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(RC4)
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Lem: Fix g > 100. G has no v with d(v) — A+ |[W| > g + /5q,
where WV is 5™ -neighbors w of v with > ), d(x) < g.

Pf sketch: Worst case: d(v) = A. Pick x; € N(wy) \ v.

Color G — xywy. Assume ¢(vw;) = i for all w; € W.

Extend to w;x;. Candidate colors: (a) either unused at v or used
on edge to )V and (b) unused at every other vertex in N(w;). At
least \/5g candidates. Done if / is a candidate and 1 unused at w;.
If 1 used at w; for each /, then repeat argument for some w;.

By simple counting, we succeed for some w;.
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