Conjectures equivalent to the Borodin-Kostochka Conjecture: Coloring a graph with ∆-1 colors

> Daniel W. Cranston Virginia Commonwealth University dcranston@vcu.edu

> > Joint with Landon Rabern

Graph Coloring Minisymposium SIAM Discrete Math 18 June 2012

Coloring graphs with roughly $\Delta(G)$ colors **Obs:** $\chi(G) \leq \Delta(G) + 1$

Coloring graphs with roughly $\Delta(G)$ colors **Obs:** $\chi(G) \leq \Delta(G) + 1$ (color greedily in any order)

Obs: $\chi(G) \leq \Delta(G) + 1$ (color greedily in any order) Thm [Brooks 1941]: If $\Delta(G) \geq 3$, then $\chi(G) \leq \max{\omega(G), \Delta(G)}$.

Obs: $\chi(G) \leq \Delta(G) + 1$ (color greedily in any order) Thm [Brooks 1941]: If $\Delta(G) \geq 3$, then $\chi(G) \leq \max{\omega(G), \Delta(G)}$.

Borodin-Kostochka Conj. (B-K) [1977]: If $\Delta(G) > 9$, then $\chi(G) < \max{\{\omega(G), \Delta(G) - 1\}}$.

Obs: $\chi(G) \leq \Delta(G) + 1$ (color greedily in any order) Thm [Brooks 1941]:

If $\Delta(G) \geq 3$, then $\chi(G) \leq \max{\{\omega(G), \Delta(G)\}}$.

Borodin-Kostochka Conj. (B-K) [1977]: If $\Delta(G) > 9$, then $\chi(G) < \max{\omega(G), \Delta(G) - 1}$.

Beutelspacher-Hering Conj. [1982]: $\exists \Delta_0$ s.t. $\chi(G)$ < max $\{\omega(G), \Delta(G) - 1\}$ if $\Delta(G) > \Delta_0$.

Obs: $\chi(G) \leq \Delta(G) + 1$ (color greedily in any order) Thm [Brooks 1941]:

If $\Delta(G) \geq 3$, then $\chi(G) \leq \max{\{\omega(G), \Delta(G)\}}$.

Borodin-Kostochka Conj. (B-K) [1977]: If $\Delta(G) > 9$, then $\chi(G) < \max{\omega(G), \Delta(G) - 1}$.

Beutelspacher-Hering Conj. [1982]: $\exists \Delta_0$ s.t. $\chi(G)$ < max $\{\omega(G), \Delta(G) - 1\}$ if $\Delta(G) > \Delta_0$.

Why $\Delta(G) > 9$?

Obs: $\chi(G) \leq \Delta(G) + 1$ (color greedily in any order) Thm [Brooks 1941]:

If $\Delta(G) \geq 3$, then $\chi(G) \leq \max{\{\omega(G), \Delta(G)\}}$.

Borodin-Kostochka Conj. (B-K) [1977]: If $\Delta(G) > 9$, then $\chi(G) < \max{\omega(G), \Delta(G) - 1}$.

Beutelspacher-Hering Conj. [1982]: $\exists \Delta_0$ s.t. $\chi(G) \leq \max{\omega(G), \Delta(G) - 1}$ if $\Delta(G) > \Delta_0$.

Obs: $\chi(G) \leq \Delta(G) + 1$ (color greedily in any order) Thm [Brooks 1941]:

If $\Delta(G) \geq 3$, then $\chi(G) \leq \max{\{\omega(G), \Delta(G)\}}$.

Borodin-Kostochka Conj. (B-K) [1977]: If $\Delta(G) > 9$, then $\chi(G) < \max{\omega(G), \Delta(G) - 1}$.

Beutelspacher-Hering Conj. [1982]: $\exists \Delta_0$ s.t. $\chi(G) \leq \max{\omega(G), \Delta(G) - 1}$ if $\Delta(G) > \Delta_0$.

Obs: $\chi(G) \leq \Delta(G) + 1$ (color greedily in any order) Thm [Brooks 1941]:

If $\Delta(G) \geq 3$, then $\chi(G) \leq \max{\{\omega(G), \Delta(G)\}}$.

Borodin-Kostochka Conj. (B-K) [1977]: If $\Delta(G) > 9$, then $\chi(G) < \max{\omega(G), \Delta(G) - 1}$.

Beutelspacher-Hering Conj. [1982]: $\exists \Delta_0$ s.t. $\chi(G) \leq \max{\omega(G), \Delta(G) - 1}$ if $\Delta(G) > \Delta_0$.

Obs: $\chi(G) \leq \Delta(G) + 1$ (color greedily in any order) Thm [Brooks 1941]:

If $\Delta(G) \geq 3$, then $\chi(G) \leq \max{\{\omega(G), \Delta(G)\}}$.

Borodin-Kostochka Conj. (B-K) [1977]: If $\Delta(G) > 9$, then $\chi(G) < \max{\omega(G), \Delta(G) - 1}$.

Beutelspacher-Hering Conj. [1982]: $\exists \Delta_0$ s.t. $\chi(G) \leq \max{\{\omega(G), \Delta(G) - 1\}}$ if $\Delta(G) \geq \Delta_0$.

Obs: $\chi(G) \leq \Delta(G) + 1$ (color greedily in any order) Thm [Brooks 1941]:

If $\Delta(G) \geq 3$, then $\chi(G) \leq \max{\{\omega(G), \Delta(G)\}}$.

Borodin-Kostochka Conj. (B-K) [1977]: If $\Delta(G) > 9$, then $\chi(G) < \max{\omega(G), \Delta(G) - 1}$.

Beutelspacher-Hering Conj. [1982]: $\exists \Delta_0$ s.t. $\chi(G) \leq \max{\{\omega(G), \Delta(G) - 1\}}$ if $\Delta(G) \geq \Delta_0$.

Why $\Delta(G) - 1$?

Obs: $\chi(G) \leq \Delta(G) + 1$ (color greedily in any order) Thm [Brooks 1941]:

If $\Delta(G) \geq 3$, then $\chi(G) \leq \max{\{\omega(G), \Delta(G)\}}$.

Borodin-Kostochka Conj. (B-K) [1977]: If $\Delta(G) > 9$, then $\chi(G) < \max{\omega(G), \Delta(G) - 1}$.

Beutelspacher-Hering Conj. [1982]: $\exists \Delta_0$ s.t. $\chi(G) \leq \max{\{\omega(G), \Delta(G) - 1\}}$ if $\Delta(G) \geq \Delta_0$.

Why $\Delta(G) - 1$?

 $\Delta(G) = t$

Obs: $\chi(G) \leq \Delta(G) + 1$ (color greedily in any order) Thm [Brooks 1941]:

If $\Delta(G) \geq 3$, then $\chi(G) \leq \max{\{\omega(G), \Delta(G)\}}$.

Borodin-Kostochka Conj. (B-K) [1977]: If $\Delta(G) \geq 9$, then $\chi(G) \leq \max{\omega(G), \Delta(G) - 1}$.

Beutelspacher-Hering Conj. [1982]: $\exists \Delta_0$ s.t. $\chi(G) \leq \max{\{\omega(G), \Delta(G) - 1\}}$ if $\Delta(G) \geq \Delta_0$.

Why $\Delta(G) - 1$?

 $\Delta(G) = t, \ \omega(G) = t - 2$

Obs: $\chi(G) \leq \Delta(G) + 1$ (color greedily in any order) Thm [Brooks 1941]:

If $\Delta(G) \geq 3$, then $\chi(G) \leq \max{\{\omega(G), \Delta(G)\}}$.

Borodin-Kostochka Conj. (B-K) [1977]: If $\Delta(G) \geq 9$, then $\chi(G) \leq \max{\omega(G), \Delta(G) - 1}$.

Beutelspacher-Hering Conj. [1982]: $\exists \Delta_0$ s.t. $\chi(G) \leq \max{\{\omega(G), \Delta(G) - 1\}}$ if $\Delta(G) \geq \Delta_0$.

Why $\Delta(G) - 1$?

 $\Delta(G) = t$, $\omega(G) = t - 2$ $\chi(G) = (t-4)+3 = t-1$

Thm [Kostochka 1980]: If $\chi(G) \geq \Delta(G)$ then G has a K_{$\Delta-28$}.

Thm [Kostochka 1980]: If $\chi(G) \geq \Delta(G)$ then G has a K_{$\Delta-28$}. **Thm** [Mozhan 1983]: If $\chi(G) \geq \Delta(G) \geq 31$ then G has a $K_{\Delta-3}$.

Thm [Kostochka 1980]: If $\chi(G) \geq \Delta(G)$ then G has a K_{$\Delta-28$}. **Thm** [Mozhan 1983]: If $\chi(G) \geq \Delta(G) \geq 31$ then G has a $K_{\Delta-3}$.

Thm [Kostochka 1980]: To prove B-K, $\Delta(G) = 9$ suffices.

Thm [Kostochka 1980]: If $\chi(G) \geq \Delta(G)$ then G has a K_{$\Delta-28$}. **Thm** [Mozhan 1983]: If $\chi(G) \geq \Delta(G) \geq 31$ then G has a $K_{\Delta-3}$.

Thm [Kostochka 1980]: To prove B-K, $\Delta(G) = 9$ suffices. **Thm** [King (Rabern) 2010]: If $\omega(G) > \frac{2}{3}$ $\frac{2}{3}(\Delta(G)+1)$, then

G has a stable set that intersects every maximum clique.

Thm [Kostochka 1980]: If $\chi(G) \geq \Delta(G)$ then G has a K_{$\Delta-28$}. **Thm** [Mozhan 1983]: If $\chi(G) \geq \Delta(G) \geq 31$ then G has a $K_{\Delta-3}$.

Thm [Kostochka 1980]: To prove B-K, $\Delta(G) = 9$ suffices. **Thm** [King (Rabern) 2010]: If $\omega(G) > \frac{2}{3}$ $\frac{2}{3}(\Delta(G)+1)$, then G has a stable set that intersects every maximum clique.

Thm [Reed 1999]: Beutelspacher-Hering is true with $\Delta_0 = 10^{14}$.

Thm [Kostochka 1980]: If $\chi(G) \geq \Delta(G)$ then G has a K_{$\Delta-28$}. **Thm** [Mozhan 1983]: If $\chi(G) \geq \Delta(G) \geq 31$ then G has a $K_{\Delta-3}$.

Thm [Kostochka 1980]: To prove B-K, $\Delta(G) = 9$ suffices. **Thm** [King (Rabern) 2010]: If $\omega(G) > \frac{2}{3}$ $\frac{2}{3}(\Delta(G)+1)$, then G has a stable set that intersects every maximum clique.

Thm [Reed 1999]: Beutelspacher-Hering is true with $\Delta_0 = 10^{14}$. \blacktriangleright Probabilistic proof.

Thm [Kostochka 1980]: If $\chi(G) \geq \Delta(G)$ then G has a K_{$\Delta-28$}. **Thm** [Mozhan 1983]: If $\chi(G) \geq \Delta(G) \geq 31$ then G has a $K_{\Delta-3}$.

Thm [Kostochka 1980]: To prove B-K, $\Delta(G) = 9$ suffices. **Thm** [King (Rabern) 2010]: If $\omega(G) > \frac{2}{3}$ $\frac{2}{3}(\Delta(G)+1)$, then G has a stable set that intersects every maximum clique.

Thm [Reed 1999]: Beutelspacher-Hering is true with $\Delta_0 = 10^{14}$.

- \blacktriangleright Probabilistic proof.
- \triangleright Tighter analysis might yield $\Delta_0 = 1000$, but not 100.

Thm [Kostochka 1980]: If $\chi(G) \geq \Delta(G)$ then G has a K_{$\Delta-28$}. **Thm** [Mozhan 1983]: If χ (G) > Δ (G) > 31 then G has a $K_{\Delta-3}$.

Thm [Kostochka 1980]: To prove B-K, $\Delta(G) = 9$ suffices. **Thm** [King (Rabern) 2010]: If $\omega(G) > \frac{2}{3}$ $\frac{2}{3}(\Delta(G)+1)$, then G has a stable set that intersects every maximum clique.

Thm [Reed 1999]: Beutelspacher-Hering is true with $\Delta_0 = 10^{14}$.

- \blacktriangleright Probabilistic proof.
- \triangleright Tighter analysis might yield $\Delta_0 = 1000$, but not 100.

Thm $[C - Rabern 2012+]$: B-K is true for claw-free graphs. \blacktriangleright Chudnovsky-Seymour quasi-line structure theorem

Thm [Kostochka 1980]: If $\chi(G) \geq \Delta(G)$ then G has a K_{$\Delta-28$}. **Thm** [Mozhan 1983]: If χ (G) > Δ (G) > 31 then G has a $K_{\Delta-3}$.

Thm [Kostochka 1980]: To prove B-K, $\Delta(G) = 9$ suffices. **Thm** [King (Rabern) 2010]: If $\omega(G) > \frac{2}{3}$ $\frac{2}{3}(\Delta(G)+1)$, then G has a stable set that intersects every maximum clique.

Thm [Reed 1999]: Beutelspacher-Hering is true with $\Delta_0 = 10^{14}$.

- \blacktriangleright Probabilistic proof.
- \triangleright Tighter analysis might yield $\Delta_0 = 1000$, but not 100.

Thm $[C - Rabern 2012+]$: B-K is true for claw-free graphs.

- \triangleright Chudnovsky-Seymour quasi-line structure theorem
- \blacktriangleright Forbidden subgraphs via list-coloring

Def: The join of graphs A and B, denoted $A * B$, is formed from A and \overline{B} by adding all edges with one endpoint in \overline{A} and one in \overline{B} .

Def: The join of graphs A and B, denoted $A * B$, is formed from A and \overline{B} by adding all edges with one endpoint in \overline{A} and one in \overline{B} . A graph is almost complete if deleting some vertex leaves a complete subgraph.

Def: The join of graphs A and B, denoted $A * B$, is formed from A and \overline{B} by adding all edges with one endpoint in \overline{A} and one in \overline{B} . A graph is almost complete if deleting some vertex leaves a complete subgraph. E_t is the empty graph on t vertices.

Def: The join of graphs A and B, denoted $A * B$, is formed from A and \overline{B} by adding all edges with one endpoint in \overline{A} and one in \overline{B} . A graph is almost complete if deleting some vertex leaves a complete subgraph. E_t is the empty graph on t vertices.

Def: A graph G is f-choosable if whenever each vertex \bf{v} gets a list $L(v)$ of colors of size $f(v)$, G has a proper coloring from its lists.

Def: The join of graphs A and B, denoted $A * B$, is formed from A and \overline{B} by adding all edges with one endpoint in \overline{A} and one in \overline{B} . A graph is almost complete if deleting some vertex leaves a complete subgraph. E_t is the empty graph on t vertices.

Def: A graph G is f-choosable if whenever each vertex \bf{v} gets a list $L(v)$ of colors of size $f(v)$, G has a proper coloring from its lists. A graph is d_i -choosable if G is f-choosable, where $f(v) = d(v) - j$ for each $v \in G$.

Def: The join of graphs A and B, denoted $A * B$, is formed from A and \overline{B} by adding all edges with one endpoint in \overline{A} and one in \overline{B} . A graph is almost complete if deleting some vertex leaves a complete subgraph. E_t is the empty graph on t vertices.

Def: A graph G is f-choosable if whenever each vertex \bf{v} gets a list $L(v)$ of colors of size $f(v)$, G has a proper coloring from its lists. A graph is d_i -choosable if G is f-choosable, where $f(v) = d(v) - j$ for each $v \in G$.

Rem: Graphs that are not d_0 -choosable are completely understood, which gives a list version of Brooks' Theorem.

Def: The join of graphs A and B, denoted $A * B$, is formed from A and \overline{B} by adding all edges with one endpoint in \overline{A} and one in \overline{B} . A graph is almost complete if deleting some vertex leaves a complete subgraph. E_t is the empty graph on t vertices.

Def: A graph G is f-choosable if whenever each vertex \bf{v} gets a list $L(v)$ of colors of size $f(v)$, G has a proper coloring from its lists. A graph is d_i -choosable if G is f-choosable, where $f(v) = d(v) - j$ for each $v \in G$.

Rem: Graphs that are not d_0 -choosable are completely understood, which gives a list version of Brooks' Theorem. We study graphs that are d_1 -choosable.

Def: The join of graphs A and B, denoted $A * B$, is formed from A and \overline{B} by adding all edges with one endpoint in \overline{A} and one in \overline{B} . A graph is almost complete if deleting some vertex leaves a complete subgraph. E_t is the empty graph on t vertices.

Def: A graph G is f-choosable if whenever each vertex \bf{v} gets a list $L(v)$ of colors of size $f(v)$, G has a proper coloring from its lists. A graph is d_i -choosable if G is f-choosable, where $f(v) = d(v) - j$ for each $v \in G$.

Rem: Graphs that are not d_0 -choosable are completely understood, which gives a list version of Brooks' Theorem. We study graphs that are d_1 -choosable.

Small Pot Lemma (SPL):

For any graph G and function f (such that $f(v) < |G|$ for all $v \in G$), to verify that G is f-choosable, it suffices to consider all list assignments L such that $|L(v)| = f(v)$ and $|U_{v \in G} L(v)| < |G|$.

B-K Conj: Every graph with $\chi(G) = \Delta(G) \geq 9$ has a K_{Δ} .

B-K Conj: Every graph with $\chi(G) = \Delta(G) \geq 9$ has a K_{Δ} . **Our Conj:** Every graph with $\chi(G) = \Delta(G) \geq 9$ has a $K_3 * E_{\Delta-3}$.

B-K Conj: Every graph with $\chi(G) = \Delta(G) \geq 9$ has a K_{Δ} . **Our Conj:** Every graph with $\chi(G) = \Delta(G) \geq 9$ has a $K_3 * E_{\Delta-3}$.

Main Thm: Borodin-Kostochka Conjecture is equivalent to ours.

B-K Conj: Every graph with $\chi(G) = \Delta(G) \geq 9$ has a K_{Δ} . **Our Conj:** Every graph with $\chi(G) = \Delta(G) \geq 9$ has a $K_3 * E_{\Delta-3}$.

Main Thm: Borodin-Kostochka Conjecture is equivalent to ours. Pf sketch that $K_4 * E_{\Delta-4}$ implies K_{Δ} :

B-K Conj: Every graph with $\chi(G) = \Delta(G) \geq 9$ has a K_{Δ} . **Our Conj:** Every graph with $\chi(G) = \Delta(G) \geq 9$ has a $K_3 * E_{\Delta-3}$.

Main Thm: Borodin-Kostochka Conjecture is equivalent to ours. Pf sketch that $K_4 * E_{\Delta-4}$ implies K_{Δ} : Suppose not. Choose c/e G to minimize $|G|$.

B-K Conj: Every graph with $\chi(G) = \Delta(G) > 9$ has a K_{Δ} . **Our Conj:** Every graph with $\chi(G) = \Delta(G) > 9$ has a $K_3 * E_{\Delta-3}$.

Main Thm: Borodin-Kostochka Conjecture is equivalent to ours. Pf sketch that $K_4 * E_{\Delta-4}$ implies K_{Δ} : Suppose not. Choose c/e G to minimize $|G|$. Note that G has no d_1 -choosable induced subgraph.

B-K Conj: Every graph with $\chi(G) = \Delta(G) \geq 9$ has a K_{Δ} . **Our Conj:** Every graph with $\chi(G) = \Delta(G) \geq 9$ has a $K_3 * E_{\Delta-3}$.

Main Thm: Borodin-Kostochka Conjecture is equivalent to ours. Pf sketch that $K_4 * E_{\Delta-4}$ implies K_{Δ} : Suppose not. Choose c/e G to minimize $|G|$. Note that G has no d_1 -choosable induced subgraph.

B-K Conj: Every graph with $\chi(G) = \Delta(G) \geq 9$ has a K_{Δ} . **Our Conj:** Every graph with $\chi(G) = \Delta(G) \geq 9$ has a $K_3 * E_{\Delta-3}$.

Main Thm: Borodin-Kostochka Conjecture is equivalent to ours. Pf sketch that $K_4 * E_{\Delta-4}$ implies K_{Δ} : Suppose not. Choose c/e G to minimize $|G|$. Note that G has no d_1 -choosable induced subgraph.

Lemma 1: If G has a $(\Delta - 1)$ -clique K, then each vertex outside K has at most 1 neighbor in K.

B-K Conj: Every graph with $\chi(G) = \Delta(G) \geq 9$ has a K_{Δ} . **Our Conj:** Every graph with $\chi(G) = \Delta(G) \geq 9$ has a $K_3 * E_{\Delta-3}$.

Main Thm: Borodin-Kostochka Conjecture is equivalent to ours. Pf sketch that $K_4 * E_{\Delta-4}$ implies K_{Δ} : Suppose not. Choose c/e G to minimize $|G|$. Note that G has no d_1 -choosable induced subgraph.

Lemma 1: If G has a $(\Delta - 1)$ -clique K, then each vertex outside K has at most 1 neighbor in K. **Lemma 2:** If $|D| > 5$, then $K_4 * D$ is d_1 -choosable unless D is almost complete.

B-K Conj: Every graph with $\chi(G) = \Delta(G) \geq 9$ has a K_{Δ} . **Our Conj:** Every graph with $\chi(G) = \Delta(G) \geq 9$ has a $K_3 * E_{\Delta-3}$.

Main Thm: Borodin-Kostochka Conjecture is equivalent to ours. Pf sketch that $K_4 * E_{\Delta-4}$ implies K_{Δ} : Suppose not. Choose c/e G to minimize $|G|$. Note that G has no d_1 -choosable induced subgraph.

Lemma 1: If G has a $(\Delta - 1)$ -clique K, then each vertex outside K has at most 1 neighbor in K. **Lemma 2:** If $|D| > 5$, then $K_4 * D$ is d_1 -choosable unless D is almost complete. We contradict either Lemma 1 or Lemma 2.

Lemma: $K_6 * D$ is d_1 -choosable unless D is almost complete.

Lemma: $K_6 * D$ is d_1 -choosable unless D is almost complete. Pf: Let D be not almost complete.

Lemma: $K_6 * D$ is d_1 -choosable unless D is almost complete. **Pf:** Let D be not almost complete.

Case 1: ∃ distinct $x_1, x_2, x_3, x_4 \in D$ s.t. $x_1 \nleftrightarrow x_2$ and $x_3 \nleftrightarrow x_4$.

Lemma: $K_6 * D$ is d_1 -choosable unless D is almost complete. **Pf:** Let D be not almost complete.

Case 1: ∃ distinct $x_1, x_2, x_3, x_4 \in D$ s.t. $x_1 \nleftrightarrow x_2$ and $x_3 \nleftrightarrow x_4$.

Lemma: $K_6 * D$ is d_1 -choosable unless D is almost complete. **Pf:** Let D be not almost complete.

Case 1: ∃ distinct $x_1, x_2, x_3, x_4 \in D$ s.t. $x_1 \nleftrightarrow x_2$ and $x_3 \nleftrightarrow x_4$. Color $D \setminus \{x_1, \ldots, x_4\}$ and let L denote the remaining lists.

Lemma: $K_6 * D$ is d_1 -choosable unless D is almost complete. **Pf:** Let D be not almost complete.

Case 1: ∃ distinct $x_1, x_2, x_3, x_4 \in D$ s.t. $x_1 \nleftrightarrow x_2$ and $x_3 \nleftrightarrow x_4$. Color $D \setminus \{x_1, \ldots, x_4\}$ and let L denote the remaining lists. SPL: assume $|Pot(L)| < |K_6 \cup \{x_1, \ldots, x_4\}| - 1 = 9.$

Lemma: $K_6 * D$ is d_1 -choosable unless D is almost complete. **Pf:** Let D be not almost complete.

Case 1: ∃ distinct $x_1, x_2, x_3, x_4 \in D$ s.t. $x_1 \nleftrightarrow x_2$ and $x_3 \nleftrightarrow x_4$. Color $D \setminus \{x_1, \ldots, x_4\}$ and let L denote the remaining lists. SPL: assume $|Pot(L)| \leq |K_6 \cup \{x_1, \ldots, x_4\}| - 1 = 9$. Note $|L(x_i)| \geq 5$.

Lemma: $K_6 * D$ is d_1 -choosable unless D is almost complete. **Pf:** Let D be not almost complete.

Case 1: ∃ distinct $x_1, x_2, x_3, x_4 \in D$ s.t. $x_1 \nleftrightarrow x_2$ and $x_3 \nleftrightarrow x_4$. Color $D \setminus \{x_1, \ldots, x_4\}$ and let L denote the remaining lists. SPL: assume $|Pot(L)| \leq |K_6 \cup \{x_1, \ldots, x_4\}| - 1 = 9$. Note $|L(x_i)| \geq 5$. Since $|L(x_1)|+|L(x_2)| \ge 10 > |Pot(L)|$, we have $c_1 \in L(x_1) \cap L(x_2)$.

Lemma: $K_6 * D$ is d_1 -choosable unless D is almost complete. **Pf:** Let D be not almost complete.

Case 1: ∃ distinct $x_1, x_2, x_3, x_4 \in D$ s.t. $x_1 \nleftrightarrow x_2$ and $x_3 \nleftrightarrow x_4$. Color $D \setminus \{x_1, \ldots, x_4\}$ and let L denote the remaining lists. SPL: assume $|Pot(L)| \leq |K_6 \cup \{x_1, ..., x_4\}| - 1 = 9$. Note $|L(x_i)| > 5$. Since $|L(x_1)|+|L(x_2)| \ge 10 > |Pot(L)|$, we have $c_1 \in L(x_1) \cap L(x_2)$. And $c_2 \in L(x_3) \cap L(x_4)$.

Lemma: $K_6 * D$ is d_1 -choosable unless D is almost complete. **Pf:** Let D be not almost complete.

Case 1: ∃ distinct $x_1, x_2, x_3, x_4 \in D$ s.t. $x_1 \nleftrightarrow x_2$ and $x_3 \nleftrightarrow x_4$. Color $D \setminus \{x_1, \ldots, x_4\}$ and let L denote the remaining lists. SPL: assume $|Pot(L)| \leq |K_6 \cup \{x_1, \ldots, x_4\}| - 1 = 9$. Note $|L(x_i)| \geq 5$. Since $|L(x_1)|+|L(x_2)| \ge 10 > |Pot(L)|$, we have $c_1 \in L(x_1) \cap L(x_2)$. And $c_2 \in L(x_3) \cap L(x_4)$. Use c_i 's on x_i 's and finish greedily.

Lemma: $K_6 * D$ is d_1 -choosable unless D is almost complete. **Pf:** Let D be not almost complete.

Lemma: $K_6 * D$ is d_1 -choosable unless D is almost complete. **Pf:** Let D be not almost complete.

Lemma: $K_6 * D$ is d_1 -choosable unless D is almost complete. **Pf:** Let D be not almost complete.

Case 1: ∃ distinct $x_1, x_2, x_3, x_4 \in D$ s.t. $x_1 \nleftrightarrow x_2$ and $x_3 \nleftrightarrow x_4$. Color $D \setminus \{x_1, \ldots, x_4\}$ and let L denote the remaining lists. SPL: assume $|Pot(L)| \leq |K_6 \cup \{x_1, \ldots, x_4\}| - 1 = 9$. Note $|L(x_i)| > 5$. Since $|L(x_1)|+|L(x_2)| \ge 10 > |Pot(L)|$, we have $c_1 \in L(x_1) \cap L(x_2)$. And $c_2 \in L(x_3) \cap L(x_4)$. Use c_i 's on x_i 's and finish greedily. Works unless $x_1 \leftrightarrow x_3$. Now $|L(x_1)| + |L(x_2)| \ge 11$, so $|L(x_1) \cap L(x_2)| \ge 2$.

Case 2: ∃ x_1, x_2, x_3 s.t. $D = K_{|D|} - \{x_1x_2, x_1x_3, x_2x_3\}.$

Lemma: $K_6 * D$ is d_1 -choosable unless D is almost complete. **Pf:** Let D be not almost complete.

Case 1: ∃ distinct $x_1, x_2, x_3, x_4 \in D$ s.t. $x_1 \nleftrightarrow x_2$ and $x_3 \nleftrightarrow x_4$. Color $D \setminus \{x_1, \ldots, x_4\}$ and let L denote the remaining lists. SPL: assume $|Pot(L)| \leq |K_6 \cup \{x_1, \ldots, x_4\}| - 1 = 9$. Note $|L(x_i)| \geq 5$. Since $|L(x_1)|+|L(x_2)| \ge 10 > |Pot(L)|$, we have $c_1 \in L(x_1) \cap L(x_2)$. And $c_2 \in L(x_3) \cap L(x_4)$. Use c_i 's on x_i 's and finish greedily. Works unless $x_1 \leftrightarrow x_3$. Now $|L(x_1)| + |L(x_2)| \ge 11$, so $|L(x_1) \cap L(x_2)| \ge 2$.

Case 2: ∃ x_1, x_2, x_3 s.t. $D = K_{|D|} - \{x_1x_2, x_1x_3, x_2x_3\}.$

Lemma: $K_6 * D$ is d_1 -choosable unless D is almost complete. **Pf:** Let D be not almost complete.

Case 2: ∃ x_1, x_2, x_3 s.t. $D = K_{|D|} - \{x_1x_2, x_1x_3, x_2x_3\}$. As above $L(x_i) \cap L(x_i) \neq \emptyset$ for all $i, j \in [3]$.

Lemma: $K_6 * D$ is d_1 -choosable unless D is almost complete. **Pf:** Let D be not almost complete.

Case 2: ∃ x_1, x_2, x_3 s.t. $D = K_{|D|} - \{x_1x_2, x_1x_3, x_2x_3\}$. As above $L(x_i) \cap L(x_i) \neq \emptyset$ for all $i, j \in [3]$. So we have $L(w) \supseteq \cup L(x_i)$ for all $w \in K_6$.

Lemma: $K_6 * D$ is d_1 -choosable unless D is almost complete. **Pf:** Let D be not almost complete.

Case 2: ∃ x_1, x_2, x_3 s.t. $D = K_{|D|} - \{x_1x_2, x_1x_3, x_2x_3\}$. As above $L(x_i) \cap L(x_i) \neq \emptyset$ for all $i, j \in [3]$. So we have $L(w) \supseteq \cup L(x_i)$ for all $w \in K_6$. This gives $|U L(x_i)| \le 7$.

Lemma: $K_6 * D$ is d_1 -choosable unless D is almost complete. **Pf:** Let D be not almost complete.

Case 2: ∃ x_1, x_2, x_3 s.t. $D = K_{|D|} - \{x_1x_2, x_1x_3, x_2x_3\}$. As above $L(x_i) \cap L(x_i) \neq \emptyset$ for all $i, j \in [3]$. So we have $L(w) \supseteq \cup L(x_i)$ for all $w \in K_6$. This gives $| \cup L(x_i)| \le 7$. So $\sum |L(x_i)| = 15 > 2| \cup L(x_i)|$,

Lemma: $K_6 * D$ is d_1 -choosable unless D is almost complete. **Pf:** Let D be not almost complete.

Case 2: ∃ x_1, x_2, x_3 s.t. $D = K_{|D|} - \{x_1x_2, x_1x_3, x_2x_3\}$. As above $L(x_i) \cap L(x_i) \neq \emptyset$ for all $i, j \in [3]$. So we have $L(w) \supseteq \cup L(x_i)$ for all $w \in K_6$. This gives $| \cup L(x_i)| \le 7$. So $\sum |L(x_i)| = 15 > 2| \cup L(x_i)|$, and thus we have $c \in \bigcap L(x_i)$.

Lemma: $K_6 * D$ is d_1 -choosable unless D is almost complete. **Pf:** Let D be not almost complete.

Case 2: ∃ x_1, x_2, x_3 s.t. $D = K_{|D|} - \{x_1x_2, x_1x_3, x_2x_3\}$. As above $L(x_i) \cap L(x_i) \neq \emptyset$ for all $i, j \in [3]$. So we have $L(w) \supseteq \cup L(x_i)$ for all $w \in K_6$. This gives $| \cup L(x_i)| \le 7$. So $\sum |L(x_i)| = 15 > 2| \cup L(x_i)|$, and thus we have $c \in \cap L(x_i)$. Use c on the x_i , then finish greedily.

Main Result (recap)

B-K Conj: Every graph with $\chi(G) = \Delta(G) \geq 9$ has a K_{Δ} . **Our Conj:** Every graph with $\chi(G) = \Delta(G) \geq 9$ has a $K_3 * E_{\Delta-3}$.

Main Thm: Borodin-Kostochka Conjecture is equivalent to ours.

Main Result (recap)

B-K Conj: Every graph with $\chi(G) = \Delta(G) \geq 9$ has a K_{Δ} . **Our Conj:** Every graph with $\chi(G) = \Delta(G) \geq 9$ has a $K_3 * E_{\Delta-3}$.

Main Thm: Borodin-Kostochka Conjecture is equivalent to ours. Pf sketch that $K_4 * E_{\Delta-4}$ implies K_{Δ} : Suppose not. Choose c/e G to minimize $|G|$. Note that G has no d_1 -choosable induced subgraph.

Lemma 1: If G has a $(\Delta - 1)$ -clique K, then each vertex outside K has at most 1 neighbor in K. **Lemma 2:** If $|D| > 5$, then $K_4 * D$ is d_1 -choosable unless D is almost complete. We contradict either Lemma 1 or Lemma 2.