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Coloring graphs with roughly ∆(G ) colors

Obs: χ(G ) ≤ ∆(G ) + 1

(color greedily in any order)

Thm [Brooks 1941]:
If ∆(G ) ≥ 3, then χ(G ) ≤ max{ω(G ),∆(G )}.
Borodin-Kostochka Conj. (B-K) [1977]:
If ∆(G ) ≥ 9, then χ(G ) ≤ max{ω(G ),∆(G )− 1}.
Beutelspacher-Hering Conj. [1982]:
∃ ∆0 s.t. χ(G ) ≤ max{ω(G ),∆(G )− 1} if ∆(G ) ≥ ∆0.

Why ∆(G ) ≥ 9?

∆(G ) = 8, ω(G ) = 6
χ(G ) = d15/2e = 8

Why ∆(G )− 1?

Kt−4

∆(G ) = t, ω(G ) = t − 2
χ(G ) = (t−4)+3 = t−1
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What else is known?

Thm [Kostochka 1980]: If χ(G ) ≥ ∆(G ) then G has a K∆−28.

Thm [Mozhan 1983]: If χ(G ) ≥ ∆(G ) ≥ 31 then G has a K∆−3.

Thm [Kostochka 1980]: To prove B-K, ∆(G ) = 9 suffices.
I Thm [King (Rabern) 2010]: If ω(G ) > 2

3 (∆(G ) + 1), then
G has a stable set that intersects every maximum clique.

Thm [Reed 1999]: Beutelspacher-Hering is true with ∆0 = 1014.

I Probabilistic proof.

I Tighter analysis might yield ∆0 = 1000, but not 100.

Thm [C.-Rabern 2012+]: B-K is true for claw-free graphs.
I Chudnovsky-Seymour quasi-line structure theorem

I Forbidden subgraphs via list-coloring
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Preliminaries

Def: The join of graphs A and B, denoted A ∗B, is formed from A
and B by adding all edges with one endpoint in A and one in B.

A graph is almost complete if deleting some vertex leaves a
complete subgraph. Et is the empty graph on t vertices.

Def: A graph G is f -choosable if whenever each vertex v gets a list
L(v) of colors of size f (v), G has a proper coloring from its lists.
A graph is dj -choosable if G is f -choosable, where f (v) = d(v)− j
for each v ∈ G .

Rem: Graphs that are not d0-choosable are completely
understood, which gives a list version of Brooks’ Theorem.
We study graphs that are d1-choosable.

Small Pot Lemma (SPL):
For any graph G and function f (such that f (v) < |G | for all
v ∈ G ), to verify that G is f -choosable, it suffices to consider all
list assignments L such that |L(v)| = f (v) and | ∪v∈G L(v)| < |G |.



Preliminaries

Def: The join of graphs A and B, denoted A ∗B, is formed from A
and B by adding all edges with one endpoint in A and one in B.
A graph is almost complete if deleting some vertex leaves a
complete subgraph.

Et is the empty graph on t vertices.

Def: A graph G is f -choosable if whenever each vertex v gets a list
L(v) of colors of size f (v), G has a proper coloring from its lists.
A graph is dj -choosable if G is f -choosable, where f (v) = d(v)− j
for each v ∈ G .

Rem: Graphs that are not d0-choosable are completely
understood, which gives a list version of Brooks’ Theorem.
We study graphs that are d1-choosable.

Small Pot Lemma (SPL):
For any graph G and function f (such that f (v) < |G | for all
v ∈ G ), to verify that G is f -choosable, it suffices to consider all
list assignments L such that |L(v)| = f (v) and | ∪v∈G L(v)| < |G |.



Preliminaries

Def: The join of graphs A and B, denoted A ∗B, is formed from A
and B by adding all edges with one endpoint in A and one in B.
A graph is almost complete if deleting some vertex leaves a
complete subgraph. Et is the empty graph on t vertices.

Def: A graph G is f -choosable if whenever each vertex v gets a list
L(v) of colors of size f (v), G has a proper coloring from its lists.
A graph is dj -choosable if G is f -choosable, where f (v) = d(v)− j
for each v ∈ G .

Rem: Graphs that are not d0-choosable are completely
understood, which gives a list version of Brooks’ Theorem.
We study graphs that are d1-choosable.

Small Pot Lemma (SPL):
For any graph G and function f (such that f (v) < |G | for all
v ∈ G ), to verify that G is f -choosable, it suffices to consider all
list assignments L such that |L(v)| = f (v) and | ∪v∈G L(v)| < |G |.



Preliminaries

Def: The join of graphs A and B, denoted A ∗B, is formed from A
and B by adding all edges with one endpoint in A and one in B.
A graph is almost complete if deleting some vertex leaves a
complete subgraph. Et is the empty graph on t vertices.

Def: A graph G is f -choosable if whenever each vertex v gets a list
L(v) of colors of size f (v), G has a proper coloring from its lists.

A graph is dj -choosable if G is f -choosable, where f (v) = d(v)− j
for each v ∈ G .

Rem: Graphs that are not d0-choosable are completely
understood, which gives a list version of Brooks’ Theorem.
We study graphs that are d1-choosable.

Small Pot Lemma (SPL):
For any graph G and function f (such that f (v) < |G | for all
v ∈ G ), to verify that G is f -choosable, it suffices to consider all
list assignments L such that |L(v)| = f (v) and | ∪v∈G L(v)| < |G |.



Preliminaries

Def: The join of graphs A and B, denoted A ∗B, is formed from A
and B by adding all edges with one endpoint in A and one in B.
A graph is almost complete if deleting some vertex leaves a
complete subgraph. Et is the empty graph on t vertices.

Def: A graph G is f -choosable if whenever each vertex v gets a list
L(v) of colors of size f (v), G has a proper coloring from its lists.
A graph is dj -choosable if G is f -choosable, where f (v) = d(v)− j
for each v ∈ G .

Rem: Graphs that are not d0-choosable are completely
understood, which gives a list version of Brooks’ Theorem.
We study graphs that are d1-choosable.

Small Pot Lemma (SPL):
For any graph G and function f (such that f (v) < |G | for all
v ∈ G ), to verify that G is f -choosable, it suffices to consider all
list assignments L such that |L(v)| = f (v) and | ∪v∈G L(v)| < |G |.



Preliminaries

Def: The join of graphs A and B, denoted A ∗B, is formed from A
and B by adding all edges with one endpoint in A and one in B.
A graph is almost complete if deleting some vertex leaves a
complete subgraph. Et is the empty graph on t vertices.

Def: A graph G is f -choosable if whenever each vertex v gets a list
L(v) of colors of size f (v), G has a proper coloring from its lists.
A graph is dj -choosable if G is f -choosable, where f (v) = d(v)− j
for each v ∈ G .

Rem: Graphs that are not d0-choosable are completely
understood, which gives a list version of Brooks’ Theorem.

We study graphs that are d1-choosable.

Small Pot Lemma (SPL):
For any graph G and function f (such that f (v) < |G | for all
v ∈ G ), to verify that G is f -choosable, it suffices to consider all
list assignments L such that |L(v)| = f (v) and | ∪v∈G L(v)| < |G |.



Preliminaries

Def: The join of graphs A and B, denoted A ∗B, is formed from A
and B by adding all edges with one endpoint in A and one in B.
A graph is almost complete if deleting some vertex leaves a
complete subgraph. Et is the empty graph on t vertices.

Def: A graph G is f -choosable if whenever each vertex v gets a list
L(v) of colors of size f (v), G has a proper coloring from its lists.
A graph is dj -choosable if G is f -choosable, where f (v) = d(v)− j
for each v ∈ G .

Rem: Graphs that are not d0-choosable are completely
understood, which gives a list version of Brooks’ Theorem.
We study graphs that are d1-choosable.

Small Pot Lemma (SPL):
For any graph G and function f (such that f (v) < |G | for all
v ∈ G ), to verify that G is f -choosable, it suffices to consider all
list assignments L such that |L(v)| = f (v) and | ∪v∈G L(v)| < |G |.



Preliminaries

Def: The join of graphs A and B, denoted A ∗B, is formed from A
and B by adding all edges with one endpoint in A and one in B.
A graph is almost complete if deleting some vertex leaves a
complete subgraph. Et is the empty graph on t vertices.

Def: A graph G is f -choosable if whenever each vertex v gets a list
L(v) of colors of size f (v), G has a proper coloring from its lists.
A graph is dj -choosable if G is f -choosable, where f (v) = d(v)− j
for each v ∈ G .

Rem: Graphs that are not d0-choosable are completely
understood, which gives a list version of Brooks’ Theorem.
We study graphs that are d1-choosable.

Small Pot Lemma (SPL):
For any graph G and function f (such that f (v) < |G | for all
v ∈ G ), to verify that G is f -choosable, it suffices to consider all
list assignments L such that |L(v)| = f (v) and | ∪v∈G L(v)| < |G |.



Main Result

B-K Conj: Every graph with χ(G ) = ∆(G ) ≥ 9 has a K∆.

Our Conj: Every graph with χ(G ) = ∆(G ) ≥ 9 has a K3 ∗ E∆−3.

Main Thm: Borodin-Kostochka Conjecture is equivalent to ours.

Pf sketch that K4 ∗ E∆−4 implies K∆:
Suppose not. Choose c/e G to minimize |G |.
Note that G has no d1-choosable induced subgraph.

D

Lemma 1: If G has a (∆− 1)-clique K ,
then each vertex outside K has at most 1 neighbor in K .

Lemma 2: If |D| ≥ 5,
then K4 ∗ D is d1-choosable unless D is almost complete.

We contradict either Lemma 1 or Lemma 2.
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A key ingredient

Lemma: K6 ∗ D is d1-choosable unless D is almost complete.

Pf: Let D be not almost complete.

Case 1: ∃ distinct x1, x2, x3, x4 ∈ D s.t. x1 6↔ x2 and x3 6↔ x4.

Color D \ {x1, . . . , x4} and let L denote the remaining lists. SPL:
assume |Pot(L)| ≤ |K6 ∪ {x1, . . . , x4}| − 1 = 9. Note |L(xi )| ≥ 5.
Since |L(x1)|+ |L(x2)| ≥ 10 > |Pot(L)|, we have c1 ∈ L(x1)∩L(x2).
And c2 ∈ L(x3) ∩ L(x4). Use ci ’s on xi ’s and finish greedily. Works
unless x1 ↔ x3. Now |L(x1)|+ |L(x2)| ≥ 11, so |L(x1)∩ L(x2)| ≥ 2.

K6

x1 x2

x3 x4

Case 2: ∃ x1, x2, x3 s.t. D = K|D| − {x1x2, x1x3, x2x3}. As above
L(xi )∩ L(xj) 6= ∅ for all i , j ∈ [3]. So we have L(w) ⊇ ∪L(xi ) for all
w ∈ K6. This gives | ∪ L(xi )| ≤ 7. So

∑
|L(xi )| = 15 > 2| ∪ L(xi )|,

and thus we have c ∈ ∩L(xi ). Use c on the xi , then finish greedily.
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Since |L(x1)|+ |L(x2)| ≥ 10 > |Pot(L)|, we have c1 ∈ L(x1)∩L(x2).
And c2 ∈ L(x3) ∩ L(x4). Use ci ’s on xi ’s and finish greedily. Works
unless x1 ↔ x3. Now |L(x1)|+ |L(x2)| ≥ 11, so |L(x1)∩ L(x2)| ≥ 2.
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x3 x4

Case 2: ∃ x1, x2, x3 s.t. D = K|D| − {x1x2, x1x3, x2x3}.

As above
L(xi )∩ L(xj) 6= ∅ for all i , j ∈ [3]. So we have L(w) ⊇ ∪L(xi ) for all
w ∈ K6. This gives | ∪ L(xi )| ≤ 7. So

∑
|L(xi )| = 15 > 2| ∪ L(xi )|,

and thus we have c ∈ ∩L(xi ). Use c on the xi , then finish greedily.
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Main Result (recap)

B-K Conj: Every graph with χ(G ) = ∆(G ) ≥ 9 has a K∆.

Our Conj: Every graph with χ(G ) = ∆(G ) ≥ 9 has a K3 ∗ E∆−3.

Main Thm: Borodin-Kostochka Conjecture is equivalent to ours.

Pf sketch that K4 ∗ E∆−4 implies K∆:
Suppose not. Choose c/e G to minimize |G |.
Note that G has no d1-choosable induced subgraph.

D

Lemma 1: If G has a (∆− 1)-clique K ,
then each vertex outside K has at most 1 neighbor in K .

Lemma 2: If |D| ≥ 5,
then K4 ∗ D is d1-choosable unless D is almost complete.

We contradict either Lemma 1 or Lemma 2.
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