Acyclic Edge-coloring of Planar Graphs

Daniel W. Cranston Virginia Commonwealth University dcranston@vcu.edu

> SIAM Discrete Math 4 June 2018

Defn: An acyclic coloring is a proper coloring of V(G) s.t. no cycle is 2-colored.

Defn: An acyclic coloring is a proper coloring of V(G) s.t. no cycle is 2-colored. Acyclic chromatic number, $\chi_a(G)$, is min k s.t. G has acyclic coloring with k colors.

Defn: An acyclic coloring is a proper coloring of V(G) s.t. no cycle is 2-colored. Acyclic chromatic number, $\chi_a(G)$, is min k s.t. G has acyclic coloring with k colors.

Thm: Every planar graph *G* has $\chi_a(G) \leq 5$.

Defn: An acyclic coloring is a proper coloring of V(G) s.t. no cycle is 2-colored. Acyclic chromatic number, $\chi_a(G)$, is min k s.t. G has acyclic coloring with k colors.

Thm: Every planar graph *G* has $\chi_a(G) \leq 5$. Sharp by octahedron.

Defn: An acyclic coloring is a proper coloring of V(G) s.t. no cycle is 2-colored. Acyclic chromatic number, $\chi_a(G)$, is min k s.t. G has acyclic coloring with k colors.

Thm: Every planar graph *G* has $\chi_a(G) \leq 5$. Sharp by octahedron. (Conjectured by Grünbaum '73; proved by Borodin '79)

Defn: An acyclic coloring is a proper coloring of V(G) s.t. no cycle is 2-colored. Acyclic chromatic number, $\chi_a(G)$, is min k s.t. G has acyclic coloring with k colors.

Thm: Every planar graph G has $\chi_a(G) \leq 5$. Sharp by octahedron. (Conjectured by Grünbaum '73; proved by Borodin '79)

Thm: For every Δ there is G_{Δ} with max degree Δ and $\chi_{a}(G) \geq C_{1} \Delta^{4/3} (\log \Delta)^{-1/3}$.

Defn: An acyclic coloring is a proper coloring of V(G) s.t. no cycle is 2-colored. Acyclic chromatic number, $\chi_a(G)$, is min k s.t. G has acyclic coloring with k colors.

Thm: Every planar graph G has $\chi_a(G) \leq 5$. Sharp by octahedron. (Conjectured by Grünbaum '73; proved by Borodin '79)

Thm: For every Δ there is G_{Δ} with max degree Δ and $\chi_a(G) \geq C_1 \Delta^{4/3} (\log \Delta)^{-1/3}$. (Alon-McDiarmid-Reed '91)

Defn: An acyclic coloring is a proper coloring of V(G) s.t. no cycle is 2-colored. Acyclic chromatic number, $\chi_a(G)$, is min k s.t. G has acyclic coloring with k colors.

Thm: Every planar graph G has $\chi_a(G) \leq 5$. Sharp by octahedron. (Conjectured by Grünbaum '73; proved by Borodin '79)

Thm: For every Δ there is G_{Δ} with max degree Δ and $\chi_a(G) \geq C_1 \Delta^{4/3} (\log \Delta)^{-1/3}$. (Alon–McDiarmid–Reed '91) **Thm:** Always $\chi_a(G) \leq C_2 \Delta^{4/3}$.

Defn: An acyclic coloring is a proper coloring of V(G) s.t. no cycle is 2-colored. Acyclic chromatic number, $\chi_a(G)$, is min k s.t. G has acyclic coloring with k colors.

Thm: Every planar graph *G* has $\chi_a(G) \leq 5$. Sharp by octahedron. (Conjectured by Grünbaum '73; proved by Borodin '79)

Thm: For every Δ there is G_{Δ} with max degree Δ and $\chi_a(G) \geq C_1 \Delta^{4/3} (\log \Delta)^{-1/3}$. (Alon–McDiarmid–Reed '91) **Thm:** Always $\chi_a(G) \leq C_2 \Delta^{4/3}$. (Alon–McDiarmid–Reed '91)

Defn: An acyclic coloring is a proper coloring of V(G) s.t. no cycle is 2-colored. Acyclic chromatic number, $\chi_a(G)$, is min k s.t. G has acyclic coloring with k colors.

Thm: Every planar graph *G* has $\chi_a(G) \leq 5$. Sharp by octahedron. (Conjectured by Grünbaum '73; proved by Borodin '79)

Thm: For every Δ there is G_{Δ} with max degree Δ and $\chi_a(G) \geq C_1 \Delta^{4/3} (\log \Delta)^{-1/3}$. (Alon-McDiarmid-Reed '91) **Thm:** Always $\chi_a(G) \leq C_2 \Delta^{4/3}$. (Alon-McDiarmid-Reed '91) **Thm:** Always $\chi_a(G) \leq 2.835 \Delta^{4/3} + \Delta$.

Defn: An acyclic coloring is a proper coloring of V(G) s.t. no cycle is 2-colored. Acyclic chromatic number, $\chi_a(G)$, is min k s.t. G has acyclic coloring with k colors.

Thm: Every planar graph *G* has $\chi_a(G) \leq 5$. Sharp by octahedron. (Conjectured by Grünbaum '73; proved by Borodin '79)

Thm: For every Δ there is G_{Δ} with max degree Δ and $\chi_a(G) \geq C_1 \Delta^{4/3} (\log \Delta)^{-1/3}$. (Alon-McDiarmid-Reed '91) **Thm:** Always $\chi_a(G) \leq C_2 \Delta^{4/3}$. (Alon-McDiarmid-Reed '91) **Thm:** Always $\chi_a(G) \leq 2.835 \Delta^{4/3} + \Delta$. (Sereni-Volec '16)

Defn: An acyclic edge coloring is a proper coloring of E(G) s.t. no cycle is 2-colored.

Defn: An acyclic edge coloring is a proper coloring of E(G) s.t. no cycle is 2-colored. Acyclic chromatic index, $\chi'_a(G)$, is min k s.t. G has acyclic edge coloring with k colors.

Defn: An acyclic edge coloring is a proper coloring of E(G) s.t. no cycle is 2-colored. Acyclic chromatic index, $\chi'_a(G)$, is min k s.t. G has acyclic edge coloring with k colors.

Thm: $\chi'_a(G) \leq 64\Delta$.

Defn: An acyclic edge coloring is a proper coloring of E(G) s.t. no cycle is 2-colored. Acyclic chromatic index, $\chi'_a(G)$, is min k s.t. G has acyclic edge coloring with k colors.

Thm: $\chi'_a(G) \leq 64\Delta$. (A–M–R '91; Asymmetric Local Lemma)

Defn: An acyclic edge coloring is a proper coloring of E(G) s.t. no cycle is 2-colored. Acyclic chromatic index, $\chi'_a(G)$, is min k s.t. G has acyclic edge coloring with k colors.

Thm: $\chi'_a(G) \le 64\Delta$. (A–M–R '91; Asymmetric Local Lemma)... Thm: $\chi'_a(G) \le 3.74\Delta$.

Defn: An acyclic edge coloring is a proper coloring of E(G) s.t. no cycle is 2-colored. Acyclic chromatic index, $\chi'_a(G)$, is min k s.t. G has acyclic edge coloring with k colors.

Thm: $\chi'_a(G) \le 64\Delta$. (A–M–R '91; Asymmetric Local Lemma)... **Thm:** $\chi'_a(G) \le 3.74\Delta$. (Giotis et al '17; entropy-compression+)

Defn: An acyclic edge coloring is a proper coloring of E(G) s.t. no cycle is 2-colored. Acyclic chromatic index, $\chi'_a(G)$, is min k s.t. G has acyclic edge coloring with k colors.

Thm: $\chi'_a(G) \le 64\Delta$. (A–M–R '91; Asymmetric Local Lemma)... **Thm:** $\chi'_a(G) \le 3.74\Delta$. (Giotis et al '17; entropy-compression+)

Conj 1: $\chi'_a(G) \leq \Delta + 2$ for all G.

Defn: An acyclic edge coloring is a proper coloring of E(G) s.t. no cycle is 2-colored. Acyclic chromatic index, $\chi'_a(G)$, is min k s.t. G has acyclic edge coloring with k colors.

Thm: $\chi'_a(G) \le 64\Delta$. (A–M–R '91; Asymmetric Local Lemma)... **Thm:** $\chi'_a(G) \le 3.74\Delta$. (Giotis et al '17; entropy-compression+)

Conj 1: $\chi'_a(G) \leq \Delta + 2$ for all G. (Fiamčik '78)

Defn: An acyclic edge coloring is a proper coloring of E(G) s.t. no cycle is 2-colored. Acyclic chromatic index, $\chi'_a(G)$, is min k s.t. G has acyclic edge coloring with k colors.

Thm: $\chi'_a(G) \le 64\Delta$. (A–M–R '91; Asymmetric Local Lemma)... **Thm:** $\chi'_a(G) \le 3.74\Delta$. (Giotis et al '17; entropy-compression+)

Conj 1: $\chi'_a(G) \leq \Delta + 2$ for all G. (Fiamčik '78) Sharp by K_{2n} .

Defn: An acyclic edge coloring is a proper coloring of E(G) s.t. no cycle is 2-colored. Acyclic chromatic index, $\chi'_a(G)$, is min k s.t. G has acyclic edge coloring with k colors.

Thm: $\chi'_a(G) \le 64\Delta$. (A–M–R '91; Asymmetric Local Lemma)... **Thm:** $\chi'_a(G) \le 3.74\Delta$. (Giotis et al '17; entropy-compression+)

Conj 1: $\chi'_a(G) \leq \Delta + 2$ for all *G*. (Fiamčik '78) Sharp by K_{2n} . **Conj 2:** $\exists \Delta_0$ s.t. if *G* is planar and $\Delta \geq \Delta_0$, then $\chi'_a(G) = \Delta$.

Defn: An acyclic edge coloring is a proper coloring of E(G) s.t. no cycle is 2-colored. Acyclic chromatic index, $\chi'_a(G)$, is min k s.t. G has acyclic edge coloring with k colors.

Thm: $\chi'_a(G) \le 64\Delta$. (A–M–R '91; Asymmetric Local Lemma)... **Thm:** $\chi'_a(G) \le 3.74\Delta$. (Giotis et al '17; entropy-compression+)

Conj 1: $\chi'_a(G) \leq \Delta + 2$ for all *G*. (Fiamčik '78) Sharp by K_{2n} . **Conj 2:** $\exists \Delta_0$ s.t. if *G* is planar and $\Delta \geq \Delta_0$, then $\chi'_a(G) = \Delta$. (Cohen–Havet–Müller '09)

Defn: An acyclic edge coloring is a proper coloring of E(G) s.t. no cycle is 2-colored. Acyclic chromatic index, $\chi'_a(G)$, is min k s.t. G has acyclic edge coloring with k colors.

Thm: $\chi'_a(G) \le 64\Delta$. (A–M–R '91; Asymmetric Local Lemma)... **Thm:** $\chi'_a(G) \le 3.74\Delta$. (Giotis et al '17; entropy-compression+)

Conj 1: $\chi'_a(G) \leq \Delta + 2$ for all *G*. (Fiamčik '78) Sharp by K_{2n} . **Conj 2:** $\exists \Delta_0$ s.t. if *G* is planar and $\Delta \geq \Delta_0$, then $\chi'_a(G) = \Delta$. (Cohen–Havet–Müller '09)

Thm: If G is planar, then $\chi'_a(G) \leq \Delta + 25$.

Defn: An acyclic edge coloring is a proper coloring of E(G) s.t. no cycle is 2-colored. Acyclic chromatic index, $\chi'_a(G)$, is min k s.t. G has acyclic edge coloring with k colors.

Thm: $\chi'_a(G) \le 64\Delta$. (A–M–R '91; Asymmetric Local Lemma)... **Thm:** $\chi'_a(G) \le 3.74\Delta$. (Giotis et al '17; entropy-compression+)

Conj 1: $\chi'_a(G) \leq \Delta + 2$ for all *G*. (Fiamčik '78) Sharp by K_{2n} . **Conj 2:** $\exists \Delta_0$ s.t. if *G* is planar and $\Delta \geq \Delta_0$, then $\chi'_a(G) = \Delta$. (Cohen–Havet–Müller '09)

Thm: If G is planar, then $\chi'_a(G) \leq \Delta + 25$. (C–H–M '09)

Defn: An acyclic edge coloring is a proper coloring of E(G) s.t. no cycle is 2-colored. Acyclic chromatic index, $\chi'_a(G)$, is min k s.t. G has acyclic edge coloring with k colors.

Thm: $\chi'_a(G) \le 64\Delta$. (A–M–R '91; Asymmetric Local Lemma)... **Thm:** $\chi'_a(G) \le 3.74\Delta$. (Giotis et al '17; entropy-compression+)

Conj 1: $\chi'_a(G) \leq \Delta + 2$ for all *G*. (Fiamčik '78) Sharp by K_{2n} . **Conj 2:** $\exists \Delta_0$ s.t. if *G* is planar and $\Delta \geq \Delta_0$, then $\chi'_a(G) = \Delta$. (Cohen–Havet–Müller '09)

Thm: If G is planar, then $\chi'_a(G) \leq \Delta + 25$. (C-H-M '09)... **Thm:** If G is planar, then $\chi'_a(G) \leq \Delta + 6$.

Defn: An acyclic edge coloring is a proper coloring of E(G) s.t. no cycle is 2-colored. Acyclic chromatic index, $\chi'_a(G)$, is min k s.t. G has acyclic edge coloring with k colors.

Thm: $\chi'_a(G) \le 64\Delta$. (A–M–R '91; Asymmetric Local Lemma)... **Thm:** $\chi'_a(G) \le 3.74\Delta$. (Giotis et al '17; entropy-compression+)

Conj 1: $\chi'_a(G) \leq \Delta + 2$ for all *G*. (Fiamčik '78) Sharp by K_{2n} . **Conj 2:** $\exists \Delta_0$ s.t. if *G* is planar and $\Delta \geq \Delta_0$, then $\chi'_a(G) = \Delta$. (Cohen–Havet–Müller '09)

Thm: If G is planar, then $\chi'_a(G) \leq \Delta + 25$. (C–H–M '09)... **Thm:** If G is planar, then $\chi'_a(G) \leq \Delta + 6$. (Wang–Zhang '16)

Defn: An acyclic edge coloring is a proper coloring of E(G) s.t. no cycle is 2-colored. Acyclic chromatic index, $\chi'_a(G)$, is min k s.t. G has acyclic edge coloring with k colors.

Thm: $\chi'_a(G) \le 64\Delta$. (A–M–R '91; Asymmetric Local Lemma)... **Thm:** $\chi'_a(G) \le 3.74\Delta$. (Giotis et al '17; entropy-compression+)

Conj 1: $\chi'_a(G) \leq \Delta + 2$ for all *G*. (Fiamčik '78) Sharp by K_{2n} . **Conj 2:** $\exists \Delta_0$ s.t. if *G* is planar and $\Delta \geq \Delta_0$, then $\chi'_a(G) = \Delta$. (Cohen–Havet–Müller '09)

Thm: If G is planar, then $\chi'_a(G) \leq \Delta + 25$. (C–H–M '09)... **Thm:** If G is planar, then $\chi'_a(G) \leq \Delta + 6$. (Wang–Zhang '16)

Main Thm: Conjecture 2 is true

Defn: An acyclic edge coloring is a proper coloring of E(G) s.t. no cycle is 2-colored. Acyclic chromatic index, $\chi'_a(G)$, is min k s.t. G has acyclic edge coloring with k colors.

Thm: $\chi'_a(G) \le 64\Delta$. (A–M–R '91; Asymmetric Local Lemma)... **Thm:** $\chi'_a(G) \le 3.74\Delta$. (Giotis et al '17; entropy-compression+)

Conj 1: $\chi'_a(G) \leq \Delta + 2$ for all *G*. (Fiamčik '78) Sharp by K_{2n} . **Conj 2:** $\exists \Delta_0$ s.t. if *G* is planar and $\Delta \geq \Delta_0$, then $\chi'_a(G) = \Delta$. (Cohen–Havet–Müller '09)

Thm: If G is planar, then $\chi'_a(G) \leq \Delta + 25$. (C–H–M '09)... **Thm:** If G is planar, then $\chi'_a(G) \leq \Delta + 6$. (Wang–Zhang '16)

Main Thm: Conjecture 2 is true; $\Delta_0 = 4.2 * 10^{14}$ suffices.

Defn: Vert v is big if $d(v) \ge 8680$.

Defn: Vert v is big if $d(v) \ge 8680$.

For a graph G, a vertex v is very big if $d(v) \ge \Delta - 43400$.

Defn: Vert v is big if $d(v) \ge 8680$. For a graph G, a vertex v is very big if $d(v) \ge \Delta - 43400$. For every big v, let $S(v) = \{5^-$ -nbrs with v as only big nbr $\}$.

Defn: Vert v is big if $d(v) \ge 8680$. For a graph G, a vertex v is very big if $d(v) \ge \Delta - 43400$. For every big v, let $S(v) = \{5^-$ -nbrs with v as only big nbr $\}$. A bunch is two big vertices and many common 4⁻-nbrs that are successive nbrs for both big vertices.

Defn: Vert v is big if $d(v) \ge 8680$. For a graph G, a vertex v is very big if $d(v) \ge \Delta - 43400$. For every big v, let $S(v) = \{5^-$ -nbrs with v as only big nbr $\}$. A bunch is two big vertices and many common 4⁻-nbrs that are successive nbrs for both big vertices.

Defn: Vert v is big if $d(v) \ge 8680$. For a graph G, a vertex v is very big if $d(v) \ge \Delta - 43400$. For every big v, let $S(v) = \{5^-$ -nbrs with v as only big nbr $\}$. A bunch is two big vertices and many common 4⁻-nbrs that are successive nbrs for both big vertices.

Structural Lemma: If *G* is 2-connected plane graph with $\Delta \ge 43400$, then *G* has one of the following configurations:

Defn: Vert v is big if $d(v) \ge 8680$. For a graph G, a vertex v is very big if $d(v) \ge \Delta - 43400$. For every big v, let $S(v) = \{5^-$ -nbrs with v as only big nbr $\}$. A bunch is two big vertices and many common 4⁻-nbrs that are successive nbrs for both big vertices.

Structural Lemma: If *G* is 2-connected plane graph with $\Delta \ge 43400$, then *G* has one of the following configurations:

(RC1) vertex v with $\sum_{w \in N(v)} d(w) \leq \Delta$; or

Defn: Vert v is big if $d(v) \ge 8680$. For a graph G, a vertex v is very big if $d(v) \ge \Delta - 43400$. For every big v, let $S(v) = \{5^-$ -nbrs with v as only big nbr $\}$. A bunch is two big vertices and many common 4⁻-nbrs that are successive nbrs for both big vertices.

Structural Lemma: If *G* is 2-connected plane graph with $\Delta \ge 43400$, then *G* has one of the following configurations:

(RC1) vertex v with $\sum_{w \in N(v)} d(w) \le \Delta$; or (RC2) very big vertex v with $|S(v)| \ge 35137$; or

Defn: Vert v is big if $d(v) \ge 8680$. For a graph G, a vertex v is very big if $d(v) \ge \Delta - 43400$. For every big v, let $S(v) = \{5^-$ -nbrs with v as only big nbr $\}$. A bunch is two big vertices and many common 4⁻-nbrs that are successive nbrs for both big vertices.

Structural Lemma: If *G* is 2-connected plane graph with $\Delta \ge 43400$, then *G* has one of the following configurations:

- (RC1) vertex v with $\sum_{w \in N(v)} d(w) \leq \Delta$; or
- (RC2) very big vertex v with $|S(v)| \ge 35137$; or
- (RC3) big vertex v with \leq 35 nbrs not its child in a bunch; or

Defn: Vert v is big if $d(v) \ge 8680$. For a graph G, a vertex v is very big if $d(v) \ge \Delta - 43400$. For every big v, let $S(v) = \{5^-$ -nbrs with v as only big nbr $\}$. A bunch is two big vertices and many common 4⁻-nbrs that are successive nbrs for both big vertices.

Structural Lemma: If *G* is 2-connected plane graph with $\Delta \ge 43400$, then *G* has one of the following configurations:

- (RC1) vertex v with $\sum_{w \in N(v)} d(w) \leq \Delta$; or
- (RC2) very big vertex v with $|S(v)| \ge 35137$; or
- (RC3) big vertex v with \leq 35 nbrs not its child in a bunch; or
- (RC4) very big vertex v with ≤ 141415 nbrs not child in a bunch.

Discharging Rules ■ Big • Small • Needy: 5⁻

Discharging Rules \blacksquare Big • Small \circ Needy: 5⁻ ch(v) = d(v) - 6 Discharging Rules Big • Small • Needy: 5⁻ ch(v) = d(v) - 6 $ch(f) = 2\ell(f) - 6$ Discharging Rules Big • Small • Needy: 5⁻ ch(v) = d(v) - 6 $ch(f) = 2\ell(f) - 6$ $\sum_{x \in V \cup F} ch(x) = -12$ Discharging Rules Big • Small • Needy: 5⁻ ch(v) = d(v) - 6 $ch(f) = 2\ell(f) - 6$ $\sum_{x \in V \cup F} ch(x) = -12$

Discharging Rules Big • Small • Needy: 5⁻ ch(v) = d(v) - 6 $ch(f) = 2\ell(f) - 6$ $\sum_{x \in V \cup F} ch(x) = -12$

Discharging Rules ■ Big • Small • Needy: 5⁻ ch(v) = d(v) - 6 $ch(f) = 2\ell(f) - 6$ $\sum_{x \in V \cup F} ch(x) = -12$ $\downarrow \frac{1}{2}$ $\frac{1}{2}$ 6 - d(v)

Discharging Rules ■ Big • Small • Needy: 5⁻ ch(v) = d(v) - 6 $ch(f) = 2\ell(f) - 6$ $\sum_{x \in V \cup F} ch(x) = -12$ $\downarrow \frac{1}{2}$ $\frac{1}{2}$ 6 - d(v)

Lem: Fix $q \ge 100$. *G* has no *v* with $d(v) - \Delta + |\mathcal{W}| \ge q + \sqrt{5q}$, where \mathcal{W} is 5⁻-neighbors *w* of *v* with $\sum_{x \in N(w) \setminus v} d(x) \le q$.

Lem: Fix $q \ge 100$. *G* has no *v* with $d(v) - \Delta + |\mathcal{W}| \ge q + \sqrt{5q}$, where \mathcal{W} is 5⁻-neighbors *w* of *v* with $\sum_{x \in N(w) \setminus v} d(x) \le q$. **Pf sketch:** Worst case: $d(v) = \Delta$. Pick $x_1 \in N(w_1) \setminus v$. Color $G - x_1 w_1$. Assume $\varphi(vw_i) = i$ for all $w_i \in \mathcal{W}$.

Extend to $w_1 x_1$.

Extend to w_1x_1 . Candidate colors: (a) either unused at v or used on edge to \mathcal{W} and

Extend to $w_1 x_1$. Candidate colors: (a) either unused at v or used on edge to W and (b) unused at every other vertex in $N(w_1)$.

Extend to w_1x_1 . Candidate colors: (a) either unused at v or used on edge to W and (b) unused at every other vertex in $N(w_1)$. At least $\sqrt{5q}$ candidates.

Extend to w_1x_1 . Candidate colors: (a) either unused at v or used on edge to W and (b) unused at every other vertex in $N(w_1)$. At least $\sqrt{5q}$ candidates. Done if i is a candidate and 1 unused at w_i .

Extend to w_1x_1 . Candidate colors: (a) either unused at v or used on edge to \mathcal{W} and (b) unused at every other vertex in $N(w_1)$. At least $\sqrt{5q}$ candidates. Done if i is a candidate and 1 unused at w_i . If 1 used at w_i for each i, then repeat argument for some w_i .

Lem: Fix $q \ge 100$. *G* has no *v* with $d(v) - \Delta + |\mathcal{W}| \ge q + \sqrt{5q}$, where \mathcal{W} is 5⁻-neighbors *w* of *v* with $\sum_{x \in N(w) \setminus v} d(x) \le q$. **Pf sketch:** Worst case: $d(v) = \Delta$. Pick $x_1 \in N(w_1) \setminus v$. Color $G - x_1 w_1$. Assume $\varphi(vw_i) = i$ for all $w_i \in \mathcal{W}$.

Extend to w_1x_1 . Candidate colors: (a) either unused at v or used on edge to W and (b) unused at every other vertex in $N(w_1)$. At least $\sqrt{5q}$ candidates. Done if i is a candidate and 1 unused at w_i . If 1 used at w_i for each i, then repeat argument for some w_i . By simple counting, we succeed for some w_i .

Vertex Coloring

Vertex Coloring

• $\chi_a(G) \leq 5$ if G is planar.

Vertex Coloring

- $\chi_a(G) \leq 5$ if G is planar.
- $\chi_a(G) \le 2.835 \Delta^{4/3} + \Delta$.

Vertex Coloring

- $\chi_a(G) \leq 5$ if G is planar.
- $\chi_a(G) \le 2.835 \Delta^{4/3} + \Delta$.
- $\exists G_{\Delta}$ such that $\chi_a(G_{\Delta}) \ge C_1 \Delta^{4/3} / (\ln \Delta)^{1/3}$.

Vertex Coloring

- $\chi_a(G) \leq 5$ if G is planar.
- $\chi_a(G) \le 2.835 \Delta^{4/3} + \Delta$.
- $\exists G_{\Delta}$ such that $\chi_a(G_{\Delta}) \ge C_1 \Delta^{4/3} / (\ln \Delta)^{1/3}$.

Edge Coloring

Vertex Coloring

- $\chi_a(G) \leq 5$ if G is planar.
- $\chi_a(G) \le 2.835 \Delta^{4/3} + \Delta$.
- $\exists G_{\Delta}$ such that $\chi_a(G_{\Delta}) \ge C_1 \Delta^{4/3} / (\ln \Delta)^{1/3}$.

Edge Coloring

• $\chi'_a(G) \leq 3.74\Delta$ for all G.

Vertex Coloring

- $\chi_a(G) \leq 5$ if G is planar.
- $\chi_a(G) \le 2.835 \Delta^{4/3} + \Delta$.
- $\exists G_{\Delta}$ such that $\chi_a(G_{\Delta}) \ge C_1 \Delta^{4/3} / (\ln \Delta)^{1/3}$.

Edge Coloring

- $\chi'_a(G) \leq 3.74\Delta$ for all G.
- $\chi'_a(G) \leq \Delta + 6$ if G is planar.
Vertex Coloring

- $\chi_a(G) \leq 5$ if G is planar.
- $\chi_a(G) \le 2.835 \Delta^{4/3} + \Delta$.
- $\exists G_{\Delta}$ such that $\chi_a(G_{\Delta}) \ge C_1 \Delta^{4/3} / (\ln \Delta)^{1/3}$.

Edge Coloring

- $\chi'_a(G) \leq 3.74\Delta$ for all G.
- $\chi'_a(G) \leq \Delta + 6$ if G is planar.
- Main Theorem: If G is planar and $\Delta \ge \Delta_0 = 4.2 * 10^{14}$, then $\chi'_a(G) = \Delta$.

Vertex Coloring

- $\chi_a(G) \leq 5$ if G is planar.
- $\chi_a(G) \le 2.835 \Delta^{4/3} + \Delta$.
- $\exists G_{\Delta}$ such that $\chi_a(G_{\Delta}) \ge C_1 \Delta^{4/3} / (\ln \Delta)^{1/3}$.

Edge Coloring

- $\chi'_a(G) \leq 3.74\Delta$ for all G.
- $\chi'_a(G) \leq \Delta + 6$ if G is planar.
- Main Theorem:

If G is planar and $\Delta \ge \Delta_0 = 4.2 * 10^{14}$, then $\chi'_a(G) = \Delta$.

Vertex Coloring

- $\chi_a(G) \leq 5$ if G is planar.
- $\chi_a(G) \le 2.835 \Delta^{4/3} + \Delta$.
- $\exists G_{\Delta}$ such that $\chi_a(G_{\Delta}) \ge C_1 \Delta^{4/3} / (\ln \Delta)^{1/3}$.

Edge Coloring

- $\chi'_a(G) \leq 3.74\Delta$ for all G.
- $\chi'_a(G) \leq \Delta + 6$ if G is planar.
- Main Theorem: If G is planar and Δ ≥ Δ₀ = 4.2 * 10¹⁴, then χ'_a(G) = Δ.

Open Problems

• $\chi'_a(G) \leq \Delta + 2$ for all G.

Vertex Coloring

- $\chi_a(G) \leq 5$ if G is planar.
- $\chi_a(G) \le 2.835 \Delta^{4/3} + \Delta$.
- $\exists G_{\Delta}$ such that $\chi_a(G_{\Delta}) \ge C_1 \Delta^{4/3} / (\ln \Delta)^{1/3}$.

Edge Coloring

- $\chi'_a(G) \leq 3.74\Delta$ for all G.
- $\chi'_a(G) \leq \Delta + 6$ if G is planar.
- Main Theorem: If G is planar and Δ ≥ Δ₀ = 4.2 * 10¹⁴, then χ'_a(G) = Δ.

- $\chi'_a(G) \leq \Delta + 2$ for all G.
- Find best Δ_0 in Main Theorem.

Vertex Coloring

- $\chi_a(G) \leq 5$ if G is planar.
- $\chi_a(G) \le 2.835 \Delta^{4/3} + \Delta$.
- $\exists G_{\Delta}$ such that $\chi_a(G_{\Delta}) \ge C_1 \Delta^{4/3} / (\ln \Delta)^{1/3}$.

Edge Coloring

- $\chi'_a(G) \leq 3.74\Delta$ for all G.
- $\chi'_a(G) \leq \Delta + 6$ if G is planar.
- Main Theorem: If G is planar and Δ ≥ Δ₀ = 4.2 * 10¹⁴, then χ'_a(G) = Δ.

- $\chi'_a(G) \leq \Delta + 2$ for all G.
- Find best Δ_0 in Main Theorem.
- Extend Main Theorem to list coloring.

Vertex Coloring

- $\chi_a(G) \leq 5$ if G is planar.
- $\chi_a(G) \le 2.835 \Delta^{4/3} + \Delta$.
- $\exists G_{\Delta}$ such that $\chi_a(G_{\Delta}) \ge C_1 \Delta^{4/3} / (\ln \Delta)^{1/3}$.

Edge Coloring

- $\chi'_a(G) \leq 3.74\Delta$ for all G.
- $\chi'_a(G) \leq \Delta + 6$ if G is planar.
- Main Theorem: If G is planar and Δ ≥ Δ₀ = 4.2 * 10¹⁴, then χ'_a(G) = Δ.

- $\chi'_a(G) \leq \Delta + 2$ for all G.
- Find best Δ_0 in Main Theorem.
- Extend Main Theorem to list coloring. ... paintability.

Vertex Coloring

- $\chi_a(G) \leq 5$ if G is planar.
- $\chi_a(G) \le 2.835 \Delta^{4/3} + \Delta$.
- $\exists G_{\Delta}$ such that $\chi_a(G_{\Delta}) \ge C_1 \Delta^{4/3} / (\ln \Delta)^{1/3}$.

Edge Coloring

- $\chi'_a(G) \leq 3.74\Delta$ for all G.
- $\chi'_a(G) \leq \Delta + 6$ if G is planar.
- Main Theorem: If G is planar and Δ ≥ Δ₀ = 4.2 * 10¹⁴, then χ'_a(G) = Δ.

- $\chi'_a(G) \leq \Delta + 2$ for all G.
- Find best Δ_0 in Main Theorem.
- Extend Main Theorem to list coloring. ... paintability.
- Extend Main Theorem to other surfaces.

Vertex Coloring

- $\chi_a(G) \leq 5$ if G is planar.
- $\chi_a(G) \le 2.835 \Delta^{4/3} + \Delta$.
- $\exists G_{\Delta}$ such that $\chi_a(G_{\Delta}) \ge C_1 \Delta^{4/3} / (\ln \Delta)^{1/3}$.

Edge Coloring

- $\chi'_a(G) \leq 3.74\Delta$ for all G.
- $\chi'_a(G) \leq \Delta + 6$ if G is planar.
- Main Theorem: If G is planar and Δ ≥ Δ₀ = 4.2 * 10¹⁴, then χ'_a(G) = Δ.

- $\chi'_a(G) \leq \Delta + 2$ for all G.
- Find best Δ_0 in Main Theorem.
- Extend Main Theorem to list coloring. ... paintability.
- Extend Main Theorem to other surfaces. ... bounded mad.