Conjectures equivalent to the Borodin-Kostochka Conjecture: Coloring a graph with Δ -1 colors

> Daniel W. Cranston Virginia Commonwealth University dcranston@vcu.edu

> > Joint with Landon Rabern

Graph Coloring Minisymposium SIAM Discrete Math 18 June 2012 Coloring graphs with roughly $\Delta(G)$ colors **Obs:** $\chi(G) \leq \Delta(G) + 1$ Coloring graphs with roughly $\Delta(G)$ colors **Obs:** $\chi(G) \leq \Delta(G) + 1$ (color greedily in any order)

Obs: $\chi(G) \leq \Delta(G) + 1$ (color greedily in any order) **Thm** [Brooks 1941]: If $\Delta(G) \geq 3$, then $\chi(G) \leq \max\{\omega(G), \Delta(G)\}$.

Obs: $\chi(G) \leq \Delta(G) + 1$ (color greedily in any order) **Thm** [Brooks 1941]: If $\Delta(G) \geq 3$, then $\chi(G) \leq \max\{\omega(G), \Delta(G)\}$.

Borodin-Kostochka Conj. (B-K) [1977]: If $\Delta(G) \ge 9$, then $\chi(G) \le \max\{\omega(G), \Delta(G) - 1\}$.

Obs: $\chi(G) \leq \Delta(G) + 1$ (color greedily in any order) **Thm** [Brooks 1941]:

If $\Delta(G) \ge 3$, then $\chi(G) \le \max\{\omega(G), \Delta(G)\}$.

Borodin-Kostochka Conj. (B-K) [1977]: If $\Delta(G) \ge 9$, then $\chi(G) \le \max\{\omega(G), \Delta(G) - 1\}$.

Obs: $\chi(G) \leq \Delta(G) + 1$ (color greedily in any order) **Thm** [Brooks 1941]:

If $\Delta(G) \geq 3$, then $\chi(G) \leq \max\{\omega(G), \Delta(G)\}$.

Borodin-Kostochka Conj. (B-K) [1977]: If $\Delta(G) \ge 9$, then $\chi(G) \le \max\{\omega(G), \Delta(G) - 1\}$.

Beutelspacher-Hering Conj. [1982]: $\exists \Delta_0 \text{ s.t. } \chi(G) \leq \max\{\omega(G), \Delta(G) - 1\} \text{ if } \Delta(G) \geq \Delta_0.$

Why $\Delta(G) \geq 9$?

Obs: $\chi(G) \leq \Delta(G) + 1$ (color greedily in any order) **Thm** [Brooks 1941]:

If $\Delta(G) \geq 3$, then $\chi(G) \leq \max\{\omega(G), \Delta(G)\}$.

Borodin-Kostochka Conj. (B-K) [1977]: If $\Delta(G) \ge 9$, then $\chi(G) \le \max\{\omega(G), \Delta(G) - 1\}$.

Obs: $\chi(G) \leq \Delta(G) + 1$ (color greedily in any order) **Thm** [Brooks 1941]:

If $\Delta(G) \geq 3$, then $\chi(G) \leq \max\{\omega(G), \Delta(G)\}$.

Borodin-Kostochka Conj. (B-K) [1977]: If $\Delta(G) \ge 9$, then $\chi(G) \le \max\{\omega(G), \Delta(G) - 1\}$.

Obs: $\chi(G) \leq \Delta(G) + 1$ (color greedily in any order) **Thm** [Brooks 1941]:

If $\Delta(G) \geq 3$, then $\chi(G) \leq \max\{\omega(G), \Delta(G)\}$.

Borodin-Kostochka Conj. (B-K) [1977]: If $\Delta(G) \ge 9$, then $\chi(G) \le \max\{\omega(G), \Delta(G) - 1\}$.

Obs: $\chi(G) \leq \Delta(G) + 1$ (color greedily in any order) **Thm** [Brooks 1941]:

If $\Delta(G) \geq 3$, then $\chi(G) \leq \max\{\omega(G), \Delta(G)\}$.

Borodin-Kostochka Conj. (B-K) [1977]: If $\Delta(G) \ge 9$, then $\chi(G) \le \max\{\omega(G), \Delta(G) - 1\}$.

Obs: $\chi(G) \leq \Delta(G) + 1$ (color greedily in any order) **Thm** [Brooks 1941]:

If $\Delta(G) \geq 3$, then $\chi(G) \leq \max\{\omega(G), \Delta(G)\}$.

Borodin-Kostochka Conj. (B-K) [1977]: If $\Delta(G) \ge 9$, then $\chi(G) \le \max\{\omega(G), \Delta(G) - 1\}$.

Beutelspacher-Hering Conj. [1982]: $\exists \Delta_0 \text{ s.t. } \chi(G) \leq \max\{\omega(G), \Delta(G) - 1\} \text{ if } \Delta(G) \geq \Delta_0.$

Why $\Delta(G) - 1$?

Obs: $\chi(G) \leq \Delta(G) + 1$ (color greedily in any order) **Thm** [Brooks 1941]:

If $\Delta(G) \geq 3$, then $\chi(G) \leq \max\{\omega(G), \Delta(G)\}$.

Borodin-Kostochka Conj. (B-K) [1977]: If $\Delta(G) \ge 9$, then $\chi(G) \le \max\{\omega(G), \Delta(G) - 1\}$.

Beutelspacher-Hering Conj. [1982]: $\exists \Delta_0 \text{ s.t. } \chi(G) \leq \max\{\omega(G), \Delta(G) - 1\} \text{ if } \Delta(G) \geq \Delta_0.$

Why $\Delta(G) - 1$?

 $\Delta(G)=t$

Obs: $\chi(G) \leq \Delta(G) + 1$ (color greedily in any order) **Thm** [Brooks 1941]:

If $\Delta(G) \geq 3$, then $\chi(G) \leq \max\{\omega(G), \Delta(G)\}$.

Borodin-Kostochka Conj. (B-K) [1977]: If $\Delta(G) \ge 9$, then $\chi(G) \le \max\{\omega(G), \Delta(G) - 1\}$.

Beutelspacher-Hering Conj. [1982]: $\exists \Delta_0 \text{ s.t. } \chi(G) \leq \max\{\omega(G), \Delta(G) - 1\} \text{ if } \Delta(G) \geq \Delta_0.$

Why $\Delta(G) - 1$?

 $\Delta(G) = t, \, \omega(G) = t-2$

Obs: $\chi(G) \leq \Delta(G) + 1$ (color greedily in any order) **Thm** [Brooks 1941]:

If $\Delta(G) \geq 3$, then $\chi(G) \leq \max\{\omega(G), \Delta(G)\}$.

Borodin-Kostochka Conj. (B-K) [1977]: If $\Delta(G) \ge 9$, then $\chi(G) \le \max\{\omega(G), \Delta(G) - 1\}$.

Beutelspacher-Hering Conj. [1982]: $\exists \Delta_0 \text{ s.t. } \chi(G) \leq \max\{\omega(G), \Delta(G) - 1\} \text{ if } \Delta(G) \geq \Delta_0.$

Why $\Delta(G) - 1$?

 $\Delta(G) = t, \ \omega(G) = t - 2$ $\chi(G) = (t-4) + 3 = t - 1$

Thm [Kostochka 1980]: If $\chi(G) \ge \Delta(G)$ then G has a $K_{\Delta-28}$.

Thm [Kostochka 1980]: If $\chi(G) \ge \Delta(G)$ then G has a $K_{\Delta-28}$. Thm [Mozhan 1983]: If $\chi(G) \ge \Delta(G) \ge 31$ then G has a $K_{\Delta-3}$.

Thm [Kostochka 1980]: If $\chi(G) \ge \Delta(G)$ then G has a $K_{\Delta-28}$. Thm [Mozhan 1983]: If $\chi(G) \ge \Delta(G) \ge 31$ then G has a $K_{\Delta-3}$.

Thm [Kostochka 1980]: To prove B-K, $\Delta(G) = 9$ suffices.

Thm [Kostochka 1980]: If $\chi(G) \ge \Delta(G)$ then G has a $K_{\Delta-28}$. Thm [Mozhan 1983]: If $\chi(G) \ge \Delta(G) \ge 31$ then G has a $K_{\Delta-3}$.

Thm [Kostochka 1980]: To prove B-K, Δ(G) = 9 suffices.
 Thm [King (Rabern) 2010]: If ω(G) > ²/₃(Δ(G) + 1), then G has a stable set that intersects every maximum clique.

Thm [Kostochka 1980]: If $\chi(G) \ge \Delta(G)$ then G has a $K_{\Delta-28}$. Thm [Mozhan 1983]: If $\chi(G) \ge \Delta(G) \ge 31$ then G has a $K_{\Delta-3}$.

Thm [Kostochka 1980]: To prove B-K, Δ(G) = 9 suffices.
 Thm [King (Rabern) 2010]: If ω(G) > 2/3 (Δ(G) + 1), then G has a stable set that intersects every maximum clique.

Thm [Reed 1999]: Beutelspacher-Hering is true with $\Delta_0 = 10^{14}$.

Thm [Kostochka 1980]: If $\chi(G) \ge \Delta(G)$ then G has a $K_{\Delta-28}$. Thm [Mozhan 1983]: If $\chi(G) \ge \Delta(G) \ge 31$ then G has a $K_{\Delta-3}$.

Thm [Kostochka 1980]: To prove B-K, Δ(G) = 9 suffices.
 Thm [King (Rabern) 2010]: If ω(G) > ²/₃(Δ(G) + 1), then G has a stable set that intersects every maximum clique.

Thm [Reed 1999]: Beutelspacher-Hering is true with Δ₀ = 10¹⁴.
▶ Probabilistic proof.

Thm [Kostochka 1980]: If $\chi(G) \ge \Delta(G)$ then G has a $K_{\Delta-28}$. Thm [Mozhan 1983]: If $\chi(G) \ge \Delta(G) \ge 31$ then G has a $K_{\Delta-3}$.

Thm [Kostochka 1980]: To prove B-K, Δ(G) = 9 suffices.
 Thm [King (Rabern) 2010]: If ω(G) > ²/₃(Δ(G) + 1), then G has a stable set that intersects every maximum clique.

Thm [Reed 1999]: Beutelspacher-Hering is true with $\Delta_0 = 10^{14}$.

- Probabilistic proof.
- Tighter analysis might yield $\Delta_0 = 1000$, but not 100.

Thm [Kostochka 1980]: If $\chi(G) \ge \Delta(G)$ then G has a $K_{\Delta-28}$. Thm [Mozhan 1983]: If $\chi(G) \ge \Delta(G) \ge 31$ then G has a $K_{\Delta-3}$.

Thm [Kostochka 1980]: To prove B-K, Δ(G) = 9 suffices.
 Thm [King (Rabern) 2010]: If ω(G) > ²/₃(Δ(G) + 1), then G has a stable set that intersects every maximum clique.

Thm [Reed 1999]: Beutelspacher-Hering is true with $\Delta_0 = 10^{14}$.

- Probabilistic proof.
- Tighter analysis might yield $\Delta_0 = 1000$, but not 100.

Thm [C.-Rabern 2012+]: B-K is true for claw-free graphs.
 Chudnovsky-Seymour quasi-line structure theorem

Thm [Kostochka 1980]: If $\chi(G) \ge \Delta(G)$ then G has a $K_{\Delta-28}$. Thm [Mozhan 1983]: If $\chi(G) \ge \Delta(G) \ge 31$ then G has a $K_{\Delta-3}$.

Thm [Kostochka 1980]: To prove B-K, Δ(G) = 9 suffices.
 Thm [King (Rabern) 2010]: If ω(G) > 2/3(Δ(G) + 1), then G has a stable set that intersects every maximum clique.

Thm [Reed 1999]: Beutelspacher-Hering is true with $\Delta_0 = 10^{14}$.

- Probabilistic proof.
- Tighter analysis might yield $\Delta_0 = 1000$, but not 100.

Thm [C.-Rabern 2012+]: B-K is true for claw-free graphs.

- Chudnovsky-Seymour quasi-line structure theorem
- Forbidden subgraphs via list-coloring

Def: The join of graphs A and B, denoted A * B, is formed from A and B by adding all edges with one endpoint in A and one in B.

Def: The join of graphs A and B, denoted A * B, is formed from A and B by adding all edges with one endpoint in A and one in B. A graph is almost complete if deleting some vertex leaves a complete subgraph.

Def: The join of graphs A and B, denoted A * B, is formed from A and B by adding all edges with one endpoint in A and one in B. A graph is almost complete if deleting some vertex leaves a complete subgraph. E_t is the empty graph on t vertices.

Def: The join of graphs A and B, denoted A * B, is formed from A and B by adding all edges with one endpoint in A and one in B. A graph is almost complete if deleting some vertex leaves a complete subgraph. E_t is the empty graph on t vertices.

Def: A graph G is f-choosable if whenever each vertex v gets a list L(v) of colors of size f(v), G has a proper coloring from its lists.

Def: The join of graphs A and B, denoted A * B, is formed from A and B by adding all edges with one endpoint in A and one in B. A graph is almost complete if deleting some vertex leaves a complete subgraph. E_t is the empty graph on t vertices.

Def: A graph G is f-choosable if whenever each vertex v gets a list L(v) of colors of size f(v), G has a proper coloring from its lists. A graph is d_j -choosable if G is f-choosable, where f(v) = d(v) - j for each $v \in G$.

Def: The join of graphs A and B, denoted A * B, is formed from A and B by adding all edges with one endpoint in A and one in B. A graph is almost complete if deleting some vertex leaves a complete subgraph. E_t is the empty graph on t vertices.

Def: A graph *G* is *f*-choosable if whenever each vertex *v* gets a list L(v) of colors of size f(v), *G* has a proper coloring from its lists. A graph is d_j -choosable if *G* is *f*-choosable, where f(v) = d(v) - j for each $v \in G$.

Rem: Graphs that are not d_0 -choosable are completely understood, which gives a list version of Brooks' Theorem.

Def: The join of graphs A and B, denoted A * B, is formed from A and B by adding all edges with one endpoint in A and one in B. A graph is almost complete if deleting some vertex leaves a complete subgraph. E_t is the empty graph on t vertices.

Def: A graph *G* is *f*-choosable if whenever each vertex *v* gets a list L(v) of colors of size f(v), *G* has a proper coloring from its lists. A graph is d_j -choosable if *G* is *f*-choosable, where f(v) = d(v) - j for each $v \in G$.

Rem: Graphs that are not d_0 -choosable are completely understood, which gives a list version of Brooks' Theorem. We study graphs that are d_1 -choosable.

Def: The join of graphs A and B, denoted A * B, is formed from A and B by adding all edges with one endpoint in A and one in B. A graph is almost complete if deleting some vertex leaves a complete subgraph. E_t is the empty graph on t vertices.

Def: A graph G is f-choosable if whenever each vertex v gets a list L(v) of colors of size f(v), G has a proper coloring from its lists. A graph is d_j -choosable if G is f-choosable, where f(v) = d(v) - j for each $v \in G$.

Rem: Graphs that are not d_0 -choosable are completely understood, which gives a list version of Brooks' Theorem. We study graphs that are d_1 -choosable.

Small Pot Lemma (SPL):

For any graph G and function f (such that f(v) < |G| for all $v \in G$), to verify that G is f-choosable, it suffices to consider all list assignments L such that |L(v)| = f(v) and $|\bigcup_{v \in G} L(v)| < |G|$.

B-K Conj: Every graph with $\chi(G) = \Delta(G) \ge 9$ has a K_{Δ} .

B-K Conj: Every graph with $\chi(G) = \Delta(G) \ge 9$ has a K_{Δ} . **Our Conj:** Every graph with $\chi(G) = \Delta(G) \ge 9$ has a $K_3 * E_{\Delta-3}$.

B-K Conj: Every graph with $\chi(G) = \Delta(G) \ge 9$ has a K_{Δ} . **Our Conj:** Every graph with $\chi(G) = \Delta(G) \ge 9$ has a $K_3 * E_{\Delta-3}$.

Main Thm: Borodin-Kostochka Conjecture is equivalent to ours.

B-K Conj: Every graph with $\chi(G) = \Delta(G) \ge 9$ has a K_{Δ} . **Our Conj:** Every graph with $\chi(G) = \Delta(G) \ge 9$ has a $K_3 * E_{\Delta-3}$.

Main Thm: Borodin-Kostochka Conjecture is equivalent to ours. **Pf sketch that** $K_4 * E_{\Delta-4}$ **implies** K_{Δ} :

B-K Conj: Every graph with $\chi(G) = \Delta(G) \ge 9$ has a K_{Δ} . **Our Conj:** Every graph with $\chi(G) = \Delta(G) \ge 9$ has a $K_3 * E_{\Delta-3}$.

Main Thm: Borodin-Kostochka Conjecture is equivalent to ours. **Pf sketch that** $K_4 * E_{\Delta-4}$ **implies** K_{Δ} : Suppose not. Choose c/e *G* to minimize |G|.

B-K Conj: Every graph with $\chi(G) = \Delta(G) \ge 9$ has a K_{Δ} . **Our Conj:** Every graph with $\chi(G) = \Delta(G) \ge 9$ has a $K_3 * E_{\Delta-3}$.

Main Thm: Borodin-Kostochka Conjecture is equivalent to ours. **Pf sketch that** $K_4 * E_{\Delta-4}$ **implies** K_{Δ} : Suppose not. Choose c/e *G* to minimize |G|. Note that *G* has no d_1 -choosable induced subgraph.

B-K Conj: Every graph with $\chi(G) = \Delta(G) \ge 9$ has a K_{Δ} . **Our Conj:** Every graph with $\chi(G) = \Delta(G) \ge 9$ has a $K_3 * E_{\Delta-3}$.

Main Thm: Borodin-Kostochka Conjecture is equivalent to ours. **Pf sketch that** $K_4 * E_{\Delta-4}$ **implies** K_{Δ} : Suppose not. Choose c/e *G* to minimize |G|. Note that *G* has no d_1 -choosable induced subgraph.

B-K Conj: Every graph with $\chi(G) = \Delta(G) \ge 9$ has a K_{Δ} . **Our Conj:** Every graph with $\chi(G) = \Delta(G) \ge 9$ has a $K_3 * E_{\Delta-3}$.

Main Thm: Borodin-Kostochka Conjecture is equivalent to ours. **Pf sketch that** $K_4 * E_{\Delta-4}$ **implies** K_{Δ} : Suppose not. Choose c/e *G* to minimize |G|. Note that *G* has no d_1 -choosable induced subgraph.

Lemma 1: If G has a $(\Delta - 1)$ -clique K, then each vertex outside K has at most 1 neighbor in K.

B-K Conj: Every graph with $\chi(G) = \Delta(G) \ge 9$ has a K_{Δ} . **Our Conj:** Every graph with $\chi(G) = \Delta(G) \ge 9$ has a $K_3 * E_{\Delta-3}$.

Main Thm: Borodin-Kostochka Conjecture is equivalent to ours. **Pf sketch that** $K_4 * E_{\Delta-4}$ **implies** K_{Δ} : Suppose not. Choose c/e *G* to minimize |G|. Note that *G* has no d_1 -choosable induced subgraph.

Lemma 1: If G has a $(\Delta - 1)$ -clique K, then each vertex outside K has at most 1 neighbor in K. **Lemma 2:** If $|D| \ge 5$, then $K_4 * D$ is d_1 -choosable unless D is almost complete.

B-K Conj: Every graph with $\chi(G) = \Delta(G) \ge 9$ has a K_{Δ} . **Our Conj:** Every graph with $\chi(G) = \Delta(G) \ge 9$ has a $K_3 * E_{\Delta-3}$.

Main Thm: Borodin-Kostochka Conjecture is equivalent to ours. **Pf sketch that** $K_4 * E_{\Delta-4}$ **implies** K_{Δ} : Suppose not. Choose c/e *G* to minimize |G|. Note that *G* has no d_1 -choosable induced subgraph.

Lemma 1: If *G* has a $(\Delta - 1)$ -clique *K*, then each vertex outside *K* has at most 1 neighbor in *K*. **Lemma 2:** If $|D| \ge 5$, then $K_4 * D$ is d_1 -choosable unless *D* is almost complete. We contradict either Lemma 1 or Lemma 2.

Lemma: $K_6 * D$ is d_1 -choosable unless D is almost complete.

Lemma: $K_6 * D$ is d_1 -choosable unless D is almost complete. **Pf:** Let D be not almost complete.

Lemma: $K_6 * D$ is d_1 -choosable unless D is almost complete. **Pf:** Let D be not almost complete.

Case 1: \exists distinct $x_1, x_2, x_3, x_4 \in D$ s.t. $x_1 \nleftrightarrow x_2$ and $x_3 \nleftrightarrow x_4$.

Lemma: $K_6 * D$ is d_1 -choosable unless D is almost complete. **Pf:** Let D be not almost complete.

Case 1: \exists distinct $x_1, x_2, x_3, x_4 \in D$ s.t. $x_1 \nleftrightarrow x_2$ and $x_3 \nleftrightarrow x_4$.

Lemma: $K_6 * D$ is d_1 -choosable unless D is almost complete. **Pf:** Let D be not almost complete.

Case 1: \exists distinct $x_1, x_2, x_3, x_4 \in D$ s.t. $x_1 \nleftrightarrow x_2$ and $x_3 \nleftrightarrow x_4$. Color $D \setminus \{x_1, \ldots, x_4\}$ and let L denote the remaining lists.

Lemma: $K_6 * D$ is d_1 -choosable unless D is almost complete. **Pf:** Let D be not almost complete.

Case 1: \exists distinct $x_1, x_2, x_3, x_4 \in D$ s.t. $x_1 \nleftrightarrow x_2$ and $x_3 \nleftrightarrow x_4$. Color $D \setminus \{x_1, \ldots, x_4\}$ and let L denote the remaining lists. SPL: assume $|Pot(L)| \leq |K_6 \cup \{x_1, \ldots, x_4\}| - 1 = 9$.

Lemma: $K_6 * D$ is d_1 -choosable unless D is almost complete. **Pf:** Let D be not almost complete.

Case 1: \exists distinct $x_1, x_2, x_3, x_4 \in D$ s.t. $x_1 \nleftrightarrow x_2$ and $x_3 \nleftrightarrow x_4$. Color $D \setminus \{x_1, \ldots, x_4\}$ and let L denote the remaining lists. SPL: assume $|Pot(L)| \leq |K_6 \cup \{x_1, \ldots, x_4\}| - 1 = 9$. Note $|L(x_i)| \geq 5$.

Lemma: $K_6 * D$ is d_1 -choosable unless D is almost complete. **Pf:** Let D be not almost complete.

Case 1: \exists distinct $x_1, x_2, x_3, x_4 \in D$ s.t. $x_1 \nleftrightarrow x_2$ and $x_3 \nleftrightarrow x_4$. Color $D \setminus \{x_1, \ldots, x_4\}$ and let L denote the remaining lists. SPL: assume $|Pot(L)| \leq |K_6 \cup \{x_1, \ldots, x_4\}| - 1 = 9$. Note $|L(x_i)| \geq 5$. Since $|L(x_1)| + |L(x_2)| \geq 10 > |Pot(L)|$, we have $c_1 \in L(x_1) \cap L(x_2)$.

Lemma: $K_6 * D$ is d_1 -choosable unless D is almost complete. **Pf:** Let D be not almost complete.

Case 1: \exists distinct $x_1, x_2, x_3, x_4 \in D$ s.t. $x_1 \nleftrightarrow x_2$ and $x_3 \nleftrightarrow x_4$. Color $D \setminus \{x_1, \ldots, x_4\}$ and let L denote the remaining lists. SPL: assume $|Pot(L)| \leq |K_6 \cup \{x_1, \ldots, x_4\}| - 1 = 9$. Note $|L(x_i)| \geq 5$. Since $|L(x_1)| + |L(x_2)| \geq 10 > |Pot(L)|$, we have $c_1 \in L(x_1) \cap L(x_2)$. And $c_2 \in L(x_3) \cap L(x_4)$.

Lemma: $K_6 * D$ is d_1 -choosable unless D is almost complete. **Pf:** Let D be not almost complete.

Case 1: \exists distinct $x_1, x_2, x_3, x_4 \in D$ s.t. $x_1 \nleftrightarrow x_2$ and $x_3 \nleftrightarrow x_4$. Color $D \setminus \{x_1, \ldots, x_4\}$ and let L denote the remaining lists. SPL: assume $|Pot(L)| \leq |K_6 \cup \{x_1, \ldots, x_4\}| - 1 = 9$. Note $|L(x_i)| \geq 5$. Since $|L(x_1)| + |L(x_2)| \geq 10 > |Pot(L)|$, we have $c_1 \in L(x_1) \cap L(x_2)$. And $c_2 \in L(x_3) \cap L(x_4)$. Use c_i 's on x_i 's and finish greedily.

Lemma: $K_6 * D$ is d_1 -choosable unless D is almost complete. **Pf:** Let D be not almost complete.

Lemma: $K_6 * D$ is d_1 -choosable unless D is almost complete. **Pf:** Let D be not almost complete.

Lemma: $K_6 * D$ is d_1 -choosable unless D is almost complete. **Pf:** Let D be not almost complete.

Case 1: \exists distinct $x_1, x_2, x_3, x_4 \in D$ s.t. $x_1 \nleftrightarrow x_2$ and $x_3 \nleftrightarrow x_4$. Color $D \setminus \{x_1, \ldots, x_4\}$ and let L denote the remaining lists. SPL: assume $|Pot(L)| \leq |K_6 \cup \{x_1, \ldots, x_4\}| - 1 = 9$. Note $|L(x_i)| \geq 5$. Since $|L(x_1)| + |L(x_2)| \geq 10 > |Pot(L)|$, we have $c_1 \in L(x_1) \cap L(x_2)$. And $c_2 \in L(x_3) \cap L(x_4)$. Use c_i 's on x_i 's and finish greedily. Works unless $x_1 \leftrightarrow x_3$. Now $|L(x_1)| + |L(x_2)| \geq 11$, so $|L(x_1) \cap L(x_2)| \geq 2$.

Case 2: $\exists x_1, x_2, x_3$ s.t. $D = \mathcal{K}_{|D|} - \{x_1x_2, x_1x_3, x_2x_3\}.$

Lemma: $K_6 * D$ is d_1 -choosable unless D is almost complete. **Pf:** Let D be not almost complete.

Case 1: \exists distinct $x_1, x_2, x_3, x_4 \in D$ s.t. $x_1 \nleftrightarrow x_2$ and $x_3 \nleftrightarrow x_4$. Color $D \setminus \{x_1, \ldots, x_4\}$ and let L denote the remaining lists. SPL: assume $|Pot(L)| \leq |K_6 \cup \{x_1, \ldots, x_4\}| - 1 = 9$. Note $|L(x_i)| \geq 5$. Since $|L(x_1)| + |L(x_2)| \geq 10 > |Pot(L)|$, we have $c_1 \in L(x_1) \cap L(x_2)$. And $c_2 \in L(x_3) \cap L(x_4)$. Use c_i 's on x_i 's and finish greedily. Works unless $x_1 \leftrightarrow x_3$. Now $|L(x_1)| + |L(x_2)| \geq 11$, so $|L(x_1) \cap L(x_2)| \geq 2$.

Case 2: $\exists x_1, x_2, x_3$ s.t. $D = K_{|D|} - \{x_1x_2, x_1x_3, x_2x_3\}.$

Lemma: $K_6 * D$ is d_1 -choosable unless D is almost complete. **Pf:** Let D be not almost complete.

Case 2: $\exists x_1, x_2, x_3$ s.t. $D = K_{|D|} - \{x_1x_2, x_1x_3, x_2x_3\}$. As above $L(x_i) \cap L(x_j) \neq \emptyset$ for all $i, j \in [3]$.

Lemma: $K_6 * D$ is d_1 -choosable unless D is almost complete. **Pf:** Let D be not almost complete.

Case 2: $\exists x_1, x_2, x_3$ s.t. $D = \mathcal{K}_{|D|} - \{x_1x_2, x_1x_3, x_2x_3\}$. As above $L(x_i) \cap L(x_j) \neq \emptyset$ for all $i, j \in [3]$. So we have $L(w) \supseteq \cup L(x_i)$ for all $w \in \mathcal{K}_6$.

Lemma: $K_6 * D$ is d_1 -choosable unless D is almost complete. **Pf:** Let D be not almost complete.

Case 2: $\exists x_1, x_2, x_3$ s.t. $D = K_{|D|} - \{x_1x_2, x_1x_3, x_2x_3\}$. As above $L(x_i) \cap L(x_j) \neq \emptyset$ for all $i, j \in [3]$. So we have $L(w) \supseteq \cup L(x_i)$ for all $w \in K_6$. This gives $|\cup L(x_i)| \leq 7$.

Lemma: $K_6 * D$ is d_1 -choosable unless D is almost complete. **Pf:** Let D be not almost complete.

Case 2: $\exists x_1, x_2, x_3$ s.t. $D = \mathcal{K}_{|D|} - \{x_1x_2, x_1x_3, x_2x_3\}$. As above $L(x_i) \cap L(x_j) \neq \emptyset$ for all $i, j \in [3]$. So we have $L(w) \supseteq \cup L(x_i)$ for all $w \in \mathcal{K}_6$. This gives $|\cup L(x_i)| \leq 7$. So $\sum |L(x_i)| = 15 > 2| \cup L(x_i)|$,

Lemma: $K_6 * D$ is d_1 -choosable unless D is almost complete. **Pf:** Let D be not almost complete.

Case 2: $\exists x_1, x_2, x_3 \text{ s.t. } D = K_{|D|} - \{x_1x_2, x_1x_3, x_2x_3\}$. As above $L(x_i) \cap L(x_j) \neq \emptyset$ for all $i, j \in [3]$. So we have $L(w) \supseteq \cup L(x_i)$ for all $w \in K_6$. This gives $|\cup L(x_i)| \leq 7$. So $\sum |L(x_i)| = 15 > 2| \cup L(x_i)|$, and thus we have $c \in \cap L(x_i)$.

Lemma: $K_6 * D$ is d_1 -choosable unless D is almost complete. **Pf:** Let D be not almost complete.

Case 2: $\exists x_1, x_2, x_3$ s.t. $D = K_{|D|} - \{x_1x_2, x_1x_3, x_2x_3\}$. As above $L(x_i) \cap L(x_j) \neq \emptyset$ for all $i, j \in [3]$. So we have $L(w) \supseteq \cup L(x_i)$ for all $w \in K_6$. This gives $|\cup L(x_i)| \leq 7$. So $\sum |L(x_i)| = 15 > 2| \cup L(x_i)|$, and thus we have $c \in \cap L(x_i)$. Use c on the x_i , then finish greedily.

Main Result (recap)

B-K Conj: Every graph with $\chi(G) = \Delta(G) \ge 9$ has a K_{Δ} . **Our Conj:** Every graph with $\chi(G) = \Delta(G) \ge 9$ has a $K_3 * E_{\Delta-3}$.

Main Thm: Borodin-Kostochka Conjecture is equivalent to ours.

Main Result (recap)

B-K Conj: Every graph with $\chi(G) = \Delta(G) \ge 9$ has a K_{Δ} . **Our Conj:** Every graph with $\chi(G) = \Delta(G) \ge 9$ has a $K_3 * E_{\Delta-3}$.

Main Thm: Borodin-Kostochka Conjecture is equivalent to ours. **Pf sketch that** $K_4 * E_{\Delta-4}$ **implies** K_{Δ} : Suppose not. Choose c/e *G* to minimize |G|. Note that *G* has no d_1 -choosable induced subgraph.

Lemma 1: If *G* has a $(\Delta - 1)$ -clique *K*, then each vertex outside *K* has at most 1 neighbor in *K*. **Lemma 2:** If $|D| \ge 5$, then $K_4 * D$ is d_1 -choosable unless *D* is almost complete. We contradict either Lemma 1 or Lemma 2.