Antimagic Labelings of Regular Bipartite Graphs

Daniel Cranston dcransto@dimacs.rutgers.edu DIMACS, Rutgers University

Def. magic labeling: an injection from the edges of G to $\{1,2,\ldots,|E|\}$ such that the sum of the labels incident to each vertex is the same

Def. a graph is magic if it has an magic labeling

Def. antimagic labeling: an injection from the edges of G to $\{1,2,\ldots,|E|\}$ such that the sum of the labels incident to each vertex is distinct

Def. a graph is antimagic if it has an antimagic labeling

Def. antimagic labeling: an injection from the edges of G to $\{1,2,\ldots,|E|\}$ such that the sum of the labels incident to each vertex is distinct

Def. a graph is antimagic if it has an antimagic labeling

Conj. [Ringel 1990] Every connected graph other than K_2 is antimagic.

Def. antimagic labeling: an injection from the edges of G to $\{1,2,\ldots,|E|\}$ such that the sum of the labels incident to each vertex is distinct

Def. a graph is antimagic if it has an antimagic labeling

Conj. [Ringel 1990] Every connected graph other than K_2 is antimagic.

Thm. [Alon et al. 2004] $\exists C$ s.t. $\forall n$ if G has n vertices and $\delta(G) \geq C \log n$, then G is antimagic.

Def. antimagic labeling: an injection from the edges of G to $\{1,2,\ldots,|E|\}$ such that the sum of the labels incident to each vertex is distinct

Def. a graph is antimagic if it has an antimagic labeling

Conj. [Ringel 1990] Every connected graph other than K_2 is antimagic.

Thm. [Alon et al. 2004] $\exists C$ s.t. $\forall n$ if G has n vertices and $\delta(G) \geq C \log n$, then G is antimagic.

Thm. [Alon et al. 2004] If $\Delta(G) \ge n - 2$, then G is antimagic.

Def. antimagic labeling: an injection from the edges of G to $\{1,2,\ldots,|E|\}$ such that the sum of the labels incident to each vertex is distinct

Def. a graph is antimagic if it has an antimagic labeling

Conj. [Ringel 1990] Every connected graph other than K_2 is antimagic.

Thm. [Alon et al. 2004] $\exists C$ s.t. $\forall n$ if G has n vertices and $\delta(G) \geq C \log n$, then G is antimagic.

Thm. [Alon et al. 2004] If $\Delta(G) \ge n-2$, then G is antimagic. **Pf.** for $\Delta(G) = n-1$. Let d(v) = n-1. Label G-v arbitrarily. Label the final star in order of partial sum.

Def. antimagic labeling: an injection from the edges of G to $\{1,2,\ldots,|E|\}$ such that the sum of the labels incident to each vertex is distinct

Def. a graph is antimagic if it has an antimagic labeling

Conj. [Ringel 1990] Every connected graph other than K_2 is antimagic.

Thm. [Alon et al. 2004] $\exists C$ s.t. $\forall n$ if G has n vertices and $\delta(G) \geq C \log n$, then G is antimagic.

Thm. [Alon et al. 2004] If $\Delta(G) \ge n-2$, then G is antimagic. **Pf.** for $\Delta(G) = n-1$. Let d(v) = n-1. Label G-v arbitrarily. Label the final star in order of partial sum.

Thm. [Alon et al. 2004] Every complete partite graph other than K_2 is antimagic.

Thm. [Cranston 2007] All k-regular bipartite graphs with $k \ge 2$ are antimagic.

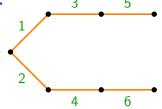
Thm. [Cranston 2007] All k-regular bipartite graphs with $k \ge 2$ are antimagic.

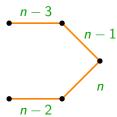
Prop. Cycles are antimagic.

Thm. [Cranston 2007] All k-regular bipartite graphs with $k \ge 2$ are antimagic.

Prop. Cycles are antimagic.

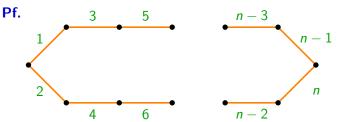
Pf. 3





Thm. [Cranston 2007] All k-regular bipartite graphs with $k \ge 2$ are antimagic.

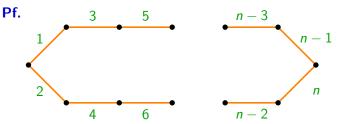
Prop. Cycles are antimagic.



Prop. If G_1 and G_2 are k-regular and antimagic, then so is their disjoint union.

Thm. [Cranston 2007] All k-regular bipartite graphs with $k \ge 2$ are antimagic.

Prop. Cycles are antimagic.

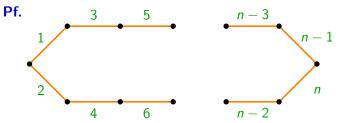


Prop. If G_1 and G_2 are k-regular and antimagic, then so is their disjoint union.

Pf. Increase each label on G_2 by m_1 .

Thm. [Cranston 2007] All k-regular bipartite graphs with $k \ge 2$ are antimagic.

Prop. Cycles are antimagic.



Prop. If G_1 and G_2 are k-regular and antimagic, then so is their disjoint union.

Pf. Increase each label on G_2 by m_1 .

Today, I'll prove the theorem for k > 5 odd.

constructing an antimagic labeling: resolving all potential conflicts

constructing an antimagic labeling: resolving all potential conflicts

Plan for odd degree 2l + 5

▶ Decompose G into regular subgraphs G_1 , G_2 .

constructing an antimagic labeling: resolving all potential conflicts

- ▶ Decompose G into regular subgraphs G_1 , G_2 .
- ▶ G_1 is (2l + 2)-regular and resolves conflicts between A and B.

constructing an antimagic labeling: resolving all potential conflicts

- ▶ Decompose G into regular subgraphs G_1 , G_2 .
- ▶ G_1 is (2l + 2)-regular and resolves conflicts between A and B.
- ▶ in G_1 , sums in A equal t and sums in B not equal $t \pmod{3}$

constructing an antimagic labeling: resolving all potential conflicts

- ▶ Decompose G into regular subgraphs G_1 , G_2 .
- ▶ G_1 is (2l+2)-regular and resolves conflicts between A and B.
- ▶ in G_1 , sums in A equal t and sums in B not equal $t \pmod{3}$
- ▶ G_2 is 3-regular and resolves conflicts within A and within B.

constructing an antimagic labeling: resolving all potential conflicts

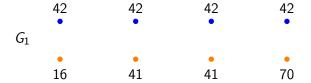
- ▶ Decompose G into regular subgraphs G_1 , G_2 .
- ▶ G_1 is (2l + 2)-regular and resolves conflicts between A and B.
- ▶ in G_1 , sums in A equal t and sums in B not equal $t \pmod{3}$
- ▶ G_2 is 3-regular and resolves conflicts within A and within B.
- ▶ in G_2 , sums in A and in B are distinct multiples of 3

constructing an antimagic labeling: resolving all potential conflicts

- ▶ Decompose G into regular subgraphs G_1 , G_2 .
- ▶ G_1 is (2l + 2)-regular and resolves conflicts between A and B.
- ▶ in G_1 , sums in A equal t and sums in B not equal $t \pmod{3}$
- ▶ G_2 is 3-regular and resolves conflicts within A and within B.
- ▶ in G_2 , sums in A and in B are distinct multiples of 3
- \blacktriangleright order sums in G_2 in B to match order of sums in G_1 in B

constructing an antimagic labeling: resolving all potential conflicts

- ▶ Decompose G into regular subgraphs G_1 , G_2 .
- ▶ G_1 is (2l+2)-regular and resolves conflicts between A and B.
- ▶ in G_1 , sums in A equal t and sums in B not equal $t \pmod{3}$
- ▶ G_2 is 3-regular and resolves conflicts within A and within B.
- ▶ in G_2 , sums in A and in B are distinct multiples of 3
- ▶ order sums in G_2 in B to match order of sums in G_1 in B



constructing an antimagic labeling: resolving all potential conflicts

- ▶ Decompose G into regular subgraphs G_1 , G_2 .
- ▶ G_1 is (2l + 2)-regular and resolves conflicts between A and B.
- ▶ in G_1 , sums in A equal t and sums in B not equal $t \pmod{3}$
- ▶ G_2 is 3-regular and resolves conflicts within A and within B.
- ▶ in G_2 , sums in A and in B are distinct multiples of 3
- ▶ order sums in G_2 in B to match order of sums in G_1 in B

$$24+42$$
 $30+42$ $21+42$ $27+42$ $G_1 \cup G_2$ $21+16$ $24+41$ $27+41$ $30+70$

Lem. Let G be bipartite of degree 2l + 2. Let t = (l+1)(2ln+1). We can label G so the sum at each vertex of A is t and at each vertex of B is not equal to $t \pmod{3}$.

Lem. Let G be bipartite of degree 2l + 2. Let t = (l+1)(2ln+1). We can label G so the sum at each vertex of A is t and at each vertex of B is not equal to $t \pmod{3}$.

Pf. Partition labels into pairs with sum 2ln + 1: (0,0) and (1,2) mod 3. Decompose 2l-factor into l 2-factors; at each vertex of A use pair of labels, at each vertex of B labels sum to $0 \pmod{3}$. Remaining 2-factor: at each vertex of A use pair of labels, at each vertex of B labels don't sum to $0 \pmod{3}$.

Lem. Let G be bipartite of degree 2l + 2. Let t = (l+1)(2ln+1). We can label G so the sum at each vertex of A is t and at each vertex of B is not equal to $t \pmod{3}$.

Pf. Partition labels into pairs with sum 2ln + 1: (0,0) and (1,2) mod 3. Decompose 2l-factor into l 2-factors; at each vertex of A use pair of labels, at each vertex of B labels sum to $0 \pmod{3}$. Remaining 2-factor: at each vertex of A use pair of labels, at each vertex of B labels don't sum to $0 \pmod{3}$.

/ 2-factors like this

Lem. Let G be bipartite of degree 2l + 2. Let t = (l+1)(2ln+1). We can label G so the sum at each vertex of A is t and at each vertex of B is not equal to $t \pmod{3}$.

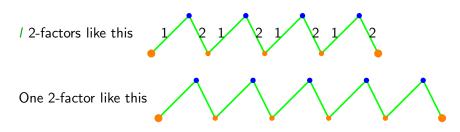
Pf. Partition labels into pairs with sum 2ln + 1: (0,0) and (1,2)mod 3. Decompose 2/-factor into / 2-factors; at each vertex of A use pair of labels, at each vertex of B labels sum to O(mod 3). Remaining 2-factor: at each vertex of A use pair of labels, at each vertex of B labels don't sum to O(mod 3).

Lem. Let G be bipartite of degree 2l + 2. Let t = (l+1)(2ln+1). We can label G so the sum at each vertex of A is t and at each vertex of B is not equal to $t \pmod{3}$.

Pf. Partition labels into pairs with sum 2ln + 1: (0,0) and (1,2)mod 3. Decompose 2/-factor into / 2-factors; at each vertex of A use pair of labels, at each vertex of B labels sum to O(mod 3). Remaining 2-factor: at each vertex of A use pair of labels, at each vertex of B labels don't sum to O(mod 3).

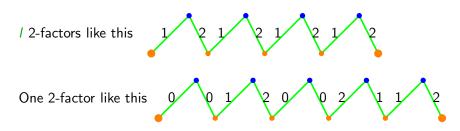
Lem. Let G be bipartite of degree 2l + 2. Let t = (l+1)(2ln+1). We can label G so the sum at each vertex of A is t and at each vertex of B is not equal to $t \pmod{3}$.

Pf. Partition labels into pairs with sum 2ln + 1: (0,0) and (1,2) mod 3. Decompose 2l-factor into l 2-factors; at each vertex of A use pair of labels, at each vertex of B labels sum to $0 \pmod{3}$. Remaining 2-factor: at each vertex of A use pair of labels, at each vertex of B labels don't sum to $0 \pmod{3}$.



Lem. Let G be bipartite of degree 2l + 2. Let t = (l+1)(2ln+1). We can label G so the sum at each vertex of A is t and at each vertex of B is not equal to $t \pmod{3}$.

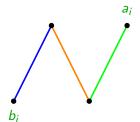
Pf. Partition labels into pairs with sum 2ln + 1: (0,0) and (1,2) mod 3. Decompose 2l-factor into l 2-factors; at each vertex of A use pair of labels, at each vertex of B labels sum to $0 \pmod{3}$. Remaining 2-factor: at each vertex of A use pair of labels, at each vertex of B labels don't sum to $0 \pmod{3}$.



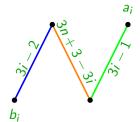
Lem. Let G be a 3-regular bipartite graph with parts A and B. Let b_i be an ordering of the vertices of B. We can label G with the integers 1 through 3n so that at each b_i the sum is 3n + 3i and for each i exactly one vertex in A has sum 3n + 3i.

Lem. Let G be a 3-regular bipartite graph with parts A and B. Let b_i be an ordering of the vertices of B. We can label G with the integers 1 through 3n so that at each b_i the sum is 3n + 3i and for each i exactly one vertex in A has sum 3n + 3i.

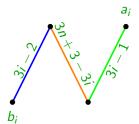
Lem. Let G be a 3-regular bipartite graph with parts A and B. Let b_i be an ordering of the vertices of B. We can label G with the integers 1 through 3n so that at each b_i the sum is 3n + 3i and for each i exactly one vertex in A has sum 3n + 3i.



Lem. Let G be a 3-regular bipartite graph with parts A and B. Let b_i be an ordering of the vertices of B. We can label G with the integers 1 through 3n so that at each b_i the sum is 3n + 3i and for each i exactly one vertex in A has sum 3n + 3i.

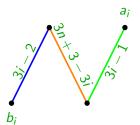


Lem. Let G be a 3-regular bipartite graph with parts A and B. Let b_i be an ordering of the vertices of B. We can label G with the integers 1 through 3n so that at each b_i the sum is 3n + 3i and for each i exactly one vertex in A has sum 3n + 3i.



at
$$b_i$$
 sum is $(3i-2) + (3n+3-3j) + (3j-1) = 3n+3i$

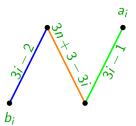
Lem. Let G be a 3-regular bipartite graph with parts A and B. Let b_i be an ordering of the vertices of B. We can label G with the integers 1 through 3n so that at each b_i the sum is 3n + 3i and for each i exactly one vertex in A has sum 3n + 3i.



at
$$b_i$$
 sum is $(3i-2) + (3n+3-3j) + (3j-1) = 3n+3i$
at a_i sum is $(3i-1) + (3n+3-3l) + (3l-2) = 3n+3i$

Lem. Let G be a 3-regular bipartite graph with parts A and B. Let b_i be an ordering of the vertices of B. We can label G with the integers 1 through 3n so that at each b_i the sum is 3n + 3i and for each i exactly one vertex in A has sum 3n + 3i.

Pf. Decompose *G* into three 1-factors



at
$$b_i$$
 sum is $(3i-2) + (3n+3-3j) + (3j-1) = 3n+3i$
at a_i sum is $(3i-1) + (3n+3-3l) + (3l-2) = 3n+3i$

Hence, every regular bipartite graph of odd degree ≥ 5 is antimagic.

Thank you!