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History: Vertex Coloring

Defn: An acyclic coloring is a proper coloring of V (G ) s.t. no
cycle is 2-colored. Acyclic chromatic number, χa(G ), is min k s.t.
G has acyclic coloring with k colors.

Thm: Every planar graph G has χa(G ) ≤ 5. Sharp by octahedron.
(Conjectured by Grünbaum ’73; proved by Borodin ’79)

Thm: For every ∆ there is G∆ with max degree ∆ and
χa(G ) ≥ C1∆4/3(log ∆)−1/3. (Alon–McDiarmid–Reed ’91)
Thm: Always χa(G ) ≤ C2∆4/3. (Alon–McDiarmid–Reed ’91)
Thm: Always χa(G ) ≤ 2.835∆4/3 + ∆. (Sereni–Volec ’16)
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cycle is 2-colored. Acyclic chromatic index, χ′a(G ), is min k s.t. G
has acyclic edge coloring with k colors.

Thm: χ′a(G ) ≤ 64∆. (A–M–R ’91; Asymmetric Local Lemma). . .
Thm: χ′a(G ) ≤ 3.74∆. (Giotis et al ’17; entropy-compression+)

Conj 1: χ′a(G ) ≤ ∆ + 2 for all G . (Fiamčik ’78) Sharp by K2n.
Conj 2: ∃ ∆0 s.t. if G is planar and ∆ ≥ ∆0, then χ′a(G ) = ∆.
(Cohen–Havet–Müller ’09)

Thm: If G is planar, then χ′a(G ) ≤ ∆ + 25. (C–H–M ’09). . .
Thm: If G is planar, then χ′a(G ) ≤ ∆ + 6. (Wang–Zhang ’16)

Main Thm: Conjecture 2 is true; ∆0 = 4.2 ∗ 1014 suffices.
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Conj 2: ∃ ∆0 s.t. if G is planar and ∆ ≥ ∆0, then χ′a(G ) = ∆.
(Cohen–Havet–Müller ’09)

Thm: If G is planar, then χ′a(G ) ≤ ∆ + 25. (C–H–M ’09). . .
Thm: If G is planar, then χ′a(G ) ≤ ∆ + 6. (Wang–Zhang ’16)

Main Thm: Conjecture 2 is true; ∆0 = 4.2 ∗ 1014 suffices.



History: Edge-Coloring

Defn: An acyclic edge coloring is a proper coloring of E (G ) s.t. no
cycle is 2-colored. Acyclic chromatic index, χ′a(G ), is min k s.t. G
has acyclic edge coloring with k colors.

Thm: χ′a(G ) ≤ 64∆. (A–M–R ’91; Asymmetric Local Lemma). . .
Thm: χ′a(G ) ≤ 3.74∆. (Giotis et al ’17; entropy-compression+)

Conj 1: χ′a(G ) ≤ ∆ + 2 for all G . (Fiamčik ’78) Sharp by K2n.
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Structural Lemma

Defn: Vert v is big if d(v) ≥ 8680.

For a graph G , a vertex v is
very big if d(v) ≥ ∆− 43400.

For every big v , let S(v)=
{5−-nbrs with v as only big nbr}.
A bunch is two big vertices and
many common 4−-nbrs that are
successive nbrs for both big vertices.

Structural Lemma: If G is 2-connected plane graph with
∆ ≥ 43400, then G has one of the following configurations:

(RC1) vertex v with
∑

w∈N(v) d(w) ≤ ∆; or

(RC2) very big vertex v with |S(v)| ≥ 35137; or

(RC3) big vertex v with ≤ 35 nbrs not its child in a bunch; or

(RC4) very big vertex v with ≤ 141415 nbrs not child in a bunch.
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ch(v) = d(v)− 6 ch(f ) = 2`(f )− 6
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x∈V∪F ch(x) = −12

y
1x1

y
1
2

−→ 1
2←−−

6 − d(v)

↖
1

↖
2

↖
1

2 ←−$$

−→12 $$



Discharging Rules Big Small Needy: 5−

ch(v) = d(v)− 6

ch(f ) = 2`(f )− 6
∑

x∈V∪F ch(x) = −12

y
1x1

y
1
2

−→ 1
2←−−

6 − d(v)

↖
1

↖
2

↖
1

2 ←−$$

−→12 $$



Discharging Rules Big Small Needy: 5−

ch(v) = d(v)− 6 ch(f ) = 2`(f )− 6

∑
x∈V∪F ch(x) = −12

y
1x1

y
1
2

−→ 1
2←−−

6 − d(v)

↖
1

↖
2

↖
1

2 ←−$$

−→12 $$



Discharging Rules Big Small Needy: 5−

ch(v) = d(v)− 6 ch(f ) = 2`(f )− 6
∑

x∈V∪F ch(x) = −12

y
1x1

y
1
2

−→ 1
2←−−

6 − d(v)

↖
1

↖
2

↖
1

2 ←−$$

−→12 $$



Discharging Rules Big Small Needy: 5−

ch(v) = d(v)− 6 ch(f ) = 2`(f )− 6
∑

x∈V∪F ch(x) = −12

y
1x1

y
1
2

−→ 1
2

←−−
6 − d(v)

↖
1

↖
2

↖
1

2 ←−$$

−→12 $$



Discharging Rules Big Small Needy: 5−

ch(v) = d(v)− 6 ch(f ) = 2`(f )− 6
∑

x∈V∪F ch(x) = −12

y
1x1

y
1
2

−→ 1
2

←−−
6 − d(v)

↖
1

↖
2

↖
1

2 ←−$$

−→12 $$



Discharging Rules Big Small Needy: 5−

ch(v) = d(v)− 6 ch(f ) = 2`(f )− 6
∑

x∈V∪F ch(x) = −12

y
1x1

y
1
2

−→ 1
2←−−

6 − d(v)

↖
1

↖
2

↖
1

2 ←−$$

−→12 $$



Discharging Rules Big Small Needy: 5−

ch(v) = d(v)− 6 ch(f ) = 2`(f )− 6
∑

x∈V∪F ch(x) = −12

y
1x1

y
1
2

−→ 1
2←−−

6 − d(v)

↖
1

↖
2

↖
1

2 ←−$$

−→12 $$



Discharging Rules Big Small Needy: 5−

ch(v) = d(v)− 6 ch(f ) = 2`(f )− 6
∑

x∈V∪F ch(x) = −12

y
1x1

y
1
2

−→ 1
2←−−

6 − d(v)

↖
1

↖
2

↖
1

2 ←−$$

−→12 $$



Discharging Rules Big Small Needy: 5−

ch(v) = d(v)− 6 ch(f ) = 2`(f )− 6
∑

x∈V∪F ch(x) = −12

y
1x1

y
1
2

−→ 1
2←−−

6 − d(v)

↖
1

↖
2

↖
1

2 ←−$$

−→12 $$



Discharging Rules Big Small Needy: 5−

ch(v) = d(v)− 6 ch(f ) = 2`(f )− 6
∑

x∈V∪F ch(x) = −12

y
1x1

y
1
2

−→ 1
2←−−

6 − d(v)

↖
1

↖
2

↖
1

2 ←−$$

−→12 $$



Discharging Rules Big Small Needy: 5−

ch(v) = d(v)− 6 ch(f ) = 2`(f )− 6
∑

x∈V∪F ch(x) = −12

y
1x1

y
1
2

−→ 1
2←−−

6 − d(v)

↖
1

↖
2

↖
1

2 ←−$$

−→12 $$



Reducibility Sketch

Lem: Fix q ≥ 100. G has no v with d(v)−∆ + |W| ≥ q +
√

5q,
where W is 5−-neighbors w of v with

∑
x∈N(w)\v d(x) ≤ q.

Pf sketch: Worst case: d(v) = ∆. Pick x1 ∈ N(w1) \ v .
Color G − x1w1. Assume ϕ(vwi ) = i for all wi ∈ W.

x1 xi

wj
i21 j
wiw2w1 wq+

√
5q

v

Extend to w1x1. Candidate colors: (a) either unused at v or used
on edge to W and (b) unused at every other vertex in N(w1). At
least

√
5q candidates. Done if i is a candidate and 1 unused at wi .

If 1 used at wi for each i , then repeat argument for some wi .
By simple counting, we succeed for some wi .
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Summary

Vertex Coloring

I χa(G ) ≤ 5 if G is planar.

I χa(G ) ≤ 2.835∆4/3 + ∆.

I ∃G∆ such that χa(G∆) ≥ C1∆4/3/(ln ∆)1/3.

Edge Coloring

I χ′a(G ) ≤ 3.74∆ for all G .

I χ′a(G ) ≤ ∆ + 6 if G is planar.

I Main Theorem:
If G is planar and ∆ ≥ ∆0 = 4.2 ∗ 1014, then χ′a(G ) = ∆.

Open Problems

I χ′a(G ) ≤ ∆ + 2 for all G .

I Find best ∆0 in Main Theorem.

I Extend Main Theorem to list coloring. . . . paintability.

I Extend Main Theorem to other surfaces. . . . bounded mad.
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I Extend Main Theorem to list coloring. . . . paintability.

I Extend Main Theorem to other surfaces. . . . bounded mad.
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