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(7,2)-edge-choosability

Def. A graph is (7,2)-edge-choosable if for every assignment of
lists of size 7 to its edges, we can choose 2 colors for each edge
from its list so that no color is chosen for two incident edges.

This differs from standard vertex coloring in 3 ways:

1. We color from lists.
2. Each edge gets 2 colors, rather than 1.

3. We color edges, not vertices.

Thm. [Haxell-Naserasr| 3-regular graphs are (7,2)-edge-colorable.
The biggest open question for edge-choosability is:

Does \/(G) = \'(G) for all graphs G?

So we examine a similar question for (r,2)-edge-choosability.
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But why (7,2)-7

Ques. [Mohar '03] What is the minimum r such that every
3-regular graph is (r, 2)-edge-choosble?

Lem. r>6
Pf.
Lem. r <38
Pf.

“Super” List- Brooks’ Thm:
If G is not a clique or an odd cycle, G is (mA(G), m)-choosable.

Consider the line graph Line(G).

A(Line(G)) <4
= Line(G) is (8, 2)-choosable
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Thm. Every 3-regular graph G that has a MED decomposition is
(7,2)-edge-choosable.

Pf. Sketch Choose 2 colors for each edge in the Matching or a
Double-star, so that each edge in an Even cycle has 4 colors left.
Now we finish, since Even cycles are (4,2)-edge-choosable.

Conj. Every 2-connected 3-regular graph has a MED
decomposition.
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