Regular Graphs are Antimagic

Daniel W. Cranston Virginia Commonwealth University dcranston@vcu.edu

Joint with Yu-Chang Liang and Xuding Zhu Slides available on my webpage

> VCU Discrete Math Seminar 9 November 2015

4	9	2
3	5	7
8	1	6

4	9	2
3	5	7
8	1	6

62	4	13	51	46	20	29	35
5	59	54	12	21	43	38	28
52	14	3	61	36	30	19	45
11	53	60	6	27	37	44	22
64	2	15	49	48	18	31	33
7	57	56	10	23	41	40	26
50	16	1	63	34	32	17	47
9	55	58	8	25	39	42	24

4	9	2
3	5	7
8	1	6

62	4	13	51	46	20	29	35		2	59	62	7	18	43	46	23
5	59	54	12	21	43	38	28		61	6	1	42	63	24	19	44
52	14	3	61	36	30	19	45	1	58	3	60	17	8	45	22	47
11	53	60	6	27	37	44	22		53	16	5	64	41	20	25	36
64	2	15	49	48	18	31	33		4	57	52	9	32	37	48	21
7	57	56	10	23	41	40	26		15	54	13	40	49	28	35	26
50	16	1	63	34	32	17	47		12	51	56	31	10	33	38	29
9	55	58	8	25	39	42	24		55	14	11	50	39	30	27	34

16	3	2	13
5	10	11	8
9	6	7	12
4	15	14	1

Def. A graph G is magic if there exists a 1-to-1 mapping from the edges of G to $\{1, 2, ..., |E|\}$ so the sum of the labels incident to each vertex is the same. This is a magic labeling.

Def. A graph G is magic if there exists a 1-to-1 mapping from the edges of G to $\{1, 2, ..., |E|\}$ so the sum of the labels incident to each vertex is the same. This is a magic labeling.

Question

Which graphs are magic?

Def. A graph G is magic if there exists a 1-to-1 mapping from the edges of G to $\{1, 2, ..., |E|\}$ so the sum of the labels incident to each vertex is the same. This is a magic labeling.

Question

Which graphs are magic?

Answer

Easier to find graphs that are not magic.

Def. A graph G is magic if there exists a 1-to-1 mapping from the edges of G to $\{1, 2, ..., |E|\}$ so the sum of the labels incident to each vertex is the same. This is a magic labeling.

Question

Which graphs are magic?

Answer

Easier to find graphs that are not magic. E.g. trees on at least three vertices are not magic.

Def. A graph G is magic if there exists a 1-to-1 mapping from the edges of G to $\{1, 2, ..., |E|\}$ so the sum of the labels incident to each vertex is the same. This is a magic labeling.

Question

Which graphs are magic?

Answer

Easier to find graphs that are not magic. E.g. trees on at least three vertices are not magic. $\ensuremath{\textcircled{\sc b}}$

Def. A graph G is antimagic if there exists a 1-to-1 mapping from the edges of G to $\{1, 2, ..., |E|\}$ so the sum of the labels incident to each vertex is distinct. This is an antimagic labeling.

Question

Which graphs are magic?

Answer

Easier to find graphs that are not magic. E.g. trees on at least three vertices are not magic. $\ensuremath{\textcircled{\sc b}}$

Def. A graph G is antimagic if there exists a 1-to-1 mapping from the edges of G to $\{1, 2, ..., |E|\}$ so the sum of the labels incident to each vertex is distinct. This is an antimagic labeling.

Question

Which graphs are magic?

Answer

Easier to find graphs that are not magic. E.g. trees on at least three vertices are not magic. \bigcirc

Def. A graph G is antimagic if there exists a 1-to-1 mapping from the edges of G to $\{1, 2, ..., |E|\}$ so the sum of the labels incident to each vertex is distinct. This is an antimagic labeling.

Question

Which graphs are magic?

Answer

Easier to find graphs that are not magic. E.g. trees on at least three vertices are not magic. \odot

Conj.[Hartsfield-Ringel 1990]

1. Every connected graph is antimagic

Def. A graph G is antimagic if there exists a 1-to-1 mapping from the edges of G to $\{1, 2, ..., |E|\}$ so the sum of the labels incident to each vertex is distinct. This is an antimagic labeling.

Question

Which graphs are magic?

Answer

Easier to find graphs that are not magic. E.g. trees on at least three vertices are not magic. \bigcirc

Conj.[Hartsfield-Ringel 1990]

1. Every connected graph is antimagic (other than K_2).

Def. A graph G is antimagic if there exists a 1-to-1 mapping from the edges of G to $\{1, 2, ..., |E|\}$ so the sum of the labels incident to each vertex is distinct. This is an antimagic labeling.

Question

Which graphs are magic?

Answer

Easier to find graphs that are not magic. E.g. trees on at least three vertices are not magic. $\ensuremath{\boxdot}$

Conj.[Hartsfield-Ringel 1990]

 Every connected graph is antimagic (other than K₂).
Every tree is antimagic (again, other than K₂).

Thm.[Alon et al. 2004] If $\Delta(G) \ge n-2$, then G is antimagic.

Thm.[Alon et al. 2004] If $\Delta(G) \ge n-2$, then G is antimagic. Pf (for $\Delta(G) = n-1$). Let d(v) = n-1. Label G - v arbitrarily with the smallest labels. Label final star in order of partial sums.

Thm.[Alon et al. 2004] If $\Delta(G) \ge n-2$, then G is antimagic. **Pf** (for $\Delta(G) = n-1$). Let d(v) = n-1. Label G - v arbitrarily with the smallest labels. Label final star in order of partial sums.

Thm. [Yilma 2013] If $\Delta(G) \ge n - 3$, then G is antimagic.

Thm.[Alon et al. 2004] If $\Delta(G) \ge n-2$, then G is antimagic. **Pf** (for $\Delta(G) = n-1$). Let d(v) = n-1. Label G - v arbitrarily with the smallest labels. Label final star in order of partial sums.

Thm. [Yilma 2013] If $\Delta(G) \ge n - 3$, then G is antimagic.

Thm. [Alon et al. 2004] There exists a constant *C* such that for all *n* if *G* has *n* vertices and $\delta(G) \ge C \log n$, then *G* is antimagic.

Thm.[Alon et al. 2004] If $\Delta(G) \ge n-2$, then G is antimagic. **Pf** (for $\Delta(G) = n-1$). Let d(v) = n-1. Label G - v arbitrarily with the smallest labels. Label final star in order of partial sums.

Thm. [Yilma 2013] If $\Delta(G) \ge n - 3$, then G is antimagic.

Thm. [Alon et al. 2004] There exists a constant *C* such that for all *n* if *G* has *n* vertices and $\delta(G) \ge C \log n$, then *G* is antimagic. **Intuition** If each vertex has many incident edges, then with positive probability a *random* labeling will be antimagic.

Thm.[Alon et al. 2004] If $\Delta(G) \ge n-2$, then G is antimagic. **Pf** (for $\Delta(G) = n-1$). Let d(v) = n-1. Label G - v arbitrarily with the smallest labels. Label final star in order of partial sums.

Thm.[Yilma 2013] If $\Delta(G) \ge n - 3$, then G is antimagic.

Thm. [Alon et al. 2004] There exists a constant *C* such that for all *n* if *G* has *n* vertices and $\delta(G) \ge C \log n$, then *G* is antimagic. **Intuition** If each vertex has many incident edges, then with positive probability a *random* labeling will be antimagic.

Thm.[Eccles 2015] If a graph has no isolated edges or vertices and has average degree at least 4468, then it is antimagic!

Thm.[Alon et al. 2004] If $\Delta(G) \ge n-2$, then G is antimagic. **Pf** (for $\Delta(G) = n-1$). Let d(v) = n-1. Label G - v arbitrarily with the smallest labels. Label final star in order of partial sums.

Thm.[Yilma 2013] If $\Delta(G) \ge n - 3$, then G is antimagic.

Thm. [Alon et al. 2004] There exists a constant *C* such that for all *n* if *G* has *n* vertices and $\delta(G) \ge C \log n$, then *G* is antimagic. **Intuition** If each vertex has many incident edges, then with positive probability a *random* labeling will be antimagic.

Thm.[Eccles 2015] If a graph has no isolated edges or vertices and has average degree at least 4468, then it is antimagic!

Conj. [Eccles 2015] If a graph has no isolated edges or vertices and has average degree at least $\sqrt{2}$, then it is antimagic.

Thm.[Alon et al. 2004] If $\Delta(G) \ge n-2$, then G is antimagic. **Pf** (for $\Delta(G) = n-1$). Let d(v) = n-1. Label G - v arbitrarily with the smallest labels. Label final star in order of partial sums.

Thm. [Yilma 2013] If $\Delta(G) \ge n - 3$, then G is antimagic.

Thm. [Alon et al. 2004] There exists a constant *C* such that for all *n* if *G* has *n* vertices and $\delta(G) \ge C \log n$, then *G* is antimagic. **Intuition** If each vertex has many incident edges, then with positive probability a *random* labeling will be antimagic.

Thm.[Eccles 2015] If a graph has no isolated edges or vertices and has average degree at least 4468, then it is antimagic!

Conj. [Eccles 2015] If a graph has no isolated edges or vertices and has average degree at least $\sqrt{2}$, then it is antimagic. **Cor.** This would imply both Hartsfield–Ringel conjectures.

Thm.[Cranston 2007]

All k-regular bipartite graphs with $k \ge 2$ are antimagic.

Thm.[Cranston 2007]

All k-regular bipartite graphs with $k \ge 2$ are antimagic.

Prop. Cycles are antimagic.

Thm.[Cranston 2007]

All k-regular bipartite graphs with $k \ge 2$ are antimagic.

Prop. Cycles are antimagic. **Pf.**

Thm.[Cranston 2007]

All k-regular bipartite graphs with $k \ge 2$ are antimagic.

Prop. Cycles are antimagic. **Pf.**

Thm.[Liang–Zhu 2013] 3-regular graphs are antimagic.

Thm.[Cranston 2007]

All k-regular bipartite graphs with $k \ge 2$ are antimagic.

Prop. Cycles are antimagic. **Pf.**

Thm.[Liang–Zhu 2013] 3-regular graphs are antimagic.

Thm.[Cranston-Liang-Zhu 2015]

All k-regular graphs with k odd and $k \ge 3$ are antimagic.

Thm.[Cranston 2007]

All k-regular bipartite graphs with $k \ge 2$ are antimagic.

Prop. Cycles are antimagic. **Pf.**

Thm.[Liang–Zhu 2013] 3-regular graphs are antimagic.

Thm. [Cranston-Liang-Zhu 2015]

All k-regular graphs with k odd and $k \ge 3$ are antimagic.

Thm.[Zhu et al. 2015+]

All k-regular graphs with $k \ge 2$ are antimagic.
A Personal Saga: Regular Graphs

Thm.[Cranston 2007]

All k-regular bipartite graphs with $k \ge 2$ are antimagic.

Prop. Cycles are antimagic. **Pf.**

Thm.[Liang–Zhu 2013] 3-regular graphs are antimagic.

Thm.[Cranston-Liang-Zhu 2015]

All k-regular graphs with k odd and $k \ge 3$ are antimagic.

Thm.[Zhu et al. 2015+][Bérczi et al. 2015] All k-regular graphs with $k \ge 2$ are antimagic.

Prop. If G_1 and G_2 are k-regular and antimagic, then so is $G_1 \cup G_2$.

Prop. If G_1 and G_2 are *k*-regular and antimagic, then so is $G_1 \cup G_2$. **Pf.** Increase each label on G_2 by m_1 .

Prop. If G_1 and G_2 are k-regular and antimagic, then so is $G_1 \cup G_2$. **Pf.** Increase each label on G_2 by m_1 .

Thm. 3-regular graphs are antimagic.

Prop. If G_1 and G_2 are k-regular and antimagic, then so is $G_1 \cup G_2$. **Pf.** Increase each label on G_2 by m_1 .

Thm. 3-regular graphs are antimagic. **Pf idea** Pick a vertex x and label edges in order of decreasing distance from x.

Prop. If G_1 and G_2 are k-regular and antimagic, then so is $G_1 \cup G_2$. **Pf.** Increase each label on G_2 by m_1 .

Thm. 3-regular graphs are antimagic. **Pf idea** Pick a vertex x and label edges in order of decreasing distance from x. (Decreasing sum of distances from endpts to x.)

Prop. If G_1 and G_2 are k-regular and antimagic, then so is $G_1 \cup G_2$. **Pf.** Increase each label on G_2 by m_1 .

Thm. 3-regular graphs are antimagic. **Pf idea** Pick a vertex x and label edges in order of decreasing distance from x. (Decreasing sum of distances from endpts to x.)

Defn. For each $v \in V(G)$, let f(v) be sum of labels at v.

Prop. If G_1 and G_2 are k-regular and antimagic, then so is $G_1 \cup G_2$. **Pf.** Increase each label on G_2 by m_1 .

Thm. 3-regular graphs are antimagic. **Pf idea** Pick a vertex x and label edges in order of decreasing distance from x. (Decreasing sum of distances from endpts to x.)

Defn. For each $v \in V(G)$, let f(v) be sum of labels at v. For each i, let $D_i = \{v : v \text{ is distance } i \text{ from } x\}$.

Prop. If G_1 and G_2 are k-regular and antimagic, then so is $G_1 \cup G_2$. **Pf.** Increase each label on G_2 by m_1 .

Thm. 3-regular graphs are antimagic. **Pf idea** Pick a vertex x and label edges in order of decreasing distance from x. (Decreasing sum of distances from endpts to x.)

Defn. For each $v \in V(G)$, let f(v) be sum of labels at v. For each i, let $D_i = \{v : v \text{ is distance } i \text{ from } x\}$.

Claim If $v \in D_i$ and $w \in D_j$ and $j \le i - 2$, then f(v) < f(w).

Prop. If G_1 and G_2 are k-regular and antimagic, then so is $G_1 \cup G_2$. **Pf.** Increase each label on G_2 by m_1 .

Thm. 3-regular graphs are antimagic. **Pf idea** Pick a vertex x and label edges in order of decreasing distance from x. (Decreasing sum of distances from endpts to x.)

Defn. For each $v \in V(G)$, let f(v) be sum of labels at v. For each i, let $D_i = \{v : v \text{ is distance } i \text{ from } x\}$.

Claim If $v \in D_i$ and $w \in D_j$ and $j \le i - 2$, then f(v) < f(w). **Pf.** All edges incidident to v have endpoints with sum of distances from x in $\{2i + 1, 2i, 2i - 1\}$.

Prop. If G_1 and G_2 are k-regular and antimagic, then so is $G_1 \cup G_2$. **Pf.** Increase each label on G_2 by m_1 .

Thm. 3-regular graphs are antimagic. **Pf idea** Pick a vertex x and label edges in order of decreasing distance from x. (Decreasing sum of distances from endpts to x.)

Defn. For each $v \in V(G)$, let f(v) be sum of labels at v. For each i, let $D_i = \{v : v \text{ is distance } i \text{ from } x\}$.

Claim If $v \in D_i$ and $w \in D_j$ and $j \le i - 2$, then f(v) < f(w). **Pf.** All edges incidident to v have endpoints with sum of distances from x in $\{2i + 1, 2i, 2i - 1\}$. All edges incidident to w have endpoints with sum of distances from x in $\{2j + 1, 2j, 2j - 1\}$.

Prop. If G_1 and G_2 are k-regular and antimagic, then so is $G_1 \cup G_2$. **Pf.** Increase each label on G_2 by m_1 .

Thm. 3-regular graphs are antimagic. **Pf idea** Pick a vertex x and label edges in order of decreasing distance from x. (Decreasing sum of distances from endpts to x.)

Defn. For each $v \in V(G)$, let f(v) be sum of labels at v. For each i, let $D_i = \{v : v \text{ is distance } i \text{ from } x\}$.

Claim If $v \in D_i$ and $w \in D_j$ and $j \le i-2$, then f(v) < f(w). **Pf.** All edges incidident to v have endpoints with sum of distances from x in $\{2i + 1, 2i, 2i - 1\}$. All edges incidident to w have endpoints with sum of distances from x in $\{2j + 1, 2j, 2j - 1\}$. Since $j \le i-2$, every label incident to v is smaller than every label incident to w.

Prop. If G_1 and G_2 are k-regular and antimagic, then so is $G_1 \cup G_2$. **Pf.** Increase each label on G_2 by m_1 .

Thm. 3-regular graphs are antimagic. **Pf idea** Pick a vertex x and label edges in order of decreasing distance from x. (Decreasing sum of distances from endpts to x.)

Defn. For each $v \in V(G)$, let f(v) be sum of labels at v. For each i, let $D_i = \{v : v \text{ is distance } i \text{ from } x\}$.

Claim If $v \in D_i$ and $w \in D_j$ and $j \le i-2$, then f(v) < f(w). **Pf.** All edges incidident to v have endpoints with sum of distances from x in $\{2i + 1, 2i, 2i - 1\}$. All edges incidident to w have endpoints with sum of distances from x in $\{2j + 1, 2j, 2j - 1\}$. Since $j \le i-2$, every label incident to v is smaller than every label incident to w. Thus f(v) < f(w).

Prop. If G_1 and G_2 are k-regular and antimagic, then so is $G_1 \cup G_2$. **Pf.** Increase each label on G_2 by m_1 .

Thm. 3-regular graphs are antimagic. **Pf idea** Pick a vertex x and label edges in order of decreasing distance from x. (Decreasing sum of distances from endpts to x.)

Defn. For each $v \in V(G)$, let f(v) be sum of labels at v. For each i, let $D_i = \{v : v \text{ is distance } i \text{ from } x\}$.

Claim If $v \in D_i$ and $w \in D_j$ and $j \le i-2$, then f(v) < f(w). **Pf.** All edges incidident to v have endpoints with sum of distances from x in $\{2i + 1, 2i, 2i - 1\}$. All edges incidident to w have endpoints with sum of distances from x in $\{2j + 1, 2j, 2j - 1\}$. Since $j \le i-2$, every label incident to v is smaller than every label incident to w. Thus f(v) < f(w).

Cor. Just need to check $f(v_1) \neq f(v_2)$ when $v_1, v_2 \in D_i \cup D_{i-1}$.

Recall We know $f(v_1) \neq f(v_2)$ when there is no *i* with $v_1, v_2 \in D_i \cup D_{i-1}$.

Recall We know $f(v_1) \neq f(v_2)$ when there is no *i* with $v_1, v_2 \in D_i \cup D_{i-1}$. Now we handle this final case.

Recall We know $f(v_1) \neq f(v_2)$ when there is no *i* with $v_1, v_2 \in D_i \cup D_{i-1}$. Now we handle this final case.

For each $v \neq x$, choose some edge e(v) incident to v with other endpoint closer to x.

Recall We know $f(v_1) \neq f(v_2)$ when there is no *i* with $v_1, v_2 \in D_i \cup D_{i-1}$. Now we handle this final case.

For each $v \neq x$, choose some edge e(v) incident to v with other endpoint closer to x. Let $E_i = \{e(v) : v \in D_i\}$.

Recall We know $f(v_1) \neq f(v_2)$ when there is no *i* with $v_1, v_2 \in D_i \cup D_{i-1}$. Now we handle this final case.

For each $v \neq x$, choose some edge e(v) incident to v with other endpoint closer to x. Let $E_i = \{e(v) : v \in D_i\}$.

Among all edges with distance sum 2i - 1, label those in E_i last.

Recall We know $f(v_1) \neq f(v_2)$ when there is no *i* with $v_1, v_2 \in D_i \cup D_{i-1}$. Now we handle this final case.

For each $v \neq x$, choose some edge e(v) incident to v with other endpoint closer to x. Let $E_i = \{e(v) : v \in D_i\}$.

Among all edges with distance sum 2i - 1, label those in E_i last. Label in order of partial sums at vertices in D_i (like for dominating vertex).

Recall We know $f(v_1) \neq f(v_2)$ when there is no *i* with $v_1, v_2 \in D_i \cup D_{i-1}$. Now we handle this final case.

For each $v \neq x$, choose some edge e(v) incident to v with other endpoint closer to x. Let $E_i = \{e(v) : v \in D_i\}$.

Among all edges with distance sum 2i - 1, label those in E_i last. Label in order of partial sums at vertices in D_i (like for dominating vertex). This ensures that $f(v_1) \neq f(v_2)$ when $v_1, v_2 \in D_i$.

Recall We know $f(v_1) \neq f(v_2)$ when there is no *i* with $v_1, v_2 \in D_i \cup D_{i-1}$. Now we handle this final case.

For each $v \neq x$, choose some edge e(v) incident to v with other endpoint closer to x. Let $E_i = \{e(v) : v \in D_i\}$.

Among all edges with distance sum 2i - 1, label those in E_i last. Label in order of partial sums at vertices in D_i (like for dominating vertex). This ensures that $f(v_1) \neq f(v_2)$ when $v_1, v_2 \in D_i$. Need a little more to handle $v_1 \in D_i$ and $v_2 \in D_{i-1}$.

Recall We know $f(v_1) \neq f(v_2)$ when there is no *i* with $v_1, v_2 \in D_i \cup D_{i-1}$. Now we handle this final case.

For each $v \neq x$, choose some edge e(v) incident to v with other endpoint closer to x. Let $E_i = \{e(v) : v \in D_i\}$.

Among all edges with distance sum 2i - 1, label those in E_i last. Label in order of partial sums at vertices in D_i (like for dominating vertex). This ensures that $f(v_1) \neq f(v_2)$ when $v_1, v_2 \in D_i$. Need a little more to handle $v_1 \in D_i$ and $v_2 \in D_{i-1}$.

Helpful Lemma For each *i*, can partition the edges with distance sum 2i - 1 into paths, so at most one path ends at each vertex.

Recall We know $f(v_1) \neq f(v_2)$ when there is no *i* with $v_1, v_2 \in D_i \cup D_{i-1}$. Now we handle this final case.

For each $v \neq x$, choose some edge e(v) incident to v with other endpoint closer to x. Let $E_i = \{e(v) : v \in D_i\}$.

Among all edges with distance sum 2i - 1, label those in E_i last. Label in order of partial sums at vertices in D_i (like for dominating vertex). This ensures that $f(v_1) \neq f(v_2)$ when $v_1, v_2 \in D_i$. Need a little more to handle $v_1 \in D_i$ and $v_2 \in D_{i-1}$.

Helpful Lemma For each *i*, can partition the edges with distance sum 2i - 1 into paths, so at most one path ends at each vertex. **Pf idea**

Edges induce a bipartite graph; each vertex has degree at most 2.

Summary

Summary

Magic squares

Summary

• Magic squares \rightarrow magic labelings of graphs
- Magic squares \rightarrow magic labelings of graphs
- Lots of graphs not magic

- Magic squares \rightarrow magic labelings of graphs
- ► Lots of graphs not magic ☺

- Magic squares \rightarrow magic labelings of graphs
- \blacktriangleright Lots of graphs not magic $\circledast \rightarrow$ antimagic labelings

- Magic squares \rightarrow magic labelings of graphs
- Lots of graphs not magic $\ensuremath{\mathfrak{S}} \to \ensuremath{\mathsf{antimagic}}$ labelings
- **Conj.** Every connected graph, but K_2 , is antimagic

- Magic squares \rightarrow magic labelings of graphs
- Lots of graphs not magic $\ensuremath{\mathfrak{S}} \to \ensuremath{\mathsf{antimagic}}$ labelings
- **Conj.** Every connected graph, but K_2 , is antimagic
- G is antimagic if $\Delta(G) \ge n-2$

- Magic squares \rightarrow magic labelings of graphs
- Lots of graphs not magic $\ensuremath{\mathfrak{S}} \to \ensuremath{\mathsf{antimagic}}$ labelings
- **Conj.** Every connected graph, but K_2 , is antimagic
- G is antimagic if $\Delta(G) \ge n-3$

- Magic squares \rightarrow magic labelings of graphs
- Lots of graphs not magic $\ensuremath{\mathfrak{S}} \to \ensuremath{\mathsf{antimagic}}$ labelings
- **Conj.** Every connected graph, but K_2 , is antimagic
- G is antimagic if $\Delta(G) \ge n-3$
- ► G is antimagic if average degree at least 4468

- Magic squares \rightarrow magic labelings of graphs
- Lots of graphs not magic $\ensuremath{\mathfrak{S}} \to \ensuremath{\mathsf{antimagic}}$ labelings
- **Conj.** Every connected graph, but K_2 , is antimagic
- G is antimagic if $\Delta(G) \ge n-3$
- ► G is antimagic if average degree at least 4468
- Main Thm. Regular graphs are antimagic

- Magic squares \rightarrow magic labelings of graphs
- Lots of graphs not magic $\ensuremath{\mathfrak{S}} \to \ensuremath{\mathsf{antimagic}}$ labelings
- **Conj.** Every connected graph, but K_2 , is antimagic
- G is antimagic if $\Delta(G) \ge n-3$
- ► G is antimagic if average degree at least 4468
- Main Thm. Regular graphs are antimagic
- Pick a vertex x; label edges in order of closeness to x

- Magic squares \rightarrow magic labelings of graphs
- Lots of graphs not magic $\ensuremath{\mathfrak{S}} \to \ensuremath{\mathsf{antimagic}}$ labelings
- **Conj.** Every connected graph, but K_2 , is antimagic
- G is antimagic if $\Delta(G) \ge n-3$
- ► G is antimagic if average degree at least 4468
- Main Thm. Regular graphs are antimagic
- Pick a vertex x; label edges in order of closeness to x
- Use E_i to ensure $f(v_1) \neq f(v_2)$ when $v_1, v_2 \in D_i$

- Magic squares \rightarrow magic labelings of graphs
- \blacktriangleright Lots of graphs not magic $\circledast \rightarrow$ antimagic labelings
- **Conj.** Every connected graph, but K_2 , is antimagic
- G is antimagic if $\Delta(G) \ge n-3$
- ► G is antimagic if average degree at least 4468
- Main Thm. Regular graphs are antimagic
- Pick a vertex x; label edges in order of closeness to x
- Use E_i to ensure $f(v_1) \neq f(v_2)$ when $v_1, v_2 \in D_i$
- Helpful Lemma for $v_1 \in D_{i-1}$ and $v_2 \in D_i$