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Def. A graph is (7, 2)-edge-choosable if for every assignment of
lists of size 7 to its edges, we can choose 2 colors for each edge
from its list so that no color is chosen for two incident edges.

This differs from standard vertex coloring in 3 ways:

1. We color from lists.

2. Each edge gets 2 colors, rather than 1.

3. We color edges, not vertices.

Thm. [Haxell-Naserasr] 3-regular graphs are (7, 2)-edge-colorable.

The biggest open question for edge-choosability is:

Does χ
′

l
(G ) = χ

′(G ) for all graphs G?

So we examine a similar question for (r , 2)-edge-choosability.
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Ques. [Mohar ’03] What is the minimum r such that every
3-regular graph is (r , 2)-edge-choosble?
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“Super” List- Brooks’ Thm:
If G is not a clique or an odd cycle, G is (m∆(G ),m)-choosable.

Consider the line graph Line(G ).

∆(Line(G )) ≤ 4

=⇒ Line(G ) is (8, 2)-choosable
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Proof sketch
Thm. Every 3-regular graph G that has a MED decomposition is
(7, 2)-edge-choosable.

Pf. Sketch Choose 2 colors for each edge in the Matching or a
Double-star, so that each edge in an Even cycle has 4 colors left.
Now we finish, since Even cycles are (4, 2)-edge-choosable.
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Conj. Every 2-connected 3-regular graph has a MED
decomposition.


	Title page
	(7,2)-edge-choosability
	But why (7,2)-?
	The Main Idea and Two Examples
	But wait, there's more…
	Proof sketch

