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Magic Squares

Def: A magic square of order n is an arrangement of 1, 2, . . . , n2 in
an n × n array, so each row, column, and diagonal has same sum.

4 9 2

3 5 7

8 1 6

62 4 13 51 46 20 29 35
5 59 54 12 21 43 38 28

52 14 3 61 36 30 19 45
11 53 60 6 27 37 44 22
64 2 15 49 48 18 31 33

7 57 56 10 23 41 40 26
50 16 1 63 34 32 17 47

9 55 58 8 25 39 42 24

2 59 62 7 18 43 46 23
61 6 1 42 63 24 19 44
58 3 60 17 8 45 22 47
53 16 5 64 41 20 25 36

4 57 52 9 32 37 48 21
15 54 13 40 49 28 35 26
12 51 56 31 10 33 38 29
55 14 11 50 39 30 27 34
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Magic and Antimagic Labelings

Def. A graph G is magic if there exists a 1-to-1 mapping from
the edges of G to {1, 2, . . . , |E |} so the sum of the labels incident
to each vertex is the same. This is a magic labeling.

Def. A graph G is antimagic if there exists a 1-to-1 mapping from
the edges of G to {1, 2, . . . , |E |} so the sum of the labels incident
to each vertex is distinct. This is an antimagic labeling.

Question
Which graphs are magic?
Answer
Easier to find graphs that are
not magic. E.g. trees on at least
three vertices are not magic. /
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Conj.[Hartsfield–Ringel 1990]
1. Every connected graph is
antimagic (other than K2).
2. Every tree is antimagic
(again, other than K2).
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What’s Known?

Thm.[Alon et al. 2004] If ∆(G ) ≥ n − 2, then G is antimagic.
Pf (for ∆(G ) = n − 1). Let d(v) = n − 1. Label G − v arbitrarily
with the smallest labels. Label final star in order of partial sums.

Thm.[Yilma 2013] If ∆(G ) ≥ n − 3, then G is antimagic.

Thm.[Alon et al. 2004] There exists a constant C such that for all
n if G has n vertices and δ(G ) ≥ C log n, then G is antimagic.
Intuition If each vertex has many incident edges, then with
positive probability a random labeling will be antimagic.

Thm.[Eccles 2015] If a graph has no isolated edges or vertices and
has average degree at least 4468, then it is antimagic!

Conj.[Eccles 2015] If a graph has no isolated edges or vertices
and has average degree at least

√
2, then it is antimagic.

Cor. This would imply both Hartsfield–Ringel conjectures.
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A Personal Saga: Regular Graphs

Thm.[Cranston 2007]
All k-regular bipartite graphs with k ≥ 2 are antimagic.

Prop. Cycles are antimagic.
Pf.

1

3 5 n − 3

n − 1

2

4 6 n − 2

n

Thm.[Liang–Zhu 2013] 3-regular graphs are antimagic.

Thm.[Cranston–Liang–Zhu 2015]
All k-regular graphs with k odd and k ≥ 3 are antimagic.

Thm.

[Zhu et al. 2015+][Bérczi et al. 2015]

All k-regular graphs with k ≥ 2 are antimagic.
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3-regular graphs

Prop. If G1 and G2 are k-regular and antimagic, then so is G1∪G2.
Pf. Increase each label on G2 by m1.

Thm. 3-regular graphs are antimagic.
Pf idea Pick a vertex x and label edges in order of decreasing
distance from x . (Decreasing sum of distances from endpts to x .)

Defn. For each v ∈ V (G ), let f (v) be sum of labels at v .
For each i , let Di = {v : v is distance i from x}.

Claim If v ∈ Di and w ∈ Dj and j ≤ i − 2, then f (v) < f (w).
Pf. All edges incidident to v have endpoints with sum of distances
from x in {2i + 1, 2i , 2i − 1}. All edges incidident to w have
endpoints with sum of distances from x in {2j + 1, 2j , 2j − 1}.
Since j ≤ i − 2, every label incident to v is smaller than every label
incident to w . Thus f (v) < f (w).

Cor. Just need to check f (v1) 6= f (v2) when v1, v2 ∈ Di ∪ Di−1.
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3-regular graphs: the details

Recall We know f (v1) 6= f (v2) when there is no i with
v1, v2 ∈ Di ∪ Di−1. Now we handle this final case.

For each v 6= x , choose some edge e(v) incident to v with other
endpoint closer to x . Let Ei = {e(v) : v ∈ Di}.

Among all edges with distance sum 2i − 1, label those in Ei last.
Label in order of partial sums at vertices in Di (like for dominating
vertex). This ensures that f (v1) 6= f (v2) when v1, v2 ∈ Di . Need a
little more to handle v1 ∈ Di and v2 ∈ Di−1.

Helpful Lemma For each i , can partition the edges with distance
sum 2i − 1 into paths, so at most one path ends at each vertex.
Pf idea
Edges induce a bipartite graph; each vertex has degree at most 2.
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Summary

I Magic squares → magic labelings of graphs

I Lots of graphs not magic / → antimagic labelings

I Conj. Every connected graph, but K2, is antimagic

I G is antimagic if ∆(G ) ≥
I G is antimagic if average degree at least 4468

I Main Thm. Regular graphs are antimagic

I Pick a vertex x ; label edges in order of closeness to x

I Use Ei to ensure f (v1) 6= f (v2) when v1, v2 ∈ Di

I Helpful Lemma for v1 ∈ Di−1 and v2 ∈ Di
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