G, B/, z) satisfies hypotheses (i) and (ii) of the theorem, then (G’, 3’,z) is in M, since
|G| = |G| and |G’ — z|| = ||G —z|. So (G/,B’,z) satisfies Claims [iHs| above. To reach a
contradiction, we now show that (G’, B/, z) violates Claim Since x € VT, by we
know that d(x) — B(x) is even. Since d’(x) = d(x) + k — 2 and B'(x) = B(x), we get
T/(x) = B’(x) — k. Since B’(x) = B(x) < k—1, we have t/(x) < 0. Thatis x € V'~. However
VT C VT {x} = V(G’) \ {x, z}, which contradicts Claim 5| Thus, to reach a contradiction, it
suffices to show that (G’, B/, z) satisfies hypotheses (i) and (ii) of the theorem.

We start with hypothesis (ii). By Clairn d(z) = k+ B(z). Since B’(z) = B(z), we know
d'(z)—B'(z) =d(z) =1+ (k—1)—B(z) = d(z) — B(z) + k—2 = k+ (k — 2), which is even.
So1'(z) = B’(z). Also since B'(z) = B(z), wehave d’(z) =k—2+d(z) = k—2+k+B(z) =
2k — 2+ B'(z) =2k — 2+ |T/(2)]. Alsod’ " (z) —d"(z) =dT(z) =1 —(d'(z) + (k—1)) =
dt(z) —d (z) —k = B(z) = B'(z) (mod k). So (ii) holds for (G’, B, z).

Now we consider hypothesis (i). Since it holds for (G, 3,z), we only need to consider
subsets W of V(G’) that contain x. By Claim E] above, d(x) = 2k — 2 + t(x) = 2k — 1.
Thus, d’(x) = d(x) + (k—2) =2 2k—1)+ (k—2) = 3k —3. So Observation implies
d’'(x) = (2k — 2) + |t/(x)|]. For any W C V(G’) in hypothesis (i), by Claim jif we have
d’'(W)=dW)+(k—2) 2 2k+ (k—2) = (2k—2) + k = (2k — 2) + |t/ (W)|. So hypothesis
(i) holds. Thus, G’ has a ’-orientation, which yields a 3-orientation of G. &

This completes the proof. O

6.4.3 0Odd-edge-connectivity and Modulo k-Orientations

To conclude this chapter, we use ideas similar to those in the proof of Theorem to prove
one more result. But first we need a definition. Recall that an edge-cut in a connected graph
G is a set E(V1, V3), all those edges with one endpoint in each of V; and V5, such that Vi, V,
is a partition of V(G). An edge-cut E(Vq,V,) is odd if |[E(V71, V5)| is odd. A graph G is
odd-s-edge-connectivity if the smallest odd edge-cut in G has size at least s.

Theorem 6.34. Fix an odd integer k = 1 and a graph G. If G is odd-(3k — 2)-edge-connected,
then G has a modulo k-orientation.

Our final theorem only requires high odd-edge-connectivity, but it only guarantees the
specific 3-orientation when 3(v) = 0 for all v. As in the previous case, most of our work goes
into proving a more technical lemma, which gives the desired result as an easy corollary.

odd-s-edge-
connectivity
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Theorem 6.35. Let k be a positive odd integer; and let G be an odd-(3k — 2)-edge-connected graph.
Let 9(W) be some smallest odd edge-cut in G, and assume [0(W)| = 3k — 2. If we orient 0(W)
so it is balanced (that is, the number of edges oriented in one direction across the cut equals the
number oriented in the other, modulo k), then we can extend this orientation of d(W) to a modulo
k-orientation of G.

Proof. We use induction on ||G||. First suppose |[W| > 2 and |W| > 2. By induction we get good
orientations for Gy and Gy, (these are formed from G, respectively, by contracting W and
W to single vertices). Since these orientations agree on d(W), they combine to give a good
orientation of G. So we assume instead |W| = 1, and define z such that W = {z}.

We claim that if X € V(G)\{z}and 1 < |X| < [V(G)\{z}| and d(X) is odd, then d(X) = 3k.
Suppose, to the contrary, that there exists such an X with d(X) < 3k — 2. Since G is odd-
(3k—2)-edge-connected, we know d(X) = 3k—2. Now form Gx and Gx. By induction Gx has
an orientation Dx that extends the orientation of d(z) and is a modulo k-orientation. Further,
Dx gives a balanced orientation of 0(X), since Dx is a modulo k-orientation. By induction,
we also get an orientation Dy of Gx that extends this orientation of 9(X). Since Dx and Dy
agree on 0(X), they give a modulo k-orientation of G that extends the orientation of 9(W).
Thus, d(X) = 3k.

As in Claim 2 in our proof of Theorem|[6.33] we show that no vertex v of G has even degree.
Suppose not. (We know v # z since, by assumption, d(z) = 3k — 2, which is odd.) If possible,
we lift a pair of edges in 0(v) going to distinct vertices and finish by induction. Otherwise v
has only a single neighbor, so we delete v and finish by induction. Any modulo k-orientation of
G — v extends to a modulo k-orientation of G, by orienting half of the edges in d(v) into v and
orienting the other half out. Thus, every vertex of G has odd degree.

Suppose each X C V(G) \ {z} with d(X) even has d(X) = 2k. Since d(X) — B(X) = d(X)
is even, T(X) = B(X) =0, so d(X) = 2k + t(X). (And if d(X) is odd, then d(X) = 3k —2 =
(2k — 2) + |T(X)], since G is odd-(3k — 2)-edge-connected.) Recall the remark following (6.1):
since d(z) = 3k — 2, which is odd, and (z) = 0, we have |t(z)| = k. Since d(z) =3k — 2 =
2k — 2 + |t(z)|, graph G satisfies the hypotheses of Theorem Thus, G has a modulo
k-orientation, as desired.

Now assume instead that some X C V(G) with d(X) even has d(X) < 2k —2, and choose X
to be minimal. By induction, Gx has a modulo k-orientation Dx (that extends the orientation
of 9(z)). We can also get a modulo k-orientation of Gy that extends the orientation of 9(x)
given by Dx. To do so, we use Theorem [6.33| with X playing the role of z, as follows.

By assumption d(X) = d(X) < 2k — 2. Since we chose X to be minimal, there does
not exist Y C V(Gyx) \ {x} with d(Y) even and d(Y) < 2k — 2. Similarly, if there exists
Y C V(Gx) \ {x} with d(Y) odd and d(Y) < 3k — 2, then such a Y exists in G, which violates
the hypothesis. So Gx has a modulo k-orientation Dy that extends the orientation of 9(X)
given by Dx. Combining Dy and Dx gives a modulo k-orientation of G that extends the
prescribed orientation of 9(W), as desired. O

Now we use Theorem to prove Theorem[6.34
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Proof of Theorem Fix an odd integer k = 1, and let G be a graph that is odd-(3k—2)-edge-
connected. We can handle each component separately, so assume G is connected. Suppose
|G| = 2. If ||G|| is even, then we orient half of the edges in each direction. If ||G|| is odd,
then we first orient k edges in a single direction, and afterward we orient half of the remaining
edges in each direction.

Now assume |G| = 3. We use induction on ||G||. If each vertex v has even degree, then it
has an Eulerian tour D with d; (v) = d5(v), so G has a modulo k-orientation. Instead assume
that some vertex has odd degree (so the odd-edge-connectivity is finite).

We pick an arbitrary vertex v with d(v) odd and with distinct neighbors w and x, and
lift the edge pair wv, vx to form a new graph G’. (Again, if v has a unique neighbor, then
we proceed by induction on V(G) \ {v}.) Consider an edge-cut in G, denoted dg (W) and its
corresponding edge-cut dg/(W)in G’. If w,x € Wandv ¢ W (orw,x € Wandv ¢ W), then
|0g (W)| — |0g/ (W)| = 2; otherwise [0g/(W)| = |0g(W)|. So by repeatedly lifting edge pairs
incident to v, we eventually reach a graph G* with odd-edge-connectivity exactly 3k — 2. We
choose an arbitrary smallest odd edge-cut 0(W) in G* and give it a balanced orientation. By
Theorem we can extend this orientation of 0(W) to a modulo k-orientation of G*, which
translates to the desired modulo k-orientation of G. O

Notes

Nowhere-zero flows were introduced by Tutte [389] [390] to generalize the face-coloring prob-
lem to non-planar graphs. Much of the work in this area has been motivated by Tutte’s 5-Flow
Conjecture [390]], 4-Flow Conjecture [392], and 3-Flow Conjecture (see [48, Open Problem
#48]). Theorem is due to Tutte [389] 390]l, and we follow his original proof that state-
ments (i) and (iii) are equivalent. But to show that (i) and (ii) are equivalent we follow
Younger [424]]; notice the similarity between this proof and that of Lemma 5.4

After the proof of Theorem we noted the following. For every multigraph G there
exists a polynomial ®@ g such that for every finite abelian group H, with order |H|, the number
of NZ H-flows on G is @ g (|H|). The key observation needed to prove this fact is that ® g (H) =
®g/e(H) — ®g_(H) for every group H and every non-loop edge e. This important identity
is called a deletion/contraction equation. Tutte’s investigations into other parameters satisfying
similar recurrences led him to define (what is now called) the Tutte polynomial, shown below.

Te(x,y) = Z (x — 1)*AI=K(E) (y — 1) R(A)HAI=IVI
ACE

where k(A) denotes the number of components of the graph with vertex set V and edge set A.
(It is straightforward to check that Tg = Tg ¢ + Tg/e-) The Tutte polynomial has connections
with many areas of mathematics. [[148]]

The key step in proving Lemma is the observation that for each spanning tree T,
the graph G has a 2-flow that is non-zero on each edge outside T; see Exercise [il This was

deletion/
contraction
equation
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observed by Jaeger [224]]. The Tree-Packing Theorem was proved by Tutte [391] and Nash-
Williams [[318]]. More generally, Edmonds gave necessary and sufficient conditions for a matroid
to have k disjoint bases. (For graphic matroids, the independent sets are the acyclic edge sets,
so if a graph is connected, then its bases are precisely its spanning trees. Thus, we immediately
recover the Tree-Packing Theorem. West [412, Corollary 8.2.59] gives a nice presentation.)

As a special case of his 4-Flow Conjecture, Tutte also conjectured the following [[393].

Conjecture 6.36 (Tutte’s 3-Edge-Coloring Conjecture). Every bridgeless cubic graph with no
subdivision of the Petersen graph is 3-edge-colorable.

Recall that a cubic graph is 3-edge-colorable if and only if it has an NZ 4-flow (see Exercisel4]).
Tait proved that a bridgeless cubic planar graph is 3-edge-colorable if and only if it is 4-face
colorable. Thus, Tutte’s 3-Edge-Coloring Conjecture implies the 4 Color Theorem, since the
Petersen graph is non-planar.

In 1998, Robertson, Sanders, Seymour, and Thomas announced a proof of Tutte’s 3-Edge-
Coloring Conjecture. Seymour described the proof: “Repeat the proof of the 4 Color Theorem,
twice.” Their general approach is to classify all cubic bridgeless graphs with no Petersen
subdivision. The non-planar ones comprise “single-cross” graphs (which can be drawn in the
plane with a single edge crossing on the outer face, and which reduce to the planar caseE[),
“double-cross” graphs, and “apex” graphs (which become planar after deleting some single
vertex). This classification is done by hand (without computer) in [[346}, 347, [345]. In contrast,
the proofs that the double-cross graphs [145] and apex graphd’|are 3-edge-colorable each reuse
computer code developed by Robertson, Sanders, Seymour, and Thomas for their proof of the
4 Color Theorem.

We digress briefly to discuss the complexity of deciding, for each fixed integer k = 2,
whether an arbitrary input graph has an NZ k-flow. (It is easy to check whether a connected
graph is bridgeless; see [357, Section 15.3].) For k = 2, the answer is yes if and only if every
vertex degree is even. And for k = 6, the answer is simply yes. For k = 3, when G is cubic the
problem is equivalent to G being 3-edge-colorable, which Holyer showed to be NP-complete;
see Theorem[2.8] For k = 5, if the 5-Flow Conjecture is true, then the answer is again yes. But
Kochol [264]] showed that if the conjecture is false, then the problem is NP-Complete.

Jaeger studied the problem of NZ Zy . 1-flows where the flow values are restricted to be
either 1 or —1. Equivalently, these are orientations D of G such that dg (v) —dp(v) =0
(mod 2k + 1) for each vertex v. Recall that we call such a D a modulo (2k + 1)-orientation.
Jaeger posed the following conjecture [226].

Conjecture 6.37 (Jaeger’s Circular Flow Conjecture). For each k = 1, every 4k-edge-connected
graph has a modulo (2k + 1)-orientation.

8Single-cross graphs were shown to be 3-edge-colorable by Jaeger [225]]. In the introduction to [i45], Edwards,
Sanders, Seymour, and Thomas give a short proof, which they attribute to Jaeger. The idea is to modify the graph
slightly to get a bridgeless cubic planar graph G. Now G is 3-edge-colorable by the 4 Color Theorem, and we can
modify this coloring to 3-edge-color the original graph. We leave the details to Exercise

9The proof that cubic apex graphs are 3-edge-colorable is still in preparation.
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It is easy to check that the case k = 1 is equivalent to Tutte’s 3-Flow Conjecture. Now
we observe that the case k = 2 implies Tutte’s 5-Flow Conjecture. Recall, from Lemma |6.17}
that we can assume G is 3-edge-connected. Form G’ from G by replacing each edge with 3
parallel edges. Now G’ is 9-edge-connected, since G is 3-edge-connected. By assumption, G’
has a modulo 5-orientation D, since it is 8-edge-connected. To get an NZ Zs-flow for G, we
do the following. For each three parallel edges in G’ that arose from a single edge e in G, we
give e flow value equal to the “net orientation” of those edges: 3 (resp. 1, —1, —3) if exactly 3
(resp. 2, 1, 0) edges are oriented by D in the direction of e in G. It is easy to check that this
produces the desired NZ Zs-flow in G.

The Circular Flow Conjecture inspired many partial results (particularly in the case when
G is planar); the most notable of these is Theorem Ultimately, however, this conjecture
was disproved [201]. Now work has shifted to determining the minimum edge-connectivity
that guarantees a graph G has a modulo (2k + 1)-orientation, and that guarantees G has a
[3-orientation for every Zjy 1-boundary 3. Since all known counterexample are non-planar,
some research focuses on proving the Circular Flow Conjecture restricted to planar graphs.

Jaeger also posed [224]] a “Weak 3-Flow Conjecture”: There is some integer t such that
every t-edge-connected graph has an NZ 3-flow. This was confirmed by Thomassen [383]], with
t = 8. More generally, Thomassen showed that, for each odd integer k > 3, if G is (2k? + k)-
edge-connected and f3 is a Zyj 1 1-boundary, then G has a 3-orientation. Theorem [6.28] which
was proved by Lovasz, Thomassen, Wu, and Zhang [291], weakens this hypothesis to (3k — 3)-
edge-connected, and its proof draws heavily on Thomassen’s work. Kochol showed [265]
that it suffices to prove Tutte’s 3-Flow Conjecture for graphs that are 5-edge-connected. So
Theorem [6.28]is only “one step” away.

The definitive reference on nowhere-zero flows is the monograph of Zhang [427]. It con-
tains many enlightening exercises, and we recommend it to the reader. Our presentation in
Section |6.1| follows the introduction of an unpublished essay by Lovasz [290]l. The NZ 6-Flow
Theorem has at least five distinct proofs: [361] and [116]] each give two; see also [[114] and [115].
The proof we presented is from [[116]], and we chose it because it most closely mirrors the proof of
Theorem The results in Sectionare due to DeVos, Langhede, Mohar, and Samal [113].
They improve on similar results of Dvorak, Mohar, and Samal [137] which, under the same
hypotheses, only yielded smaller exponents.

To conclude this section, we mention two generalizations of conjectures discussed above.
An odd cut is an edge-cut d(W) such that W contains an odd number of vertices of odd degree.
An r-graph is an r-regular graph in which each odd cut has size at least r. As we mentioned at
the end of the Notes for Chapter (3} Seymour conjectured that every planar r-graph is r-edge-
colorable. The case r = 3 is equivalent to the 4 Color Theorem and the conjecture has also
been verified when r € {4, 5} [326]], r = 6 [131], r = 7 [86], and r = 8 [87].

A stronger conjecture is that an r-graph is r-edge-colorable whenever it has no Petersen
subdivision; now the case r = 3 is Tutte’s 3-Edge-Coloring Conjecture. This stronger version
remains open when r = 4. Jaeger conjectured that every cubic bridgeless graph G has a
coloring of its edges with the edges of the Petersen graph, P, so that any 3 edges incident to
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a common vertex in G are colored with 3 edges incident to a common vertex in P. Jaeger
described this problem in the language of nowhere-zero flows, in his excellent survey [227].
This is now known as the Petersen Coloring Conjecture. If it is true, it implies both the Berge—
Fulkerson Conjecture (that every bridgeless cubic graph has 6 perfect matchings, with each
edge appearing in exactly two of them) and the Cycle Double Cover Conjecture (that every
bridgeless cubic graph has a set of cycles with each edge appearing in exactly two of them).

Exercises

6.1.

6.2.
6.3.
6.4.

6.5.

6.6.
6.7.

6.8.

6.9.

6.10.

Given a spanning tree T in a graph G, for each edge e € E(G) \ E(T), let C, denote the
unique cycle in T+e. Show that } ¢ (GN\E(T) Ce (mod 2) is an eulerian subgraph of G
containing every edge of E(G) \ E(T); here we write modulo 2 sum to denote symmetric
difference. Show that this subgraph is identical to that in the proof of Lemma|6.12

Determine the minimum k such that K, has an NZ k-flow, for each integer n = 3.
Show that a cubic graph has an NZ 3-flow if and only if it is bipartite. [389]
Show that a cubic graph has an NZ 4-flow if and only if it is 3-edge-colorable.

Show that a cubic graph has an NZ Z3-flow if and only if it is 3-edge-colorable. By
Theorem this gives an alternate solution to the previous problem.

Show that every graph with a Hamiltonian cycle admits an NZ 4-flow.
If each edge of G is in a triangle, show that G has an NZ 4-flow.

(a) Show that a wheel graph (the join of a cycle and K1) has an NZ 3-flow if and only if
its order is odd. (b) Moreover, it is a contractible configuration for a 3-flow. (c) Apply
this fact to show that the 3-flow conjecture is true for graphs with a dominating vertex
(one adjacent to all other vertices in G).

Show that if G has at most two vertices of odd degree, then G has an NZ 3-flow.

Show that if G — e has an NZ 4-flow, then G has an NZ 5-flow.

. A bridgeless cubic graph is “single-cross” if it can be drawn in the plane with a single

edge crossing. Tait proved that a bridgeless planar graph is 3-edge-colorable if and only
if it is 4-face-colorable. (By Exercise |4} Tait’s Theorem is the case k = 4 of Theorem )
Use the 4 Color Theorem (and Tait’s Theorem) to show that every single-cross graph is
3-edge-colorable.



Chapter 7

Rosenfeld Counting

There is no problem in all mathematics that cannot be solved by
direct counting. But with the present implements of mathematics
many operations of counting can be performed in a few minutes
which without mathematical methods would take a lifetime.

—Ernst Mach

In this chapter we consider a wide variety of coloring problems. Generally, the colorings
that we seek will be proper colorings that also satisfy additional constraints (for example every
2 color classes might be required to induce a forest, or to induce a forest in which each tree
is a star). We typically prove upper bounds on these chromatic numbers, for all graphs, in
terms of maximum degree. Many results of this type were first proved using the Local Lemma
and later reproved using Entropy Compression. Both of these techniques are powerful, and
we describe them a bit more in the Notes. But here we focus on a clever type of inductive
counting argument, recently discovered by Matthieu Rosenfeld. When such arguments apply,
they often give rise to strikingly simple proofs, avoiding many technical details required by the
two alternate methods mentioned above.

7.1 Introduction

The key idea in this chapter is to repeatedly extend a partial coloring, showing that each time
that we color an additional vertex v the number of valid partial colorings increases by at least
a constant factor. Given a coloring of a subgraph H, some candidate colors for v will lead
to invalid colorings of H 4+ v. But we will injectively map these invalid extensions to v onto
valid colorings of some smaller subgraph H’. Since H’ has exponentially fewer valid colorings,
by the induction hypothesis, some of the possible extensions to H + v must be valid. In fact,
enough are valid that we can finish the induction step. These arguments guarantee not only
one coloring of G, but exponentially many!
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7.1.1  Nonrepetitive List-coloring of Paths

Definition 7.1. A square in a coloring ¢ of a graph G is a path vy - - - vy such that @(vi ) =
@(vy) for all i € [k]. That is, the colors on the first half of the path are repeated on the second
half, in exactly the same order; see the left of Figure A coloring is nonrepetitive if it does
not contain any square. In particular, every nonrepetitive coloring is proper.

Figure 7.1: A 3-coloring of Pg containing a square (left) and a square-free 3-coloring of Pg (right).

Using only 3 colors, Thue constructed nonrepetitive colorings of P,,, with n arbitrarily large
(Exercise [1| presents the construction). This motivated the following conjecture.

Conjecture 7.2. For each 3-assignment L to the vertices of Py, for each positive integer n, there
exists a nonrepetitive coloring ¢ such that @(v) € L(v) for all v.

The conjecture posits that Thue’s result on nonrepetitive 3-coloring of paths generalizes to
list 3-coloring. This problem remains open, but our first theorem nearly solves it.

Theorem 7.3. For each 4-assignment L to the vertices of P, for each positive integer n, there
exists a nonrepetitive coloring ¢ such that @(v) € L(v) for all v.

Theorem follows immediately from our next lemma, which actually proves that P,, has
exponentially many nonrepetitive L-colorings.

Lemma 7.4. Let L be a 4-assignment to the vertices of a path P. For each i = 1, let C; be the set
of nonrepetitive L-colorings of the first i vertices of P. For all i < |[V(P)|, we have

Ciy1| = 2G4l
Since |©;| = 4, the lemma shows that P has more than 2/V(P)| nonrepetitive L-colorings.

Proof. Our proof is by induction on i. Let F be the set of L-colorings of the first 1+ 1 vertices of
P that are nonrepetitive when restricted to the first i vertices but that contain a square including
vertex i + 1. Clearly, [Ci11| = 4/Ci| — |F]. Let F; be the subset of J that contains a square of
length 2j. S&" = Uj>17;. Thus, we seek to bound |J;| for all j = 1.

Each ¢ € Jj restricts to a nonrepetitive L-coloring ¢’ of the first i —j + 1 vertices of
P. Furthermore, @ is uniquely determined by this restriction ¢’. (We say that ¢’ is mapped
to by ¢, or that ¢ is “charged” to ¢’.) Thus, |Fj| < |€i_j4+1|. By the induction hypothesis,

"It is easy to check that F; N F, = () whenever j # k, but our proof does not need this, so we omit the details.
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Ci_j11| < 27771 Cy), for each j > 1. Thus,

Cisa] = 4lCi| — |F] > 4lCi — ) I

j=1
> 41Ci — ) €yl

j=1
>4l — ) 2777e] > 20e).

j=1 O

The heart of Rosenfeld Counting is mapping all bad extensions to valid partial colorings
with fewer vertices colored (the number of which is exponentially smaller). To better illuminate
the proof of Lemma 7.4} we consider the following example.

Example 7.5. Let P be a path on 5 vertices, vy - - - vs, and let L(v;) :={1,2,3,4} for all i € [5].
Now |C1| = 4, since all possible colorings are valid. Next, |G| = 4/|C1| — |C1] = 12, since an
extension @ of ¢’ € @ isvalid if and only if @(v,) # @(v1). Similarly, |C3] = 4/C5| —|Ca| = 36,
since again an extension ¢ of ¢’ € Gy is valid if and only if @(v3) # @(v2). Furthermore,
|C4| = 4|C3] — |C3] — |G| = 96, since an extension ¢ of ¢’ € C3 is valid if and only both (a)
©(v4) # @(v3) and (b) (@(v4), (v3)) # (@(v2), @(v1)). Note that every coloring in € is
mapped to by an invalid extension of a coloring in Cs.

In contrast |Cs| = 4|C4| — |C4| — |C3] = 4(96) — 96 — 36 = 252, but this inequality is strict.
The reason is that not every coloring in C3 is mapped to by an invalid extension of a coloring
in C4. Specifically, consider a coloring ¢’ in C3 with ¢’(v1) = @’(v3) = a and ¢’(v2) = b for
distinct a, b € [4]. If @ is a coloring of v; - - - v5 that both (i) restricts to ¢’ and (ii) has a square
of length 4 ending at vs, then @(v1) = @(v3) = @(vs) = a and @(v2) = @(v4) = b. However,
@ is still invalid when restricted to v; - - - v4. Thus, this restriction is excluded from C4. In total,
12 such colorings ¢’ € G5 are not mapped to by candidate extensions of colorings in C4. Thus,
we in fact have |C5| = 252 + 12 = 264. &

In the next section we develop a more general framework, with the same core approach. In
the rest of the chapter, we apply these techniques to a wide variety of coloring problems.

7.2 A General Framework

Informally, we want a proper coloring of G that also avoids on certain subgraphs H specific
proper colorings of H that are forbidden. We call such a coloring of G good; colorings of
G that are not good are bad. Given a coloring that is good (resp. bad), renaming a color
always yields another coloring that is good (resp. bad). So, when specifying bad colorings for
a subgraph H, we usually specify just one representative from each equivalence class. We call
this representative a forbidden template. We often denote a template for a subgraph H by H.
For each subgraph H, let By be a set of templates forbidding certain colorings of H, before

Viteevs

template, H
By, B
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renaming colors. Let B := {By : H C G}; for each H, possibly By = (), i.e., no colorings of
H are explicitly forbidden. (Typically, we will have [By| < 1 for all H C G, but Sections 7.3.3
and offer exceptions to this general rule.) A coloring ¢ of G is Byy-bad if ¢ gives H a
forbidden coloring, and ¢ is B-bad if ¢ is By -bad for some H. If ¢ is not B-bad, then ¢ is
B-good. A pair (G, B) is an instance.

A few examples will clarify these definitions. In standard vertex coloring, we use a single
type of template (for each edge e € E(G)): H; is edge e with endpoints colored 1,1. In star
coloring, we require a proper coloring with no 2-colored path on 4 vertices; so any two color
classes induce a star forest. For star coloring, we use two templates: H, is as above and H, is
(for each 4-vertex path P in G) the path P colored 1,2,1,2.

Fix an instance (G, B) and consider a subgraph H of G. A subset S C V(H) determines
By if any two colorings that are both forbidden by templates in By and agree on S must be
identical on H. For every v € V(H), we assume that By, is determined by some (non-empty)
subset of V(H) \ {v}; we consider this a part of the definition of ‘instance’. The weight of a
subgraph H is min, ¢y (41){|V(H)| — |S| — 1}, where S is a minimum-sized subset of V(H) \ {v}
that determines By (if By = 0, then H has no weight). For the edge H; in the previous
paragraph with By, = {F;} note that H; is determined by each endpoint so H; has weight
2—1—1 = 0. Similarly, for the 4-vertex path Hy with By, = {H,}, note that H, is determined
by any two successive vertices, so Hy has weight 4 —2 —1 = 1.

For each v € V(G), let N;(v) be the number of subgraphs H with v € V(H) and with weight
i. For a list-assignment L, let P(G, B, L) be the number of L-colorings of G that are B-good.

The notion of “instance” is very general. In particular, it captures acyclic coloring, star
coloring, nonrepetitive coloring, frugal coloring, and acyclic edge-coloring, to name a few. But
before we turn to those examples, we state and prove our general framework.

Theorem 7.6. Let (G, B) be an instance. Assume there exists a real number 3 and an integer
k = 1 such that every vertex v € V(G) satisfies

k=B+)Y B Ni(v). (7.1)

>0
For every k-assignment L to V(G), we have

P(G,B,L) = plVIC

The proof of Theorem is not overly difficult (as we will see soon). But the impatient
reader should feel no guilt about skipping it now, moving ahead to the abundance of applications
in Section [7.3} and only returning to the proof after being convinced of the theorem’s utility.

For an instance (G, B) and H C G, we write (H, B) for the instance (H,{Bj : ] € H}). And
if L is a list assignment for G, then we also consider L restricted to V(H) to be a list assignment
for H. Theorem [7.6]will follow directly from Lemma
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Lemma 7.7. Let (G, B) be an instance. Fix a real number 3 = 1 and an integer k = 1 such that
holds for every vertex v of G. Now for every k-assignment L to G, for every induced subgraph
H of G, and for every vertex v of H we have

P(H,B,L) = pP(H—v,B,L).
For the subgraph Hy with no vertices, we let P(Hgy, B, L) := 1, for the unique “empty” L-coloring.
The proof of this lemma reuses many ideas from the proof of Lemma|y.4

Proof. Our proof is by induction on [V(H)|. First we consider the base case, [V(H)| = 1. By
definition, P(H —v, B,L) = P(Hy, B,L) = 1. In our definition of instance, we require that if
By # 0, then | contains at least two vertices. So all k choices of colors in L(v) yield B-good
colorings of H. Thus, we are done by since P(H,B,L) =k = =pP(H—v,B,L).

Now we consider the induction step, when |V(H)| > 1. Fix an arbitrary vertex v € V(H).
Let F be the set of B-bad L-colorings of H that are B-good on H — v. By definition,

P(H,B,L) =kP(H—v,B,L) —|].

For each ¢ € J, there exists ] C H such that ¢ is Bj-bad; we will “charge” this L-coloring
@ to this subgraph J. (If ¢ is Bj-bad for more than one subgraph ], then we choose one
arbitrarily.) Let J; be the set of L-colorings in J that are charged to subgraphs | with weight
i. So [F] = Y ;50 |Fil. Given @ charged to a subgraph | with weight i, there exists a subset S
of V(]) \ {v} that determines B} and such that [V(]J)| —[S| =1 =1i. Let T := V(J) \ S. Since
@ is B-good for H — v, it is also B-good for H — T. Since Bj is determined by S, each B-bad
L-coloring ¢ charged to the subgraph | maps injectively to a B-good L-coloring of H — T (this
is simply the restriction of ¢ to H — T). So we must bound P(H — T, B,L). Note thatv € T
and |T| = [V(]J)| — S| =1+ 1. So [T \ {v}| = i. Using the induction hypothesis i times gives

P(H—v,B,L) = B'P(H—T,B,L).

That is, P(H — T,B,L) < B~'P(H — v, B,L). The number of subgraphs ] with weight i
that contain v is Nj(v). And the number of bad colorings charged to each such ] is at most
B~'P(H —v,B,L). Thus, |F;| < Ny(v)B~'P(H —v, B, L). Using this and (7.1), we get:
P(H,B,L) =kP(H—v,B,L) — ||
=kP(H—v,B,1) - ) |5
=0
>kP(H—v,B,1)— > Ni(v)p~"P(H—v,B,L)
>0
= k=) Ni(v)pP(H—v,B,1)
i>0

> BP(H—v,B,L). O

- » |
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In the rest of the chapter, the following easy proposition is often useful.

Proposition 7.8. For each real number x > 1, we have

Z “LX_i = ﬁ

i>1

Proof. Recall that (1—y)~! =Y ,5,y', whenever [y| < 1. Taking x :==y ! gives }_;5ox ' =
~1- We differentiate each side, and afterwards multiply by —x. O

7.3 Easy Examples

In this section we present six applications of Theorem

7.3.1 Star Coloring

A proper coloring ¢ is a star coloring if each pair of its color classes induces a star forest.
Equivalently, under ¢ every path on 4 vertices uses at least 3 colors.

Theorem 7.9. Let G be a graph with maximum degree A, let  := (A — 1)v/2A, and let k :=
[(A—1)V8A + A]. If Lis a k-assignment for G, then G has at least RIV(G)I star L-colorings.

Proof. Given a graph G that we want to star color, we create an instance (G, B) and apply
Theorem as follows. For each edge vw of G, we let B,,,, consist of edge vw colored 1,1.
For each path viwxy of G, we let B, xy consist of vwxy colored 1,2,1,2. (We consider a path
to be an unordered subgraph of G, so the paths vwxy and yxwv are the same and have only
a single set of forbidden templates.) Clearly, any B-good coloring of G is a star coloring of G.
So it remains to find the optimal choices of 3 and k.

For each edge H, the set By (which consists of a single template 1,1) is determined by
each endpoint, so H has weight 2 — 1 — 1 = 0. For each subgraph H which is P4, the
set By (which consists of a single template 1,2,1,2) is determined by any two successive
vertices of H, so H has weight 4 —2 — 1 = 1. Each vertex v lies on at most A edges and

Figure 7.2: Every forest has a star 3-coloring. In
each component we pick an arbitrary root r and
color vertices by distance from r modulo 3.
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lies on at most 2A(A — 1)? copies of P4; so No(v) < A and N;(v) < 2A(A — 1)2. Thus,
we need k = B + A + 2A(A — 1)1, The right side is minimized (using calculus) when
1-B72(2A)(A—1)? =0, which simplifies to B = (A—1)v/2A. Thus, we take B := (A—1)v2A
and k:=[B + A+ 2A(A B 1 =[(A-1)VBA+A]. O

7.3.2 Acyclic Edge Coloring

A proper edge coloring ¢ of a graph is acyclic if the subgraph induced by any two color classes
is acyclic; see Figure Equivalently, ¢ gives the edges of each cycle at least 3 distinct colors.

Theorem 7.10. Let G be a graph, let p := \/3(A — 1), and let k := [4.6(A—1)]. IfLisa
k-assignment to the edges of G, then G has at least !V (G acyclic 1-edge-colorings.

Technically, Theorem only applies when we are coloring vertices. So, to be formal,
we should color the vertices of the line graph of G. However, this formality only obscures
understanding. So below we slightly abuse terminology and color the edges of G.

Proof. Let G and L be as stated above. We create an instance (G, B) and apply Theorem
as follows. For each edge pair e, ez of adjacent edges in G, we let B¢, ., consist of e; and
ez colored 1,1. For each even length cycle e;---ey; in G, we let Be,...,, be @ such that
@(ezj—1) = 1 and @(ey;) = 2, for all j € [i]. Each subgraph of the first type has weight O;
and always Ny(e) < 2(A — 1). Each subgraph of the second type is determined by any two
successive edges in the cycle, so has weight 2i —2 — 1 = 2i — 3. And Ny;_3(e) < (A—1)%172,
Thus, to apply Theorem we need

k>B+2A—-1)+) pH I A—1)H72

i=2
=B+2(A—-1)+B) ((A—1)/p)*
izl
(A—1)2

= (A—1)[V3+2++3/2] ~ (A—1)4.598...

The third line uses the geometric sum formula and the fourth line comes by letting 3 :=
V/3(A — 1), which minimizes the expression on the third line (as is shown by calculus). O

7.3.3 Nonrepetitive Coloring

A nonrepetitive coloring of a graph G is a (proper) coloring ¢ such that G does not contain any
path v; - - - vy such that the colors on the first half of the path repeat on the second half of the
path in the same order. That is, we cannot have @(vi ) = @(v;) for all i € [s].

acyclic edge
coloring

nonrepetitive
coloring
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Theorem 7.11. Let G be a graph with maximum degree A, let p = (A — 1)%(1 + 21/3A1/3),
and let k := [ + A5/3272/3(1 4+ 21/3A=1/3)2], If L is a k-assignment, then the number of
nonrepetitive L-colorings of G is at least V(6!

Proof. Given a graph G that we want to nonrepetitively color, we construct an instance (G, B)
as follows. For each vertex v, and each path P of even order containing v, we let Bp consist of
all colorings in which the colors on the second half of P repeat the colors on the first half (in the
same order). Given such a path P of order 21, its weight is exactly i— 1. And the number of such
paths containing each vertex v is at most iA(A — 1)2*=2, That is, N;_;(v) < iA(A — 1)%12,

To finish by Theorem we want

k>B+) iAA—1)2 2
i>1
Let B := (1 4 ¢)(A — 1)?, where ¢, which is small and positive, will be specified soon. Now
weneed k = (1+e)(A—1)2+ Y ;iA(1+ &)l = (1 +e)(A—1)2+ e 2(1 + €)?A; the
equality holds by Proposition To get k = A%(1 + 0(1)), we simply need e ! = o(v/A). To
approximately minimize k, we let € := 21/3A~1/3, O

7.3.4 Frugal Coloring

A proper coloring ¢ is t-frugal if each color appears at most t times in the neighborhood of
each vertex. That is, j]w € N(v) : ¢(w) = i| < t for each vertex v and each color 1.

Theorem 7.12. Fix an integer t = 2. Let G be a graph with maximum degree A, let B =
((t— 1)A(A;1))l/t and let k := [%] + A. If L is a k-assignment for G, then G has at least
B!V (G k-frugal L-colorings.

Proof. Fix t, G, 3, k, and L as in the theorem. To construct frugal L-colorings of G, we build
an instance (G, B) and apply Theorem[7.6] For each edge vw in G, we take B,,,, to be vand w
colored 1,1. The weight of each such subgraph is 0. Note, for each v € V(G), that Ng(v) < A.
Further, for each vertex v € V(G) and each (t + 1)-element subset S C Ng(v), we take Bs to
be S all colored 1. Every such Bg is determined by each vertex in S, so S has weight exactly
t — 1. To construct such a set S containing a given vertex v, we first pick a neighbor w of v,
and then pick t other neighbors of w. Thus the number of such sets containing a vertex v is at
most A(At*l). That is, N¢_1(v) < A(At*l). Hence, to apply Theorem we need

A—1
k=B +A+ (3“%( . >

1/t
To minimize the right side, let f := <(t — I)A(A_1)> and k := A+ Lﬁ—w This suffices
A—1
because B+ A+ B IA(A 1) = A+ p4 B2 —A+p N R E.

A+ EL <Xk

O
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Figure 7.3: The Fano plane is a 3-uniform hypergraph with
each vertex in 3 edges. It is not properly 2-colorable, but is
properly 3-colorable (as shown).

The case t = 1 is similar. Now we must have k = 3 + A+ B°A(A —1) = B + A2. Since we
require 3 > 1, we need k = A? 4 1. This can be proved more directly by greedily coloring G2,
since its maximum degree is at most A2,

7.3.5 Tr-Uniform Hypergraph Coloring

A hypergraph H consists of a vertex set V(H) and an edge set E(H), where each e € E(H) is a
subset of V(H). Fix an integer r = 2. If |V/(e)| = r for all e € E(H), then H is r-uniform. (Note
that 2-uniform hypergraphs are simply graphs.) The maximum degree of a hypergraph is the
maximum number of edges containing a common vertex. A hypergraph is properly colored if
no edge is monochromatic.

Theorem 7.13. Fixintegers v 2 3and A = 1 and let H be an r-uniform hypergraph with maximum
degree A. Let k := [( ::;)((r —2)A)Y =17, For every k-assignment L, the number of proper
L-colorings of H is at least ((r — 2)A)IV(HI/(r=1),

Proof. Let G be a complete graph with V(G) := V(H). For each e € E(H), let G, denote the
subgraph of G induced by V(e). Let B, consist of (a single coloring with) V(e) all colored
1. So each edge of H corresponds to an r-element set of V(G), which has weight r — 2.
Since H has maximum degree A, we have N;_5(v) < A and Nj(v) = 0 for all other i. So it
sufficestohave k = p+p"2A> B+ 2 >0 B~!N¢(v). This expression is minimized when
B == ((r—2)A)Y ("1, Now we take k := [(Z=5((r —2)A)Y/ (=17, since p + p~("2A =

(B ' +A)/B 2 =((r=2)A+4)/p"?=Ar—1)/B"? =B(r—1)/(r-2) < k. M

hypergraph

r-uniform

properly colored
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7.3.6 A Slightly Harder Example: Acyclic Coloring

Recall that a proper coloring ¢ is acyclic if the subgraph induced by every two color classes
is acyclic. Equivalently, ¢ gives at least 3 colors to the vertices of every cycle. The acyclic
chromatic number, x4(G), of a graph G is the minimum number of colors that admits an
acyclic coloring. It is easy to use our standard approach to bound x(G).

Proposition 7.14. Every graph G with maximum degree A satisfies X (G) < %A‘g/ 2(140(1)).

Proof Sketch. We create an instance (G, B) with templates for 3 types of subgraphs. Each edge
in G has a single template, colored 1,1. The weight of each edge is 0. Note that Ng(v) < A.
Each 4-cycle in G has a single template, colored 1,2,1,2. Each 4-cycle has weight4—2—1 = 1.
Note that N;(v) < A(A — 1)?/2. Finally, each Ps in G, has a single template 1,2,1,2,1; each
Ps has weight 5 — 2 — 1 = 2. Note that N3 (v) < 3A(A — 1)3. Now it is easy to check that
holds with B := A%/2 and k := [3A%/2 + 4A]. O

The reason that we use a template for Ps, rather than for every even length cycle, is simply
to limit ourselves to only three templates, which allows a simpler proof. The reader can check
that the leading term of our upper bound comes from the 4-cycle template, so improving the
part arising from the Ps does not improve the order of magnitude.

As usual, the same proof works for list coloring. And the number of colorings from each
list-assignment is exponential in [V/(G)|. For the instance (G, B) above, we cannot improve the
order of magnitude of k. If we increase the magnitude of 3, then k increases in magnitude. But
if we decrease the magnitude of B then we weaken the bound N;(v)B~! < JA(A —1)2p 1,
so k again increases. Nonetheless, we can indeed improve this upper bound.

Theorem 7.15. Let G be a graph with maximum degree A. Let 3 := 2A*/3 and k := [4A%3 + A.
If L is a k-assignment for G, then G has at least !V (S)| acyclic L-colorings.

Proof. Again, we will build an instance (G, B) such that every coloring of (G, B) is an acyclic
coloring of G. As we noted above, when trying to improve our upper bound the “problem area” is
our subgraphs of weight 1, namely, 4-cycles. Specifically, we only have that N1 (v) < %A(A—l )2.
So we must handle the 4-cycles in G more efficiently.

Two vertices in G form a dangerous pair if they share at least A%/ common neighbors. For
each dangerous pair {v,w} in G, let B,,,, consist of a single template with v, w colored 1,1.
Such pairs have weight 2 — 1 — 1 = 0. Further, for each 4-cycle vwxy in G, add a template if
and only if neither {v, x} nor {w, y} is a dangerous pair. For each such 4-cycle viwxy, let B,,,,xy
consist of v, w, x,y colored 1,2,1,2. It is easy to check that colorings of the instance (G, B) are
in bijection with acyclic colorings of G. So it suffices to check that holds with B := 2A%/3
and k := [4A%*3(1 4+ 0o(1))].

The number of walks of length 2 from each vertex v is at most A%2. And each dangerous
pair containing v is counted by at least A%/ of these. So the number of dangerous pairs
containing v is at most A2/A%/3 = A*3_ Thus, No(v) < A+A*3. Now the number of 4-cycles
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containing v but containing no dangerous pair is at most A(A — 1)A2/3 /2, since after picking
3 vertices of the 4-cycle, we have at most A%/3 choices for the final vertex (and each 4-cycle is
counted in two directions). Thus, N1 (v) < A%/3/2. Finally, for each copy H of Ps in G, let By
consists of H colored 1,2,1,2,1. Each P5 has weight 5 —2 — 1 = 2, and Ny (v) < 3A(A —1)3.
Thus, we need ¢ = B + A + A%3 + A8/33-1/2 4 3A*3 2. Substituting p := aA*/3 gives
c= AY3a+ A3 414 i + %). This expression is approximately minimized when a := 2,
where it takes the value 4A%/3 + A. O

Why do we choose A%/3 when defining a dangerous pair? Suppose, more generally, that we
use A¢ for some ¢ € [0, 1]. We want to minimize  +A+ A2~ ¢ + A2T¢3~1 /24 A*B3 2, Define
b such that p = ©(AP). Considering exponents, we want to minimize max{b,1,2 —¢e,2 + ¢ —
b,4 — 2b}. Note that 2 — ¢ = 1, so we choose b and ¢ such thatb =2 — ¢ =2+ ¢ —b. This
gives b = 4/3 and ¢ = 2/3. It may seem lucky that also 4 — 2b = 4/3. In fact, we could have
improved this term by considering separately all 6-cycles and all paths of order 7.

7.4 Centered Coloring

A coloring ¢ is p-centered if, for every connected subgraph H of G, either ¢ uses more than p
colors on H or there is a color that ¢ uses exactly once on H. The p-centered chromatic number
of G is the minimum number of colors allowing a p-centered coloring.

Example 7.16. The p-centered chromatic number of the path P,, on n vertices is precisely equal
to min{p + 1, [1g,(n + 1)]}. We denote the vertices of P;, by v1,...,vn. To achieve this upper
bound we either let ¢(v;) =i (mod p + 1) or, when 1i is written in binary, let @(v;) be the
position of the least significant bit that is 1; see Figure

I N ) W ) W N o W o W o) W o W o W o W 2 W o W
O—0—0—"C03)—0—"C00—0—60—0——C0——C0—~03B—0C0—0m—~0

Figure 7.4: A p-centered coloring of P;s for all positive integers p; it is optimal for all p = 3, and
uniquely optimal (up to permuting color classes) for all p = 4.

For the lower bound, assume that we use fewer than p + 1 colors. By induction on n we
show that [log,(n + 1)] colors are needed. Since ¢ gives a p-centered coloring of Py, some
color appears exactly once on P, say on vertex v. Some component of P,, — v has order at
least (n — 1)/2, so (by induction) needs at least ﬂogz(“T_l + 1)] colors. Thus, the number of
colors used on Py, is at least 1 + [log, (252 + 1)] = [logy 2(™41)] = [logy(n + 1)]. &

For 1-centered coloring, the endpoints of every edge must either (a) use more than 1 color
in total or else (b) have a color used exactly once. Thus, the endpoints of every edge get
distinct colors. So the 1-centered chromatic number is simply the chromatic number. Every
2-centered coloring is also a 1-centered coloring, so it must be proper. On a 4-vertex path,
every 2-centered coloring must either (a) use more than 2 colors or else (b) use some color
exactly once. Thus, every 2-centered coloring has no 2-colored 4-vertex path. So it is easy to
check that the 2-centered chromatic number is simply the star chromatic number.

p-centered
chromatic number



204 CHAPTER 7. ROSENFELD COUNTING

Theorem 7.17. Let G be a graph with maximum degree A. Fix a positive integer p, let $ := 2'0pA?2,
and let k := [%[ﬂ. If Lis a k-assignment for G, then G has a p-centered L-coloring. In fact, the
number of p-centered L-colorings of G is at least B!V (),

Proof. Here we cannot quite apply Theorem directly as stated. So instead we will state a
more general version of this theorem, explain how to modify the proof to prove this general-
ization, and then apply this generalization.

The problem is that now certain subgraphs H will have many templates, so no set of
vertices will determine Byy. In the proof of Theorem [7.6], we considered a subgraph ] of G
and a subgraph H of | with weight i. We showed that if ¢ was a coloring of | that was B-
good for | — v but Byy-bad for |, then we could map ¢ injectively onto a B-good coloring of
J]—T for some T C V(H) withv € T and [T| = i+ 1. By induction, we thus concluded that
P(J—T,B,L) <P(J—v,B,L)p~ 1.

Now, rather than looking for a set to determine By, we will consider each forbidden
template I:lj for H individually. If a single template ]:l]- has weight 1, then the number of L-
colorings of G that are B-good for G — v but violate l:{j on G is still at most P(G —v, B, L)p L.
To offset our considering the templates individually, each template of weight i, for a subgraph
H containing v, will count toward Nj(v). The rest of the proof is identical. So now we apply
this generalized version.

A coloring ¢ of G fails to be p-centered if and only if there exists a connected subgraph
H of G and a number of colors i, with i < p, such that ¢ uses i colors on H and ¢ uses each
color on H at least twice. We count the number of pairs of a connected subgraph H containing
a vertex v and a partition of V(H) into i color classes, each of size at least 2. For each such
pair, we will add a forbidden template }:l)-.

Since H is connected, it has a spanning tree rooted at v. For each vertex w, fix an arbitrary
ordering of its neighbors. Now consider an arbitrary spanning tree T of H rooted at v. We take
a walk around T, starting and ending at v, and traversing each edge twice, visiting the vertices
in the spanning tree in depth-first order. Each time that we traverse an edge e and reach a
new vertex, we call e a “forward” edge; each other time that we traverse an edge e, we call e
a “backward” edge. So, in our depth-first walk on T, every edge is traversed once (first) as a
forward edge and once (second) as a backward edge.

The tree T has |[H| — 1 edges. To specify T, we must know which of the 2|H| — 2 edges in our
walk are forward edges and which of these edges are backward edges. For each forward edge,
we must specify which new vertex it reaches. The number of possible orderings for forward

and backward edges is at mos (2||llj\|—_12)’ and the total number of possibilities for the new

vertices reached by forward edges is at most AI"I=1, So the number of spanning trees is at

most (2“]1H||:12)A|H|*1 < (4A)H,

*In fact, every prefix of our depth-first walk around T contains at least as many forward edges as backward
edges. So this number is at most the (|H| — 1)th Catalan number, which improves the bound by a (multiplicative)
factor of |[H|. But we will not need this.
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To specify a partition of V(H) into i color classes, it suffices to pick i vertices that will get
distinct colors and to assign each other vertex to one of these i, with which it will share a color.
This can be done in at most (ﬁ”)i'“"i ways. So, for fixed |H| and i, the number of “bad”
subgraph/color class partition pairs, i.e., bad templates, containing a given vertex v is at most

(2‘\]1[1'|:12)A|H\—1 (l?‘)im‘_i < (8A)IHIiHI=1 gince each color used on H is used there at least

twice, each subgraph/color class partition pair is determined by a set avoiding v. Furthermore,
the size of a minimum determining set is i. So the weight of this template is [H| — 1 — 1. Thus,
we need a positive integer k and a real (3 with 3 = 1 such that

min{p,|[H|/2]}

k= B+ Z Z (8A)IH\iIH\*iB*(lHI*ifl).

i=1 [H|>1

We will show that this inequality holds with B := 2!°pA? and ¢ = [%B]. Before evaluating
this double sum, we find a convenient upper bound on the summand.

(8A)HI{HI—ig—(HI-i-1)
8A)HlpIHI—ig—(HI—i-1)
8Ap[3*1)\HIB(Bp71)i
(27A)7\HIB(210A2)1

9~ IHI(26A)~ Mg (210A2)
< 2_|H|(26A)—216(210A2)i
2_|H|4_lﬁ-

<

(
(

Now Zrin:ml{p,um/zj}zlm?l 2-IHIg—ig < Zrin:irll{P,LlH\/zj}4—iB < B/3. O

7.5 Coloring with Small Connected 2-Colored Subgraphs

In this section we seek a proper coloring of a graph G such that every connected 2-colored
subgraph has at most m edges, for some constant m. This general result has a number of
interesting consequences, which we list below. The following is our main theorem.

Theorem 7.18. For every positive integer m, there exists a constant A, such that every graph
. . . . m+1

with maximum degree A has a proper coloring @ with at most A, A W colors such that every

connected 2-colored subgraph under @ has at most m edges.

Before giving the proof, we state some of the consequences of Theorem [7.18
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Corollary 7.19. Every graph G of maximum degree A has
@ a star coloring with O(A3/2) colors;
(b) an acyclic coloring with O(A*/3) colors;

© a coloring with O(A8/7) colors in which
every bicolored subgraph has treewidth at most 2;

(d) a coloring with O(A%/8) colors in which
every bicolored subgraph is planar; and

@) a coloring with O(A3/12) colors in which
every bicolored subgraph has treewidth at most 3.

Proof. (a) Letting m := 2, means that G has no 2-colored path on 3 edges. (b) Letting m := 3
means that G has no 2-colored cycle. (c) Now we let m := 7. A graph G has treewidth at most
2 if and only if G has no K4 minor [42]. It is easy to check (see Exercise [3)) that every bipartite
graph with a K4 minor has at least 8 edges.

(d) Now we let m := 8. The fewest edges in a non-planar graph is 9, in Kz3. To see
this, note that it suffices to consider graphs with minimum degree at least 3 (why?), and K, is
planar. Now we are done, since K5 — e is planar, [E(Ks)| = 9, and each graph with at least 6
vertices and minimum degree at least 3 has at least 9 edges.

(e) Now we let m := 12. It was shown in [28] that a graph has treewidth at most 3 if
and only if it has no minor of any of Ks, the Mobius 8-ladder (denoted Mg), the octahedron
Kg — 3K3, and the pentagonal prism CsOKj. It is straightforward (see Exercise|3)) to show that
every bipartite graph with at most 12 edges has none of these graphs as a minor. O

Proof of Theorem[7.18) We create an instance (G, B) such that for each connected bipartite
subgraph H of G with at least m + 1 edges, we define B, such that every proper 2-coloring
of H in G is B-bad for the instance (G, B). However, sometimes it will be more efficient to
create a template in B with vertices in only one part of H. Clearly, if any such template is
nonmonochromatic, then H cannot be properly 2-colored.

For each t € {2, ..., m} a special t-tuple is a set {v1,...,v¢} € V(G) such that [N(v{)N---N
N(v¢)| = A™+". The notion of special t-tuple is motivated by seeking the threshold where it
becomes more efficient to create a template for just some subset of vertices in H (rather than

all of H). We define the following 4 types of subgraphs.

1. For each edge xy € E(G), we let By, be a coloring with x and y colored 1.

2. For each v € V(G) and Q € Ng(v) with |Q] = m + 1, we let B be the single coloring
with all vertices of Q colored 1.
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3. Foreach t € {2,..., m} and each special t-tuple R, we let Bg be the single coloring with
all vertices of R colored 1.

4. Foreach s € {3,...,m+ 2} and each S C V(G) such that |S| = s and G[S] is connected
and induces at least m + 1 edges, we consider S provided that neither (a) S contains the
vertices of some special t-tuple in one of the parts of G[S] nor (b) G[S] is the star Kq 1.
We let B consist of all proper 2-colorings of G[S] (with some specified vertex colored 1,
to avoid including templates that differ only by permuting colors).

It is clear that (G, B) is an instance and that every B-good coloring of G has the desired
property. We need only to check that each pair (H,v) has By determined by some subset of
V(H) \ {v}. (This is why we added the edges of type 2 above, and added condition (b) for the
edges of type 4.)

The weights of subgraphs of types (1)-(4) are 0, m — 1, t — 2, and s — 3. So we need

m m+2

kZB+A+B ™ N (W) +) BN+ ) RTINSV, (7
s=3

t=2

where N/(v) is the number of type 4 subgraphs of weight i containing v and Nj(v) is the
number of all other subgraphs of weight 1 containing v. So now we must bound the number of
subgraphs of each type that can contain a vertex v.

Clearly, Nyp—1(v) < A( ﬁ) Each special t-tuple has all vertices forming the leaves of some

star K; ¢ in G. The number of such stars with a given vertex v as a leaf is at most A(f:ll). For
every special t-tuple {v1, ..., v¢}, by definition [N(v1) N-- - NN (v¢)| = A", So each special
t-tuple appears as the leaves of at least A™ R stars. Thus, the number of special t-tuples
containing a vertex v is at most A({_}) JATET S AR

Finally, we must bound N/ _,(v) for all v € V(G). Pick a connected bipartite graph H on
s vertices with (at least) m + 1 edges, pick v; to be an arbitrary vertex of H. Since H need
not be induced, we assume that H has exactly m + 1 edges. Let T be a depth-first search tree
of H from v1. Let vq,...,vs denote the order that the vertices of H are encountered in T. In
particular, note that H[{v1,...,v;}] is connected for all i € [s]. Let wy := v. Finally, for each
i €{2,...,s}, choose w; € V(G) such that wiw; € E(G) whenever v;v; € E(H). Note that
every set S C V(G) (containing v) that gives rise to a type 4 subgraph in H can be formed in
this way. Now we must bound the number of such sets S.

Fix Hand T. For each i € {2,...,s}, let d; + 1 be the number of vertices in {v1,...,vi 1}
adjacent in H to v;. (Note that > { ,(di+1) =m+1,s0)Y; ,di = m—s+2) By
our criteria for type (4) subgraphs, we assume these d; + 1 vertices, for each i, do not form a

. . . m—(d;+1)+1 7d7
special (di +1)-tuple. As a result, our number of choices for w; is at most A ™ =Al"w.
d; do+--+d
Thus, the total number of choices for such sets is at most [[;_, A1~ m = AS™1~ e =

Asflfi’“;ﬁ” _ A(572) (mT“].
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Let Ay, denote the maximum, over all s < m + 2, of the number of connected bipartite
graphs with s vertices and at least m + 1 edges. So is implied by the following.

A m m+2
k=>p+A+ B_(m_l)A< ) + 3 pt2aAlD g > Amals? (5 g—(s-3)
m t=2 s=3

Let B :=2A"m w . Now

A m m—+2
B+A+ B_(m_l)A< > + E B—(t—z)A(t—l)”ﬁil + E AmA(S—Z)(’“T“)B—(S—B)
m
t=2 s=3

m+2
t 2+ Z S 3A )
t=2
. m+1 m-+2
m+
2A 4 A+ A (Z 272 Y 2(53JAm>
s=3

<24 + AT (34 2A,)

m+1

= A" (54 2Am). 0

Mz
>

SB+A+A ([A”?n“ pljlm—1) 4

7.6 Coloring Triangle-free Graphs

In this section we prove that a triangle-free graph G with maximum degree A has x(G) =
O(A/InA). This is a well-known result, first proved in 1996 (more details are in the Notes).
However, earlier proofs were difficult. In contrast, as we shall now see, Rosenfeld Counting
facilitates a proof that is much easier.

Our proof in this section looks a little different from those we have seen previously. When it
applies, Theorem [7.6]shows that, for a graph G and a vertex v, every coloring of G — v extends
to at least 3 colorings of G. In contrast, here we will prove that most colorings of G — v extend
to (far) more than 3 colorings of G. This distinction allows for a small number of colorings
of G — v that have few extensions. This new approach is essential, since the number of colors
allowed for each vertex v is much smaller than its degree; thus, some coloring of G — v might
not admit any extensions to G.

Theorem 7.20 (Johansson’s Theorem). Fix ¢ > 0. There exists A, such that if G is a triangle-
free graph with maximum degree A and A = A, then x(G) < [(1 + ¢)A/InA].

Let k := [(1 +¢)A/(InA)] and let { := In®* A. Let C(G) be the set of proper k-colorings
of G. Theorem follows immediately from Lemma by induction on |G|. As usual, the
proof guarantees exponentially many colorings, which is essential to the inductive argument. It
also works for list-coloring (and correspondence coloring), but we do not emphasize this point.
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Lemma 7.21. If A is sufficiently large and G is any triangle-free graph with maximum degree at
most A, then |C(G)|/|C(G — V)| = L for every v € V(G).

Proof. For any partial proper coloring ¢ of G, let L, (w) denote the set of colors available for
w (those not used on any neighbor of w); this definition is independent of whether or not w is
already colored. We want to show that |C(G)|/|C(G — v)| = {. We have

el _ Z(DGG(va) Lo (V)] B
IC(G —v)| 1C(G — V)] =E[|Ly (V)]

We will find it more convenient to work with E[|L,(v)|]]. So we will show that, for A
sufficiently large, we have E[|L, (v)[] = (.

When choosing a coloring of G — v, the key idea is to condition on a coloring of G — N[v].
Because G is triangle-free, N(v) is an independent set. So, to extend a coloring ¢ of G — N[v]
to a coloring of G — v, we simply choose a color in L, (w) for each w € N(v). Furthermore,
all such extensions are equally likely. So it will suffice to show that for an extension ¢’ of ¢ to
G — v we have E[|[L (v)[] > €. (For f and g, both functions of A, we write f > g to denote
that lima_,o g/f = 0. Similarly, f < g precisely when g > f.) We want to show, for each
w € N(v), that [L, (w)] is typically large. If v has many neighbors w with |L, (w)| large, then
many of them will likely use repeated colors, so E[|L(v)|] will be large.

Fix a positive integer t, which we specify later, and fix w € N(v). We want to bound the
probability that [L,(w)| < t. Note that each coloring ¢ of G — v with [L,(w)| < t can be
formed from a coloring ¢’ of G — v — w by giving w one of at most t colors. By induction,

tIC(G —v —w)|

PrllLy (W) < < gt <

—+

Thus, the expected number of such vertices in N(v) is at most At/{. Recall that { = In? A. To
ensure that, with high probability, o(A/In A) neighbors of v have at most t available colors, we
require 1 < t < {/In A = In A. For concreteness, let t := In'/2 A. Markov’s Inequality states:
If Y is a nonnegative random variable and a > 0, then Pr[Y = a E[Y]] < 1/a. Let Y denote the
number of neighbors w of v such that [L, (w)| < t. Let a:= /{/(tInA) = In'/* A. Now

tA
PrlY = A/In/* A] = Pr]Y > aT] < 1/a.

In particular, since a — oo as k — oo, we get Pr[lY = o(k)] — 1 as k — oo.

Each neighbor w of v with |L, (w)| < t removes at most one color from L, (v). So we must
show that the remaining neighbors of v, those with more than t available colors, do not remove
too many more colors from L, (v).

Fix a coloring ¢’ of G — N[v]. Let B be the set of neighbors of v with at most t available
colors, i.e., x such that [L,/(x)| < t. Color each x € B uniformly at random from L (x). By
symmetry, assume each x € B is colored from {k — |B| + 1,...,k}. Now color each remaining



X, k'
Xi, A’

W),LJ

210 CHAPTER 7. ROSENFELD COUNTING

neighbor w of v from L
For each i € [k'], let X; := 1 if i € Ly (v) and otherwise X; := 0. Let A’ :=
denote the vertices of N(v) \ B by wy, ...

o (w). Call the resulting coloring @. Let X := |[L, (v)]. Let k’ := k—|B|.
IN(v)| — |B|]. We
,War, and we denote L (wj;) by Lj.

o x> ST (1)

i=1ljeA’
Lal

- 1 1/K/

9 1/k'

=X/

The final inequality is by the Arithmetic Mean—Geometric Mean inequality. To lower bound the
double product on the second line, we reverse the order of the products. Using the fact that

{(1 —1/x)*)}$2, is an increasing sequence, we get the following.

[T (1= ) 2 (=198 > (=170 = o008,

j=1iely | |
Thus, as desired,

(14+0(1))A A 14+ 0(1) lte)—of(1
Ly (V)| = Kk’ exp(— o ):@(IHA)eXp(—ﬁlnA) > A/ (+e)—o(1)

We showed that, with probability going to 1 as k — oo, we have L, (v)| = A8/(1F+e)=0(1) ¢,
This implies also that E[|L, (v)|] > {, which is what we aimed to prove. O

Notes

In this chapter we have considered a wide variety of coloring problems. We often believe
intuitively that a “random coloring” should have the properties we desire. This notion is
imprecise, so we consider ways to make it more formal. With the Local Lemma, we create a
“bad event” (similar to our forbidden templates) for every way in which an arbitrary coloring
could fail to have the properties we desire. If each bad event is sufficiently unlikely in a random
coloring, and is independent of all but a few other bad events, then the Local Lemma guarantees
that our desired coloring exists.

The Local Lemma has been used widely throughout extremal combinatorics, and particu-
larly graph coloring [307]. One of its chief drawbacks was the nonconstructive nature of its
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proof [307, Chapter 19]. This led to significant efforts toward proving an “algorithmic” Local
Lemma. The first breakthrough in this direction was due to Beck [34]], who gave an algorithm
under more restrictive hypotheses. Beck’s work sparked a long series of improvements (see the
introduction of [313] and references therein), culminating with work of Moser [312] and Moser
and Tardos [313]], which gave an efficient algorithm that applies to nearly every example where
the Local Lemma does.

Entropy Compression is the name given to the algorithms in [312},[313]]. More generally, it is
a paradigm to prove that a randomized coloring algorithm will eventually (typically, in expected
polynomial time) produce a desirable coloring with high probabilityf| Now we color randomly,
but when we create a defect in our coloring, we simply uncolor the defective part and try again.
The idea is to store each (failed) run of the randomized algorithm in a compressed form, called
a log, so that the entire run of the algorithm can be recovered from the log. That is, failed runs
map injectively to logs. If the total number of logs, for failed runs of a given length, is smaller
than the total number of random bit strings used by runs of that length, then not all runs can
map to logs. Thus, some run must succeed. The name Entropy Compression originated in a
blog post of Terry Tao [[371]]. It owes to the fact that we map the entropy (represented by the
random bit string required for each run of the algorithm) into a compressed form (the log).

Rosenfeld Counting was introduced by Matthieu Rosenfeld [348]| to prove that every graph
with maximum degree A has a nonrepetitive coloring with at most A%(1 + o(1)) colors, The-
orem Earlier, this result was proved by Dujmovi¢, Joret, Kozik, and Wood [123]], using
Entropy Compression, but their proof was far more complicated. Rosenfeld also used his
technique to prove upper bounds for other related types of coloring [348]], called “total Thue
coloring” and “weak total Thue coloring”, as well as game versions of further coloring prob-
lems [[349]]. More importantly, he noted that this technique could be applied much more broadly
and outlined such an approach. Rosenfeld wrote:

This technique [Rosenfeld Counting] is strongly related to the entropy-compression
technique. In fact, in the particular context of colorings of graphs of bounded
degree, it is equivalent of [[179, Theorem 12]. Using our technique one can in fact
provide a simpler proof of their Theorem 12. . . but it does not seem to be worth the
trouble of introducing all the necessary formalism only to provide an alternative
proof of the exact same result. However, even if we can simplify the proof and
match the bound of their theorem, we cannot easily improve the bound.

The proof we present of Theorem specifically Lemma is due to Rosenfeld [348,
Section 2.1], although the same result was proved previously using the Local Lemma [190] and
Entropy Compression [189]]. Theorem|[7.6|and Lemma 7.7/ are due to Wanless and Wood [410]].
Although we use slightly different terminology}, our presentation follows theirs closely. This

3In fact, both the Local Lemma and Entropy Compression have been used more widely than just in graph coloring.
However, in these Notes we restrict ourselves to those applications.

4They phrase their results in terms of hypergraph coloring. We avoid this notion, to keep our presentation of the
easier examples as simple as possible.
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chapter was inspired by [410]], which also provided many of our examples.

In the rest of these Notes, for brevity we typically omit mention of the list-coloring variant of
each problem. Proofs relying on the Local Lemma, on Entropy Compression, and on Rosenfeld
Counting all generally work equally well for list-coloring variants. Similarly, we generally omit
mention of the fact when we get exponentially many of the desired coloring. This comes for
free with Rosenfeld Counting, and it can usually be deduced with a small amount of extra effort
when using the Local Lemma or Entropy Compression.

Early work on star chromatic number, denoted X (G), was done by Fertin, Raspaud, and
Reed [161], who used the Local Lemma to prove that every graph G with maximum degree
A has xs(G) < 20A3/2, They also constructed graphs G with maximum degree A such
that xs(G) = CA3/2/(logA)!/? for some constant C. This upper bound was improved to
Xs < 4.34A3%/2 4+ 1.5A by Ndreca, Procacci, and Scoppola [320] and subsequently to xs(G) <
VBA3Z + A by Esperet and Parreau [[155, Corollary 2] in their excellent tutorial on Entropy
Compression. This is Theorem 7.9} but our presentation more closely follows [410].

The nonrepetitive chromatic number, denoted 7t(G), was introduced by Alon, Grytczuk,
Hatuszczak, and Riordan, who proved [[i6), Section 4.3] that 71(G) = O(A?) for every graph G
with maximum degree A. (They also found an absolute constant C such that, for each positive
integer A, there exist graphs with maximum degree A and 71(G) > CA?/log A.) This upper
bound was improved to 36A2 by Grytczuk [188], to 16A2 by Grytczuk [187], to (12.2+0(1))A?
by Harant and Jendrol’ [203], and to 10.4A? by Kolipaka, Szegedy, and Xu [266]. Each of these
proofs used the Local Lemma. Ultimately, Dujmovi¢, Joret, Kozik, and Wood [123]] used Entropy
Compression to show that 71(G) < A%+ O(A>/3). This same upper bound was later reproved by
Bernshteyn using his Local Cut Lemma [[35]] and independently using cluster-expansion [25}, [41].
More recently, Rosenfeld [[348]] reproved it using the inductive approach of Theorem We
present his proof in Theorem [7.11

The minimum number of colors in an acyclic edge-coloring of a graph G is denoted x/ (G).
Alon, McDiarmid, and Reed [18] showed that x/ (G) < 64A. This was improved to x/ (G) <
16A by Molloy and Reed [306, Theorem 2.2], to x/, (G) < [9.62(A — 1)] by Ndreca, Procacci,
and Scoppola [320], and to x/, (G) < 9A by Molloy and Reed [307, Theorem 19.4]. All four of
these proofs use the Local Lemma.

Esperet and Parreau [i55] strengthened the upper bound to x/ (G) < 4(A — 1). This was
improved to x/ (G) < [3.74(A —1)] + 1 by Giotis, Kirousis, Psaromiligkos, and Thilikos [176]],
to x,(G) < [3.569(A — 1)| + 1 by Fialho, de Lima, and Procacci, [162]], and eventually to
X4 (G) < 2A — 1 by Kirousis and Livieratos [260]. All four of these latter proofs use Entropy
Compression, and they are at least somewhat involved. In Theorem|7.10, we proved the weaker
bound x/ (G) < [4.6(A — 1)], since it admits a much simpler proof.

Recall that a proper coloring is t-frugal if each color appears at most t times on the neigh-
borhood of each vertex. Hind, Molloy, and Reed [218] proved, for each integer t = 1,
that every graph with sufficiently large maximum degree A has a t-frugal coloring with
max{(t + 1)A, %3A1+1/ '} colors. Alon [218] constructed graphs with maximum degree A
and no t-frugal coloring with iA”l/ t colors. Thus, the bound of Hind et al. [218] is sharp up
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to a constant factor. Wanless and Wood [410]] strengthened the upper bound to slightly better
than A1/t 4+ 2A; when A > t and t — oo, they improved this to (e + 0(1))A} "1/t /t. This
result is Theorem [7.12]

Coloring r-uniform hypergraphs is the standard example used to illustrate the Local Lemma.
Erdés and Lovasz [[151] proved, for an r-uniform hypergraph G with maximum degree A, that
x(G) < [(4rA)Y/[*=1)], Using a stronger version of the Local Lemma, Spencer [365] improved
this to x(G) < [(e(r(A — 1) + 1))*1/(*=1)7, Wanless and Wood [410] improved it further to
X(G) < [%((T —2)A)H/ (=17 'which is Theorem

For the acyclic chromatic number, denoted x4 (G), Alon, McDiarmid, and Reed [18] proved
Xa(G) < [50A*3] for every graph G with maximum degree A. They also constructed an
infinite family of graphs needing Q(A*/3/(log A)'/3) colors. The upper bound was improved
by Ndreca, Procacci, and Scoppola [320] to Xo(G) < [6.59A4/ 3 + 3.3A1, by Sereni and
Volec [358] and to Xq(G) < 2.835A%/3 4+ A, by Gongalves, Montassier, and Pinlou [179] to
Xa(G) < A*3(3/2 + 0(1)). Finally, Kirousis and Livieratos [260] proved the currently best
known result: xq(G) < [(271/3 +¢)A*/3] 4+ A + 1 for each positive ¢ and A sufficiently large,
as a function of e. Theorem [7.15shows that X4 (G) < [4A%3 + A]. Our proof is that of Alon,
McDiarmid, and Reed, rephrased in the language of Rosenfeld Counting. In particular, the
notion of “dangerous pairs” (which they called “special pairs”) comes from their proof.

Recall that a coloring ¢ is p-centered if each connected subgraph H either (a) receives more
than p colors under ¢ or (b) has a vertex that receives a color used nowhere else on H. The
p-centered chromatic number, x;,(G), plays a key role in the theory of sparse graph classes,
pioneered by Nesettil and Ossona de Mendez [322]. A class G of graphs has bounded expansion
if and only if there exist a function f : Z* — Z™ such that x,,(G) < f(p) for every graph G
in §. Nesettil and Ossona de Mendez originally defined this notion in terms of the maximum
density of shallow minors, but later proved [[321] that the two definitions are equivalent.

It was known that every graph class with bounded degree has bounded p-centered chromatic
number. However, it was conjectured that this dependency on p was exponential, i.e., that there
existed graphs with bounded maximum degree and p-centered chromatic number Q(aP) for
some a > 1. This conjecture was refuted by Debski, Felsner, Micek, and Schroder [120], who
proved that x,(G) = O(A2~1/P). This is nearly optimal, since there exist [122] graphs G
with maximum degree A and xp(G) = Q(A>VPrp In"'/P A). This upper bound is proved
using Entropy Compression. In Theorem we used Rosenfeld Counting to prove that
Xp(G) = O(A?p). The key ideas in the proof all come from the proof of Debski at al. We suspect
that with more effort we could recover the bound x,(G) = O(A%71/Pp), using Rosenfeld
Counting. But we prefer the proof given, since it illustrates the approach well, while minimizing
technical details.

Now we consider proper colorings where 2-colored connected subgraphs must have at most
m edges (for some fixed m). Theorem which bounds the number of colors needed, is due
to Aravind and Subramanian [27]. We are not aware of previous work in the direction of this
generalized result. As we noted in Corollary [7.19] the cases m = 2 and m = 3 correspond to
star coloring and acyclic coloring, which are discussed above. Corollary[7.19)(d), which requires
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every 2-colored subgraph to be planar, improves a previous result of the same authors [26]],
strengthening their bound of O(A8/7) to O(A%/8).

In the same paper [27], Aravind and Subramanian also proved the following (nearly match-
ing) lower bound: “If H is a bipartite graph with m + 1 > 2 edges, then there exists an infinite
family G of graphs with increasing maximum degree such that for each G € § of maximum
degree A, a bicolored copy of H appears in every proper coloring of G with k colors, where k
is a function satisfying k = Q(A(m+1)/m log_l/ ™ A).” Thus, Theorem is best possible,
up to a factor of at most logfl/ ™A. In [27], Theorem is proved using the Local Lemma,
and that proof can also be phrased using Entropy Compression. The proof we presented largely
follows the same lines, although ours avoids needing to verify some tedious inequalities.

Theorem was first proved by Johansson [231] in 1996 (with a worse multiplicative
constant), but the proof was not published. The first published proof appeared in [307], but
the proof was still fairly hard. About 20 years later, Molloy [305] used entropy compression
to give a simpler proof, which also improved the multiplicative constant to 1. Following this,
Bernshteyn [36]] gave a proof using the Lopsided Local Lemma in place of entropy compression;
Bernshteyn, Brazelton, Cao, and Kang [37] used Rosenfeld Counting to give an asymptotically
sharp lower bound on the number of A/log A-colorings; and Hurley and Pirot [222] proved a
more general version (also using Rosenfeld Counting) that allows the graph to have a moderate
number of triangles. Finally, Martinsson [294]] simplified the proof of Hurley and Pirot, in the
case that G is triangle-free. It is this proof of Martinsson that we presented in Section [7.6}

Exercises

7.1. Consider a string on the alphabet {1,2,3}. Show that the substitution 1 — 12312,
2 — 131232, 3 — 1323132 preserves squarefreeness. For example, 1232 becomes
12312,131232, 1323132,131232 (the commas are included only to improve clarity). By
applying this substitution repeatedly, starting with 1, we converge to an infinite squarefree
word. This proves that every path has nonrepetitive chromatic number at most 3. [386]]

7.2. (@) Find an improved function f such that x/(G) < [(2 + f(g))(A — 1)|, where ¢
is the girth of G and limg_, f(g) = 1. (b) Find an improved function h such that
Xa(G) = O(AMY), when G has maximum degree at most A but has no subgraph Kot
(not necessarily induced); here t could be a function of A. [18]]

7.3. (a) Verify that every bipartite graph with a K4 minor has at least 8 edges. (b) Verify that if
G is bipartite with at most 12 edges, then G has none of the following as a minor: Ks, the
Wagner graph (Mobius 8-ladder), the octahedron Kg — 3K5, and the prism CsOKj. [[72]



Chapter 8

The Combinatorial Nullstellensatz

The apex of mathematical achievement occurs when two or more
fields which were thought to be entirely unrelated turn out to be
closely intertwined. Mathematicians have never decided whether
they should feel excited or upset by such events.

—Gian-Carlo Rota

Here we use properties of polynomials to prove upper bounds on chromatic number, choice
number, and paint number. By the Fundamental Theorem of Algebra, if a real one-variable
polynomial f has degree at most n, and is not identically 0, then it has at most n real roots. So
if we take n + 1 distinct points on the real line, x1, ..., Xn 11, then there exists some i € [n+ 1]
such that f(x;) # 0. The Combinatorial Nullstellensatz, Theorem below, is an analogous
statement for polynomials with multiple variables.

But what does this have to do with coloring? Given a graph G, we construct a polynomial
fg such that, for every assignment ¢ of colors to its vertices, fg(¢@) # 0 if and only if ¢ is a
proper coloring of G. Much like the single-variable case, we need the size of the list for each
vertex v to exceed the maximum degree in the polynomial of the variable corresponding to v.

8.1 The Alon-Tarsi Theorem

In this chapter, we present numerous applications of our next theorem, the Combinatorial Null-
stellensatz, to prove coloring results. Understanding its proof, which is essentially polynomial
long division, is not really necessary to grasp these applications. (So the impatient reader
should feel free to skip ahead to the applications, and perhaps return to the proof later.) But
the proof is short, so we include it for completeness.

We need to recall the following definition. The degree, deg(f), of a polynomial f in a ring
Flx1,...,Xn] is the maximum sum of exponents, over all monomials in its expansion. Typically,
our choice of F is unimportant; so we usually let F := R or F := Z.
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Theorem 8.1 (Combinatorial Nullstellensatz). Let F be a field and fix f € F[x1,...,Xxn]. Let
di,...,dn be nonnegative integers such that Y i ; di = deg(f), and suppose the coefficient of
xfl . -xﬂ“ in f is nongero. Now for any subsets L1, ..., Ly of F such that |L;| > d; for each 1,
there exist elements oy € Ly such that (o, -+, o) # 0.

Proof. Suppose the theorem is false, and choose a counterexample f and Ly, ..., L, to minimize
deg(f). First, suppose that deg(f) = 1. By symmetry, we assume that d; = 1. Choose «; € L;
arbitrarily, for each i = 2. Now f(x1, Xp,..., &) is a linear function in one variable. Since
IL1| > 1, we can choose ; € L7 such that f(q, ..., &) # 0. Thus, f is not a counterexample.

Instead assume deg(f) > 1. We use polynomial division to find a counterexample q with
deg(q) < deg(f), contradicting our choice of f. Choose x«; € L; arbitrarily, and use long
division to find polynomials q and r (for quotient and remainder) such that

f(x1,. -, xn) = (x1 — 1) q(x1, -+, Xn) +T(X2, -+, Xn ). (8.1)

Note that the degree of x; in r is less than in x; — «;. That is, x; does not appear in
r(x2,...,%Xn). By assumption, f(x1,...,%xn) = 0 whenever x; € L; for all i. So, when x; € L;
for all i = 2, we have 1(xa,...,%xn) = f(x1,%2,...,xn) = 0. Thus, when x; € L; for all i,
we have f(x1,...,Xn) = (X1 —x1)q(X1,...,Xn) +7(X2, ..., Xn) = (X1 —x1)q(X1,...,%Xn). By
assumption, this value is always 0. So, when x; € L1 \ {01} and x; € L; for all i = 2, we

have q(x1,...,xn) = 0. By hypothesis, the coefficient in f of x?l ---x4n is nonzero. Thus,

the coefficient in q of x?l_lxgz --.x4n is also nonzero (since deg(q) < deg(f) = > I ; dy).
However, now q is a counterexample to the theorem, with subsets L; \ {1}, L2, ..., ;. Since

deg(q) < deg(f), this contradicts the minimality of f. O

Definition 8.2. Recall that a digraph H is Eulerian if dﬁ (v) = dy(v) for all v € V(G). For
an orientation D of a graph G, let EE(D) and OE(D) denote the sets of spanning Eulerian
subgraphs H of D such that |H|| is even and odd, respectively. For an orientation D, let
fp == HvivjEE(D) (xi —x;). For any two orientations D’ and D" of G, note that fp, = £fpu.
For a field F and polynomial f € F[xy,...,Xxn], let fq, a4, denote the coefficient in f of
xfl -..x4n_ Typically, we mainly care about whether or not fa,,..a, # O (for some choice
di,...,dn). So we often write fg, or graph polynomial (when G is clear from context), to
denote fp for some arbitrary orientation D of G; this determines fg up to a factor of £1.

We will use the Combinatorial Nullstellensatz to strengthen results for list-coloring. Thus,

we consider the graph polynomial. Given a list assignment Ly, ..., L;, the proper L-colorings
correspond precisely to the choices «; € L; such that f(«y,...,xn) # 0. So, to apply the
Combinatorial Nullstellensatz, we must find ds, ..., d such that f4, g4, 7# 0. (This approach

strengthens results on list-coloring, since having this nonzero coefficient is a sufficient—but
not necessary—condition for being [ -colorable.) Alon and Tarsi showed how to interpret the
coefficient of x‘lil ---x4n in terms of orientations of G in which d* (v;) = d;.
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Theorem 8.3 (Alon-Tarsi Theorem). Let D be an orientation of a graph G such that |[EE(D)| —
|OE(D)| #£ 0. If [L(vy)| > df; (vi) for all i, then G is L-colorable.

Proof. Let n := |G|. When we expand the graph polynomial HvivjeE(G),i<j (xi —x;), for each
factor we select either x; or —x;. We can interpret this selection as orienting the edge v;v;.
When we select x;, we orient away from v;, and call this edge increasing. And when we select
—Xj, we orient away from vj, and call this edge decreasing.

For each term xfl --.x4n in the expansion, note that the sequence of exponents is the
sequence of outdegrees. Further, a term has coefficient 1 precisely when the number of decreas-
ing edges in its corresponding orientation is even, and has coefficient —1 when this number is
odd. Thus, after collecting like terms in the expansion, the coefficient on x?l ---x4n equals the
difference in the numbers of orientations (with this outdegree sequence) with even and odd
numbers of decreasing edges. So this gives a necessary and sufficient condition for applying
the Combinatorial Nullstellensatz.

To complete the proof, we extend this bijection a bit further, showing that this difference
equals ] |[EE(D)| — |OE(D))| ‘ for a suitable orientation D. Given a graph G and a sequence
of outdegrees di, - -, dn, choose an arbitrary orientation D of G with dfg (vi) = dy for all

i. Consider another orientation D with d (vi) = df(vi) for all i. Note that the subgraph
D

induced by edges oriented oppositely in D and D is Eulerian. Further, the set of orientations
with degree sequence equal to that of D is in bijection with EE(D) U OE(D). In fact, if an
Eulerian subgraph D; € EE(D), then the numbers of decreasing edges in D and D @& D; have
the same parity. But if D; € OE(D), then the numbers of decreasing edges in D and D ¢ D,
have opposite parities. Thus, the absolute value of the coefficient of xfl --.x4n in fg is exactly
| [EE(D)| - [OE(D)| |. O

The previous theorem motivates our next definition.

Definition 8.4. The Alon—Tarsi number, AT(G), is the minimum k such that there exist integers
di,...,dn with 0 < di < k and fq,, a4, # O, where f is the graph polynomial of G. The
first paragraph of the previous proof shows that AT(G) can be defined equivalently as the
minimum integer k such that G has an orientation D with dg (v) < kforallv € V(G) and
|[EE(D)|—|OE(D)| # 0. If AT(G) < k, then we say that G is k-AT. More generally, for a function
g:V(G) — Z™", the graph G is g-AT if there exist d1, ..., d,, such that d; < g(v;) for all i and
fa,...d, # 0. (So k-AT is the special case when g(v) := k for all v € V(G).) Similarly, g-AT
can be defined in terms of an orientation D and |[EE(D)| — |OE(D)|.

Theorem [8.3] gives x¢(G) < AT(G) for every graph G. As we will see in Section the
Alon-Tarsi number also bounds the paint number; that is, X¢(G) < X (G) < AT(G).
8.1.1 First Examples and Easy Lemmas

We begin with some examples and easy lemmas, to help build the reader’s intuition.

Alon-Tarsi number,
AT(G)

k-AT
g-AT
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Example 8.5. Let G := C,. Each x; appears in exactly two factors of fg; thus, exactly two
terms in the expansion of fg contribute to the coefficient of [ [ ; x;. When n is even, both

.....

.....

v; see Figure The only two spanning Eulerian subgraphs of D contain all and none of its
edges. Thus, when n is even |[EE(D)| = 2 £ 0 = |OE(D)|, so AT(C,) = 2. When n is odd
|[EE(D)| =1 = |OE(D)|, so AT(Cy,) > 2. (How do we verify that AT(C,,) = 3?)

V1 Vo Vi

V2 V3 V3 Vg4

Figure 8.1: Every directed cycle D,, has 2 spanning Eulerian subgraphs:
the edgeless graph and all of D,,. When n is even, |[EE(D,,)| = 2 and
|OE(D.)| =0, so AT(C,,) = 2. When n is odd, |[EE(D,)| = |OE(D,,)| =
1, so AT(C,) > 2. See Example

Another simple application of the Alon-Tarsi Theorem is to d-degenerate graphs. Suppose
G is d-degenerate, and let v4, ..., vy, be an order where each v; has at most d neighbors later
in the order. We orient each edge as vi — vj;, where 1 < j. This gives an acyclic orientation
D, with maximum outdegree at most d. Since D is acyclic, its only Eulerian subgraph is the
edgeless graph. Thus, EE(D) =1 # 0 = OE(D). So AT(G) < d + 1.

In Chapter [s| we used the Kernel Method to show that a graph G is (d + 1)-choosable
whenever G is bipartite and mad(G) < 2d. In particular, planar bipartite graphs are 3-
choosable. The idea was to find an orientation D of G with outdegree at most d. In fact,
we can prove the same result by applying the Alon-Tarsi Theorem to D. (Indeed, this is how
it was first proved.) For any Eulerian subgraph H of D, the edges of H can be partitioned
into directed cycles. Since G is bipartite, each directed cycle of H must be even. Hence
|IH|| is also even. Since G always has the edgeless graph as an Eulerian subgraph, we have
|[EE(D)| = 1 # 0 = |OE(D)|. So, again AT(G) < d + 1. &

Motivated by our intuition from coloring and list-coloring, we naturally guess that the Alon—
Tarsi number of a graph is the maximum of the Alon-Tarsi numbers of its components. Indeed,
this is true. More generally, the union of “good” orientations for all components of G is a good
orientation for G. This is a special case of Lemma [1.40(ii). But as a warmup, we reprove it.

Lemma 8.6. Fix a graph G and vertex disjoint subgraphs G, and G, with V(G) = V(G1)UV(G,)
and E(G) = E(G1)UE(Gy). Fix g: V(G) — Z™. Let g1 and gy be the restrictions of g to V(G1)
and V(Gz). If G is g1-AT and G is g3-AT, then also G is g-AT.
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Proof. By hypothesis G; is gi-AT, for each i € {1,2}. So there exist orientations D; such
that dgi(v) < gi(v) for all v € V(G;) and [EE(D;)| — |OE(D;y)| # 0. For brevity, we denote

|[EE(D;)| and |OE(D;i)| by EE; and OE;. Let D := D; U Dj;. Now |EE(D)| — |OE(D)| =
(EE{EE, + OE;OE,) — (EE;OE, + EE,OF;) = (EE; — OF;)(EE; — OE,) # 0. O

For any subgraph H of a graph G, clearly x(H) < x(G) and x¢(H) < x¢(G). This observa-
tion motivates the following analogous lemma for Alon-Tarsi number.

Lemma 8.7. If H is a subgraph of a graph G, then AT(H) < AT(G). More generally, fix g :
V(G) — Z*, and let g be the restriction of g to V(H). If G is g-AT, then H is g-AT.

Proof. It suffices to show that if e € E(G), and G is g-AT, then also G — e is g-AT. From this
the result follows by induction on ||G| — [[H||. If |[V(H)| < |[V(G)|, then for each vertex in
V(G) \ V(H), we first delete all of its incident edges. Now removing an isolated vertex has no
effect on the graph polynomial.

Suppose the lemma is false. Fix a graph G, a function g, and an edge e such that G is g-AT,
but G — e is not g-AT. Let v; and v, denote the endpoints of e. Since G — e is not g-AT, for every
term X7 -+ xS0 of fg_. with nonzero coefficient, there exists i such that g(vi) < ci. Now
fg = (x1 — x2)fg_.. Terms may cancel, but exponents never decrease. Thus, for any term
xfl . -xﬂ" with nonzero coefficient in fg, there exists i such that g(v;) < di; in particular,
g(vi) < ¢i < di, where 1 is chosen to show that G — e is not g-AT. Hence, G is not g-AT,
contradicting the hypothesis. O

Next we prove a version of Brooks’ Theorem for Alon-Tarsi number.

Theorem 8.8. If A(G) = 3 and G contains no copy of Ka1, then AT(G) < A.

Proof. By Lemma we assume G is connected.

Case 1: Thereisv € V(G) such that d(v) < A(G). We order V(G) by weakly increasing
distance from v, and orient each edge toward its endpoint later in the order. The resulting
digraph D is acyclic, so [EE(D)| = 1 # 0 = |OE(D)|. Now we are done, since each vertex w
other than v has an inneighbor on the v, w-path in D, and thus A" (D) < A(G).

Case 2: G is regular. If G is 2-connected, then it contains as an induced subgraph C
an even cycle with at most one chord, by Rubin’s Block Lemma (Lemma [1.38). If G has a
cut-vertex, then we find such a € within a leaf block, which must not be regular, since G is
regular. We again orient all edges outside € away from €, as in Case 1. We also orient the edges
of C as a directed cycle and the chord, if it exists, arbitrarily. Denote by D this orientation
and by Cp its restriction to €. As in Case 1, we have A*(D) < A(G). Note that every
spanning Eulerian subgraph of D has all its edges in Cp (otherwise some vertex w outside C
has d~(w) = 1 > 0 = d™(w), contradicting that the subgraph is Eule