(7,2)-edge-choosability of some 3-regular graphs

Daniel W. Cranston

DIMACS, Rutgers and Bell Labs dcransto@dimacs.rutgers.edu Joint with Doug West

Def. A graph is (7, 2)-edge-choosable if for every assignment of lists of size 7 to its edges, we can choose 2 colors for each edge from its list so that no color is chosen for two incident edges.

Def. A graph is (7, 2)-edge-choosable if for every assignment of lists of size 7 to its edges, we can choose 2 colors for each edge from its list so that no color is chosen for two incident edges.

This differs from standard vertex coloring in 3 ways:

Def. A graph is (7, 2)-edge-choosable if for every assignment of lists of size 7 to its edges, we can choose 2 colors for each edge from its list so that no color is chosen for two incident edges.

This differs from standard vertex coloring in 3 ways:

1. We color from *lists*.

Def. A graph is (7, 2)-edge-choosable if for every assignment of lists of size 7 to its edges, we can choose 2 colors for each edge from its list so that no color is chosen for two incident edges.

This differs from standard vertex coloring in 3 ways:

- 1. We color from *lists*.
- 2. Each edge gets 2 colors, rather than 1.

Def. A graph is (7, 2)-edge-choosable if for every assignment of lists of size 7 to its edges, we can choose 2 colors for each edge from its list so that no color is chosen for two incident edges.

This differs from standard vertex coloring in 3 ways:

- 1. We color from *lists*.
- 2. Each edge gets 2 colors, rather than 1.
- 3. We color edges, not vertices.

Def. A graph is (7, 2)-edge-choosable if for every assignment of lists of size 7 to its edges, we can choose 2 colors for each edge from its list so that no color is chosen for two incident edges.

This differs from standard vertex coloring in 3 ways:

- 1. We color from *lists*.
- 2. Each edge gets 2 colors, rather than 1.
- 3. We color edges, not vertices.

Thm. [Haxell-Naserasr] 3-regular graphs are (7,2)-edge-colorable.

Def. A graph is (7, 2)-edge-choosable if for every assignment of lists of size 7 to its edges, we can choose 2 colors for each edge from its list so that no color is chosen for two incident edges.

This differs from standard vertex coloring in 3 ways:

- 1. We color from *lists*.
- 2. Each edge gets 2 colors, rather than 1.
- 3. We color edges, not vertices.

Thm. [Haxell-Naserasr] 3-regular graphs are (7,2)-edge-*colorable*. The biggest open question for edge-choosability is:

Does $\chi'_{I}(G) = \chi'(G)$ for all graphs G?

Def. A graph is (7, 2)-edge-choosable if for every assignment of lists of size 7 to its edges, we can choose 2 colors for each edge from its list so that no color is chosen for two incident edges.

This differs from standard vertex coloring in 3 ways:

- 1. We color from *lists*.
- 2. Each edge gets 2 colors, rather than 1.
- 3. We color edges, not vertices.

Thm. [Haxell-Naserasr] 3-regular graphs are (7,2)-edge-*colorable*. The biggest open question for edge-choosability is:

Does $\chi'_{l}(G) = \chi'(G)$ for all graphs *G*?

So we examine a similar question for (r, 2)-edge-choosability.

Ques. [Mohar '03] What is the minimum r such that every 3-regular graph is (r, 2)-edge-choosble?

Lem. r > 6

Ques. [Mohar '03] What is the minimum r such that every 3-regular graph is (r, 2)-edge-choosble?

Lem. r > 6 **Pf.**

Ques. [Mohar '03] What is the minimum r such that every 3-regular graph is (r, 2)-edge-choosble?

Lem. r > 6Pf. 1, 2

Ques. [Mohar '03] What is the minimum r such that every 3-regular graph is (r, 2)-edge-choosble?

Brooks' Thm:

If G is not a clique or an odd cycle, then $\chi(G) \leq \Delta(G)$.

Ques. [Mohar '03] What is the minimum r such that every 3-regular graph is (r, 2)-edge-choosble?

List- Brooks' Thm: If G is not a clique or an odd cycle, then $\chi_l(G) \leq \Delta(G)$.

Ques. [Mohar '03] What is the minimum r such that every 3-regular graph is (r, 2)-edge-choosble?

"Super" List- Brooks' Thm:

If G is not a clique or an odd cycle, G is $(m\Delta(G), m)$ -choosable.

Ques. [Mohar '03] What is the minimum r such that every 3-regular graph is (r, 2)-edge-choosble?

"Super" List- Brooks' Thm:

If G is not a clique or an odd cycle, G is $(m\Delta(G), m)$ -choosable.

Ques. [Mohar '03] What is the minimum r such that every 3-regular graph is (r, 2)-edge-choosble?

"Super" List- Brooks' Thm:

If G is not a clique or an odd cycle, G is $(m\Delta(G), m)$ -choosable.

Ques. [Mohar '03] What is the minimum r such that every 3-regular graph is (r, 2)-edge-choosble?

"Super" List- Brooks' Thm:

If G is not a clique or an odd cycle, G is $(m\Delta(G), m)$ -choosable.

Ques. [Mohar '03] What is the minimum r such that every 3-regular graph is (r, 2)-edge-choosble?

"Super" List- Brooks' Thm:

If G is not a clique or an odd cycle, G is $(m\Delta(G), m)$ -choosable.

Ques. [Mohar '03] What is the minimum r such that every 3-regular graph is (r, 2)-edge-choosble?

"Super" List- Brooks' Thm:

If G is not a clique or an odd cycle, G is $(m\Delta(G), m)$ -choosable.

Consider the line graph Line(G).

 $\Delta(\operatorname{Line}(G)) \leq 4$

Ques. [Mohar '03] What is the minimum r such that every 3-regular graph is (r, 2)-edge-choosble?

"Super" List- Brooks' Thm:

If G is not a clique or an odd cycle, G is $(m\Delta(G), m)$ -choosable.

Consider the line graph Line(G).

 $\Delta(\mathsf{Line}(G)) \leq 4$ $\implies \mathsf{Line}(G) \text{ is } (8,2)\text{-choosable}$

Key Lemma

Let $A = \{a_1, a_2, \ldots, a_k\}$ and $B = \{b_1, b_2, \ldots, b_k\}$ be sets of edges, where A is a matching and b_i is incident to a_i and a_{i+1} but not to any other edges in A (indices mod k). From a d-list assignment L on the edges, we can choose one color at each edge of A so that for each i, together a_i and a_{i+1} receive at most one color from $L(b_i)$.

Key Lemma

Let $A = \{a_1, a_2, \dots, a_k\}$ and $B = \{b_1, b_2, \dots, b_k\}$ be sets of edges, where A is a matching and b_i is incident to a_i and a_{i+1} but not to any other edges in A (indices mod k). From a d-list assignment L on the edges, we can choose one color at each edge of A so that for each i, together a_i and a_{i+1} receive at most one color from $L(b_i)$.

Key Lemma

Let $A = \{a_1, a_2, \dots, a_k\}$ and $B = \{b_1, b_2, \dots, b_k\}$ be sets of edges, where A is a matching and b_i is incident to a_i and a_{i+1} but not to any other edges in A (indices mod k). From a d-list assignment L on the edges, we can choose one color at each edge of A so that for each i, together a_i and a_{i+1} receive at most one color from $L(b_i)$.

Pf. 1. All lists the same.

Key Lemma

Let $A = \{a_1, a_2, \dots, a_k\}$ and $B = \{b_1, b_2, \dots, b_k\}$ be sets of edges, where A is a matching and b_i is incident to a_i and a_{i+1} but not to any other edges in A (indices mod k). From a d-list assignment L on the edges, we can choose one color at each edge of A so that for each i, together a_i and a_{i+1} receive at most one color from $L(b_i)$.

Pf. 1. All lists the same.

Key Lemma

Let $A = \{a_1, a_2, \dots, a_k\}$ and $B = \{b_1, b_2, \dots, b_k\}$ be sets of edges, where A is a matching and b_i is incident to a_i and a_{i+1} but not to any other edges in A (indices mod k). From a d-list assignment L on the edges, we can choose one color at each edge of A so that for each i, together a_i and a_{i+1} receive at most one color from $L(b_i)$.

Pf. 1. All lists the same.

Key Lemma

Let $A = \{a_1, a_2, \dots, a_k\}$ and $B = \{b_1, b_2, \dots, b_k\}$ be sets of edges, where A is a matching and b_i is incident to a_i and a_{i+1} but not to any other edges in A (indices mod k). From a d-list assignment L on the edges, we can choose one color at each edge of A so that for each i, together a_i and a_{i+1} receive at most one color from $L(b_i)$.

Pf. 1. All lists the same.

Key Lemma

Let $A = \{a_1, a_2, \dots, a_k\}$ and $B = \{b_1, b_2, \dots, b_k\}$ be sets of edges, where A is a matching and b_i is incident to a_i and a_{i+1} but not to any other edges in A (indices mod k). From a d-list assignment L on the edges, we can choose one color at each edge of A so that for each i, together a_i and a_{i+1} receive at most one color from $L(b_i)$.

Pf. 1. All lists the same.

Key Lemma

Let $A = \{a_1, a_2, \dots, a_k\}$ and $B = \{b_1, b_2, \dots, b_k\}$ be sets of edges, where A is a matching and b_i is incident to a_i and a_{i+1} but not to any other edges in A (indices mod k). From a d-list assignment L on the edges, we can choose one color at each edge of A so that for each i, together a_i and a_{i+1} receive at most one color from $L(b_i)$.

Pf. 1. All lists the same.

Key Lemma

Let $A = \{a_1, a_2, \dots, a_k\}$ and $B = \{b_1, b_2, \dots, b_k\}$ be sets of edges, where A is a matching and b_i is incident to a_i and a_{i+1} but not to any other edges in A (indices mod k). From a d-list assignment L on the edges, we can choose one color at each edge of A so that for each i, together a_i and a_{i+1} receive at most one color from $L(b_i)$.

- **Pf.** 1. All lists the same.
 - 2. Two adjacent lists differ.

Cor. Even cycles are (2m, m)-edge-choosable.

Key Lemma

Let $A = \{a_1, a_2, \dots, a_k\}$ and $B = \{b_1, b_2, \dots, b_k\}$ be sets of edges, where A is a matching and b_i is incident to a_i and a_{i+1} but not to any other edges in A (indices mod k). From a d-list assignment L on the edges, we can choose one color at each edge of A so that for each i, together a_i and a_{i+1} receive at most one color from $L(b_i)$.

А

2m

В

2m

Pf. 1. All lists the same.

2. Two adjacent lists differ.

Cor. Even cycles are (2m, m)-edge-choosable.

Key Lemma

Let $A = \{a_1, a_2, \dots, a_k\}$ and $B = \{b_1, b_2, \dots, b_k\}$ be sets of edges, where A is a matching and b_i is incident to a_i and a_{i+1} but not to any other edges in A (indices mod k). From a d-list assignment L on the edges, we can choose one color at each edge of A so that for each *i*, together a_i and a_{i+1} receive at most one color from $L(b_i)$.

Α

2m

 $\sqrt{2m-1}$ 2m - 1

В

2m

Pf. 1. All lists the same.

2. Two adjacent lists differ.

Cor. Even cycles are (2m, m)-edge-choosable.

Key Lemma

Let $A = \{a_1, a_2, \dots, a_k\}$ and $B = \{b_1, b_2, \dots, b_k\}$ be sets of edges, where A is a matching and b_i is incident to a_i and a_{i+1} but not to any other edges in A (indices mod k). From a d-list assignment L on the edges, we can choose one color at each edge of A so that for each i, together a_i and a_{i+1} receive at most one color from $L(b_i)$. **Pf.** 1. All lists the same. 2. Two adjacent lists differ. **Cor.** Even cycles are (2m, m)-edge-choosable. **A B 2m**

 $\begin{array}{ccc} \sqrt{2m-1} & 2m-1 \\ \sqrt{2m-2} & 2m-2 \end{array}$

Key Lemma

Let $A = \{a_1, a_2, ..., a_k\}$ and $B = \{b_1, b_2, ..., b_k\}$ be sets of edges, where A is a matching and b_i is incident to a_i and a_{i+1} but not to any other edges in A (indices mod k). From a d-list assignment L on the edges, we can choose one color at each edge of A so that for each *i*, together a_i and a_{i+1} receive at most one color from $L(b_i)$. b **Pf.** 1. All lists the same. Two adjacent lists differ. Α В **Cor.** Even cycles are (2m, m)-edge-choosable. 2m 2m $\sqrt{2m-1}$ 2m-1 $\sqrt{2m-2}$ $2m-2\sqrt{2m}$

Cor. 3-edge-colorable graphs are (7, 2)-edge-choosable.

Key Lemma

Let $A = \{a_1, a_2, ..., a_k\}$ and $B = \{b_1, b_2, ..., b_k\}$ be sets of edges, where A is a matching and b_i is incident to a_i and a_{i+1} but not to any other edges in A (indices mod k). From a d-list assignment L on the edges, we can choose one color at each edge of A so that for each *i*, together a_i and a_{i+1} receive at most one color from $L(b_i)$. **Pf.** 1. All lists the same. Two adjacent lists differ. А В **Cor.** Even cycles are (2m, m)-edge-choosable. 2m 2m $\sqrt{2m-1}$ 2m-1 $\sqrt{2m-2}$ $2m-2\sqrt{2m}$ **Cor.** 3-edge-colorable graphs are (7, 2)-edge-choosable. A B C 7 7 7

Key Lemma

Let $A = \{a_1, a_2, ..., a_k\}$ and $B = \{b_1, b_2, ..., b_k\}$ be sets of edges, where A is a matching and b_i is incident to a_i and a_{i+1} but not to any other edges in A (indices mod k). From a d-list assignment L on the edges, we can choose one color at each edge of A so that for each *i*, together a_i and a_{i+1} receive at most one color from $L(b_i)$. **Pf.** 1. All lists the same. Two adjacent lists differ. А В **Cor.** Even cycles are (2m, m)-edge-choosable. 2m 2m $\sqrt{2m-1}$ 2m-1 $\sqrt{2m-2}$ $2m-2\sqrt{2m}$ A B C 7 7 7 **Cor.** 3-edge-colorable graphs are (7, 2)-edge-choosable. $\sqrt{6}$ 6 5

Key Lemma

Let $A = \{a_1, a_2, ..., a_k\}$ and $B = \{b_1, b_2, ..., b_k\}$ be sets of edges, where A is a matching and b_i is incident to a_i and a_{i+1} but not to any other edges in A (indices mod k). From a d-list assignment L on the edges, we can choose one color at each edge of A so that for each *i*, together a_i and a_{i+1} receive at most one color from $L(b_i)$. b **Pf.** 1. All lists the same. Two adjacent lists differ. А В **Cor.** Even cycles are (2m, m)-edge-choosable. 2m 2m $\sqrt{2m-1}$ 2m-1 $\sqrt{2m-2}$ $2m-2\sqrt{2m}$ В Α **Cor.** 3-edge-colorable graphs are (7, 2)-edge-choosable. 7 √6 6 5 $\sqrt{5}$ 5

Key Lemma

Let $A = \{a_1, a_2, ..., a_k\}$ and $B = \{b_1, b_2, ..., b_k\}$ be sets of edges, where A is a matching and b_i is incident to a_i and a_{i+1} but not to any other edges in A (indices mod k). From a d-list assignment L on the edges, we can choose one color at each edge of A so that for each *i*, together a_i and a_{i+1} receive at most one color from $L(b_i)$. b **Pf.** 1. All lists the same. Two adjacent lists differ. А В **Cor.** Even cycles are (2m, m)-edge-choosable. 2m 2m $\sqrt{2m-1}$ 2m-1 $\sqrt{2m-2}$ $2m-2\sqrt{2m}$ А **Cor.** 3-edge-colorable graphs are (7, 2)-edge-choosable. 7 $\sqrt{6}$ 6 5 $\sqrt{5}$ 6 5

Ex.

Def. A MED decomposition of a 3-regular graph is a decomposition into subgraphs G_1 , G_2 , and G_3 , where G_1 is a Matching, the components of G_2 are Even cycles, and G_3 consists of independent Double-stars.

Ex.

Def. A MED decomposition of a 3-regular graph is a decomposition into subgraphs G_1 , G_2 , and G_3 , where G_1 is a Matching, the components of G_2 are Even cycles, and G_3 consists of independent Double-stars.

Ex.

Def. A MED decomposition of a 3-regular graph is a decomposition into subgraphs G_1 , G_2 , and G_3 , where G_1 is a Matching, the components of G_2 are Even cycles, and G_3 consists of independent Double-stars.

Thm. Every 3-regular graph G that has a MED decomposition is (7, 2)-edge-choosable.

Thm. Every 3-regular graph G that has a MED decomposition is (7, 2)-edge-choosable.

Thm. Every 3-regular graph G that has a MED decomposition is (7, 2)-edge-choosable.

Thm. Every 3-regular graph G that has a MED decomposition is (7, 2)-edge-choosable.

Thm. Every 3-regular graph G that has a MED decomposition is (7, 2)-edge-choosable.

Thm. Every 3-regular graph G that has a MED decomposition is (7, 2)-edge-choosable.

Thm. Every 3-regular graph G that has a MED decomposition is (7, 2)-edge-choosable.

Thm. Every 3-regular graph G that has a MED decomposition is (7, 2)-edge-choosable.

Thm. Every 3-regular graph G that has a MED decomposition is (7, 2)-edge-choosable.

Thm. Every 3-regular graph G that has a MED decomposition is (7, 2)-edge-choosable.

Pf. Sketch Choose 2 colors for each edge in the Matching or a Double-star, so that each edge in an Even cycle has 4 colors left. Now we finish, since Even cycles are (4, 2)-edge-choosable.

Conj. Every 2-connected 3-regular graph has a MED decomposition.