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» Forbidden subgraphs via list-coloring
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Def: A graph G is f-choosable if whenever each vertex v gets a list
L(v) of colors of size f(v), G has a proper coloring from its lists.
A graph is dj-choosable if G is f-choosable, where f(v) = d(v) —j
for each v € G.

Rem: Graphs that are not dp-choosable are completely

understood, which gives a list version of Brooks' Theorem.
We study graphs that are di-choosable.

Small Pot Lemma (SPL):

For any graph G and function f (such that f(v) < |G| for all

v € G), to verify that G is f-choosable, it suffices to consider all
list assignments L such that [L(v)| = f(v) and | U,cc L(v)| < |G].



Main Result
B-K Conj: Every graph with x(G) = A(G) > 9 has a Ka.



Main Result

B-K Conj: Every graph with x(G) = A(G) > 9 has a Ka.
Our Conj: Every graph with x(G) = A(G) > 9 has a K3 % Ep_3.



Main Result

B-K Conj: Every graph with y(G) = A(G) > 9 has a Ka.
Our Conj: Every graph with x(G) = A(G) > 9 has a K3 % Ep_3.

Main Thm: Borodin-Kostochka Conjecture is equivalent to ours.



Main Result
B-K Conj: Every graph with y(G) = A(G) > 9 has a Ka.
Our Conj: Every graph with x(G) = A(G) > 9 has a K3 % Ep_3.

Main Thm: Borodin-Kostochka Conjecture is equivalent to ours.
Pf sketch that K x Ea_4 implies Ka:



Main Result

B-K Conj: Every graph with y(G) = A(G) > 9 has a Ka.
Our Conj: Every graph with x(G) = A(G) > 9 has a K3 % Ep_3.

Main Thm: Borodin-Kostochka Conjecture is equivalent to ours.

Pf sketch that K x Ea_4 implies Ka:
Suppose not. Choose c/e G to minimize |G|.



Main Result

B-K Conj: Every graph with y(G) = A(G) > 9 has a Ka.
Our Conj: Every graph with x(G) = A(G) > 9 has a K3 % Ep_3.

Main Thm: Borodin-Kostochka Conjecture is equivalent to ours.

Pf sketch that K x Ea_4 implies Ka:
Suppose not. Choose c/e G to minimize |G|.
Note that G has no di-choosable induced subgraph.



Main Result

B-K Conj: Every graph with y(G) = A(G) > 9 has a Ka.
Our Conj: Every graph with x(G) = A(G) > 9 has a K3 % Ep_3.

Main Thm: Borodin-Kostochka Conjecture is equivalent to ours.

Pf sketch that K x Ea_4 implies Ka:
Suppose not. Choose c/e G to minimize |G|.
Note that G has no di-choosable induced subgraph.




Main Result

B-K Conj: Every graph with y(G) = A(G) > 9 has a Ka.
Our Conj: Every graph with x(G) = A(G) > 9 has a K3 % Ep_3.

Main Thm: Borodin-Kostochka Conjecture is equivalent to ours.

Pf sketch that K x Ea_4 implies Ka:
Suppose not. Choose c/e G to minimize |G|.
Note that G has no di-choosable induced subgraph.

Lemma 1: If G has a (A — 1)-clique K,
then each vertex outside K has at most 1 neighbor in K.



Main Result

B-K Conj: Every graph with y(G) = A(G) > 9 has a Ka.
Our Conj: Every graph with x(G) = A(G) > 9 has a K3 % Ep_3.

Main Thm: Borodin-Kostochka Conjecture is equivalent to ours.

Pf sketch that K x Ea_4 implies Ka:
Suppose not. Choose c/e G to minimize |G|.
Note that G has no di-choosable induced subgraph.

Lemma 1: If G has a (A — 1)-clique K,

then each vertex outside K has at most 1 neighbor in K.
Lemma 2: If |[D| > 5,

then K4 * D is di-choosable unless D is almost complete.



Main Result

B-K Conj: Every graph with y(G) = A(G) > 9 has a Ka.
Our Conj: Every graph with x(G) = A(G) > 9 has a K3 % Ep_3.

Main Thm: Borodin-Kostochka Conjecture is equivalent to ours.

Pf sketch that K x Ea_4 implies Ka:
Suppose not. Choose c/e G to minimize |G|.
Note that G has no di-choosable induced subgraph.

Lemma 1: If G has a (A — 1)-clique K,
then each vertex outside K has at most 1 neighbor in K.

Lemma 2: If |[D| > 5,
then K4 * D is di-choosable unless D is almost complete.

We contradict either Lemma 1 or Lemma 2.
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And ¢ € L(x3) N L(xa). Use ¢;'s on x;'s and finish greedily. Works
unless x; <> x3. Now |L(x1)|+ |L(x2)| > 11, so |L(x1) N L(x2)| > 2.

Case 2: X1,X2,x3 s.t. D = K\D\ — {X1X2,X1X3,X2X3}. As above
L(xi) N L(x;) # 0 for all i, j € [3].
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Main Result (recap)

B-K Conj: Every graph with y(G) = A(G) > 9 has a Ka.
Our Conj: Every graph with x(G) = A(G) > 9 has a K3 * Ep_3.

Main Thm: Borodin-Kostochka Conjecture is equivalent to ours.
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Pf sketch that K x Ea_4 implies Ka:
Suppose not. Choose c/e G to minimize |G|.
Note that G has no di-choosable induced subgraph.

Lemma 1: If G has a (A — 1)-clique K,
then each vertex outside K has at most 1 neighbor in K.

Lemma 2: If |[D| > 5,
then K4 * D is di-choosable unless D is almost complete.

We contradict either Lemma 1 or Lemma 2.
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