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Antimagic Labelings

Def. magic labeling: an injection from the edges of G to

,|E|} such that the sum of the labels incident to each ver-
tex is the same

Def. a graph is magic if it has an magic labeling
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Antimagic Labelings

Def. antimagic labeling: an injection from the edges of G to

,|E|} such that the sum of the labels incident to each ver-
tex is distinct

Def. a graph is antimagic if it has an antimagic labeling
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Antimagic Labelings

Def. antimagic labeling: an injection from the edges of G to

{1,2,...,|E|} such that the sum of the labels incident to each ver-
tex is distinct

Def. a graph is antimagic if it has an antimagic labeling

Conj. [Ringel 1990] Every connected graph other than K5 is
antimagic.
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Antimagic Labelings

Def. antimagic labeling: an injection from the edges of G to
{1,2,...,|E|} such that the sum of the labels incident to each ver-
tex is distinct

Def. a graph is antimagic if it has an antimagic labeling

Conj. [Ringel 1990] Every connected graph other than K5 is
antimagic.

Thm. [Alon et al. 2004] 3C s.t. V nif G has n vertices and
J(G) > Clogn, then G is antimagic.
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Antimagic Labelings

Def. antimagic labeling: an injection from the edges of G to
{1,2,...,|E|} such that the sum of the labels incident to each ver-

tex is distinct
Def. a graph is antimagic if it has an antimagic labeling

Conj. [Ringel 1990] Every connected graph other than K5 is
antimagic.

Thm. [Alon et al. 2004] 3C s.t. V nif G has n vertices and
J(G) > Clogn, then G is antimagic.

Thm. [Alon et al. 2004] If A(G) > n— 2, then G is antimagic.
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Antimagic Labelings

Def. antimagic labeling: an injection from the edges of G to
{1,2,...,|E|} such that the sum of the labels incident to each ver-

tex is distinct
Def. a graph is antimagic if it has an antimagic labeling

Conj. [Ringel 1990] Every connected graph other than K5 is
antimagic.

Thm. [Alon et al. 2004] 3C s.t. V nif G has n vertices and
J(G) > Clogn, then G is antimagic.

Thm. [Alon et al. 2004] If A(G) > n— 2, then G is antimagic.
Pf. for A(G) =n—1. Let d(v) = n— 1. Label G — v arbitrarily.
Label the final star in order of partial sum.
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Antimagic Labelings

Def. antimagic labeling: an injection from the edges of G to
{1,2,...,|E|} such that the sum of the labels incident to each ver-

tex is distinct

Def. a graph is antimagic if it has an antimagic labeling
Conj. [Ringel 1990] Every connected graph other than K5 is
antimagic.

Thm. [Alon et al. 2004] 3C s.t. V nif G has n vertices and
0(G) > Clogn, then G is antimagic.

Thm. [Alon et al. 2004] If A(G) > n— 2, then G is antimagic.
Pf. for A(G) =n—1. Let d(v) = n— 1. Label G — v arbitrarily.
Label the final star in order of partial sum.

Thm. [Alon et al. 2004] Every complete partite graph other than
K> is antimagic.
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Antimagic Labelings
Thm.
are antimagic.

[Cranston 2007] All k-regular bipartite graphs with k > 2
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Antimagic Labelings
Thm. [Cranston 2007] All k-regular bipartite graphs with k > 2
are antimagic.

Prop. Cycles are antimagic.
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Antimagic Labelings

Thm. [Cranston 2007] All k-regular bipartite graphs with k > 2
are antimagic.

Prop. Cycles are antimagic.
Pf.

3 5
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Antimagic Labelings
Thm. [Cranston 2007] All k-regular bipartite graphs with k > 2
are antimagic.

Prop. Cycles are antimagic.

Pf.

3 5
1

Prop. If G; and G, are k-regular and antimagic, then so is their
disjoint union.
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Antimagic Labelings
Thm. [Cranston 2007] All k-regular bipartite graphs with k > 2
are antimagic.

Prop. Cycles are antimagic.

Pf.

3 5
1

Prop. If G; and G, are k-regular and antimagic, then so is their
disjoint union.

Pf. Increase each label on G, by m;.
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Antimagic Labelings

Thm. [Cranston 2007] All k-regular bipartite graphs with k > 2
are antimagic.

Prop. Cycles are antimagic.
Pf. 3 5 n—23

Prop. If G; and G, are k-regular and antimagic, then so is their
disjoint union.

Pf. Increase each label on G, by m;.

Today, I'll prove the theorem for k > 5 odd.

u]
L)
1
u
!



Odd degree at least 5

constructing an antimagic labeling: resolving all potential conflicts
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Odd degree at least 5

constructing an antimagic labeling: resolving all potential conflicts
Plan for odd degree 2/ + 5

» Decompose G into regular subgraphs Gy, G».
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Odd degree at least 5

constructing an antimagic labeling: resolving all potential conflicts
Plan for odd degree 2/ + 5

» Decompose G into regular subgraphs Gy, G».

» Gy is (2/ 4 2)-regular and resolves conflicts between A and
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Odd degree at least 5

constructing an antimagic labeling: resolving all potential conflicts
Plan for odd degree 2/ + 5

» Decompose G into regular subgraphs Gy, G».

» Gy is (2/ 4 2)-regular and resolves conflicts between A and
» in Gy, sums in A equal t and sums in

not equal t(mod3)

DA



Odd degree at least 5

constructing an antimagic labeling: resolving all potential conflicts
Plan for odd degree 2/ + 5

» Decompose G into regular subgraphs Gy, G».

» Gy is (2/ 4 2)-regular and resolves conflicts between A and
» in Gy, sums in A equal t and sums in

not equal t(mod3)
» G is 3-regular and resolves conflicts within A and within
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Odd degree at least 5

constructing an antimagic labeling: resolving all potential conflicts

Plan for odd degree 2/ + 5

» Decompose G into regular subgraphs Gy, G».

» Gy is (2/ 4 2)-regular and resolves conflicts between A and
» in Gi, sums in A equal t and sums in 5 not equal t(mod3)
» G is 3-regular and resolves conflicts within A and within

» in Go, sums in A and in B are distinct multiples of 3
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Odd degree at least 5
constructing an antimagic labeling: resolving all potential conflicts

Plan for odd degree 2/ + 5

Decompose G into regular subgraphs Gi1, G;.

Gy is (21 + 2)-regular and resolves conflicts between A and

Go is 3-regular and resolves conflicts within A and within

>
>
» in Gi, sums in A equal t and sums in 5 not equal t(mod3)
>
» in Go, sums in A and in B are distinct multiples of 3

>

order sums in G, in B to match order of sums in Gy in
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Odd degree at least 5
constructing an antimagic labeling: resolving all potential conflicts

Plan for odd degree 2/ + 5

» Decompose G into regular subgraphs Gy, G».
Gy is (21 + 2)-regular and resolves conflicts between A and

in Gi, sums in A equal t and sums in 5 not equal t(mod3)

>
>
» G is 3-regular and resolves conflicts within A and within
» in Go, sums in A and in B are distinct multiples of 3

>

order sums in G, in B to match order of sums in Gy in

42 42 42 42

[ ] [ ] [ ] [ ]
G1

16 41 41 70
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Odd degree at least 5
constructing an antimagic labeling: resolving all potential conflicts

Plan for odd degree 2/ + 5

» Decompose G into regular subgraphs Gy, G».
Gy is (21 + 2)-regular and resolves conflicts between A and

in Gi, sums in A equal t and sums in 5 not equal t(mod3)

>
>
» G is 3-regular and resolves conflicts within A and within
» in Go, sums in A and in B are distinct multiples of 3

>

order sums in G, in B to match order of sums in Gy in

24442 30442 21+42 27+42
° ° ° °
G U Gy

21416 24441 27+41 30+70
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Odd degree at least 5

Lem. Let G be bipartite of degree 2/ + 2. Let

t = (/+1)(2/n+1). We can label G so the sum at each vertex of
Ais t and at each vertex of

is not equal to t(mod3).
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Odd degree at least 5

Lem. Let G be bipartite of degree 2/ + 2. Let

t = (/+1)(2/n+1). We can label G so the sum at each vertex of
Ais t and at each vertex of 5 is not equal to t(mod3).

Pf. Partition labels into pairs with sum 2/n + 1: (0,0) and (1,2)
mod 3. Decompose 2/-factor into / 2-factors; at each vertex of A
use pair of labels, at each vertex of £ labels sum to 0(mod3).
Remaining 2-factor: at each vertex of A use pair of labels, at each
vertex of & labels don't sum to 0(mod3).
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Odd degree at least 5

Lem. Let G be bipartite of degree 2/ + 2. Let

t = (/+1)(2/n+1). We can label G so the sum at each vertex of
Ais t and at each vertex of 5 is not equal to t(mod3).

Pf. Partition labels into pairs with sum 2/n + 1: (0,0) and (1,2)
mod 3. Decompose 2/-factor into / 2-factors; at each vertex of A
use pair of labels, at each vertex of £ labels sum to 0(mod3).
Remaining 2-factor: at each vertex of A use pair of labels, at each
vertex of & labels don't sum to 0(mod3).

| 2-factors like this
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Odd degree at least 5

Lem. Let G be bipartite of degree 2/ + 2. Let

t = (/+1)(2/n+1). We can label G so the sum at each vertex of
Ais t and at each vertex of 5 is not equal to t(mod3).

Pf. Partition labels into pairs with sum 2/n + 1: (0,0) and (1,2)
mod 3. Decompose 2/-factor into / 2-factors; at each vertex of A
use pair of labels, at each vertex of £ labels sum to 0(mod3).
Remaining 2-factor: at each vertex of A use pair of labels, at each
vertex of & labels don't sum to 0(mod3).

| 2-factors like this 0 0 0 0 0 00 0
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Odd degree at least 5

Lem. Let G be bipartite of degree 2/ + 2. Let

t = (/+1)(2/n+1). We can label G so the sum at each vertex of
Ais t and at each vertex of 5 is not equal to t(mod3).

Pf. Partition labels into pairs with sum 2/n + 1: (0,0) and (1,2)
mod 3. Decompose 2/-factor into / 2-factors; at each vertex of A
use pair of labels, at each vertex of £ labels sum to 0(mod3).
Remaining 2-factor: at each vertex of A use pair of labels, at each
vertex of & labels don't sum to 0(mod3).

| 2-factors like this 1 2 1 2 1 2 1 2
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Odd degree at least 5

Lem. Let G be bipartite of degree 2/ 4 2. Let

t = (/4 1)(2In+1). We can label G so the sum at each vertex of
A'is t and at each vertex of £ is not equal to t(mod3).

Pf. Partition labels into pairs with sum 2/n + 1: (0,0) and (1,2)
mod 3. Decompose 2/-factor into / 2-factors; at each vertex of A
use pair of labels, at each vertex of £ labels sum to 0(mod3).
Remaining 2-factor: at each vertex of A use pair of labels, at each
vertex of & labels don't sum to 0(mod3).

| 2-factors like this W
One 2-factor like this /\/\/\/\/\

(=] = = =
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Odd degree at least 5

Lem. Let G be bipartite of degree 2/ + 2. Let

t = (/+1)(2/n+1). We can label G so the sum at each vertex of
Ais t and at each vertex of 5 is not equal to t(mod3).

Pf. Partition labels into pairs with sum 2/n + 1: (0,0) and (1,2)
mod 3. Decompose 2/-factor into / 2-factors; at each vertex of A
use pair of labels, at each vertex of £ labels sum to 0(mod3).
Remaining 2-factor: at each vertex of A use pair of labels, at each
vertex of & labels don't sum to 0(mod3).

| 2-factors like this W
One 2-factor like this /\{)W\)/\i

(=] = = =
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Odd degree at least 5

Lem. Let G be a 3-regular bipartite graph with parts A and B.
Let b; be an ordering of the vertices of B. We can label G with
the integers 1 through 3n so that at each b; the sum is 3n+ 3/ and
for each i exactly one vertex in A has sum 3n + 3/.



Odd degree at least 5

Lem. Let G be a 3-regular bipartite graph with parts A and B.
Let b; be an ordering of the vertices of B. We can label G with
the integers 1 through 3n so that at each b; the sum is 3n+ 3/ and
for each i exactly one vertex in A has sum 3n + 3/.

Pf. Decompose G into three 1-factors
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Odd degree at least 5

Lem. Let G be a 3-regular bipartite graph with parts A and B.
Let b; be an ordering of the vertices of B. We can label G with
the integers 1 through 3n so that at each b; the sum is 3n+ 3/ and
for each i exactly one vertex in A has sum 3n + 3/.

Pf. Decompose G into three 1-factors
aj
[ J
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Odd degree at least 5

Lem. Let G be a 3-regular bipartite graph with parts A and B.
Let b; be an ordering of the vertices of B. We can label G with
the integers 1 through 3n so that at each b; the sum is 3n+ 3/ and
for each i exactly one vertex in A has sum 3n + 3/.

Pf. Decompose G into three 1-factors

aj
o [
=]
o, X ~
g\ /[
%y W
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Odd degree at least 5

Lem. Let G be a 3-regular bipartite graph with parts A and B.
Let b; be an ordering of the vertices of B. We can label G with
the integers 1 through 3n so that at each b; the sum is 3n+ 3/ and
for each i exactly one vertex in A has sum 3n + 3/.

Pf. Decompose G into three 1-factors

at bj sumis (3i —2)+(3n+3-3j)+(3/—1)=3n+3i
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Odd degree at least 5

Lem. Let G be a 3-regular bipartite graph with parts A and B.
Let b; be an ordering of the vertices of B. We can label G with
the integers 1 through 3n so that at each b; the sum is 3n+ 3/ and
for each i exactly one vertex in A has sum 3n + 3/.

Pf. Decompose G into three 1-factors

at bj sumis (3i —2)+(3n+3-3j)+(3/—1)=3n+3i
at aj sumis (3i — 1)+ (3n+3—-3/)+(3/—2)=3n+3i
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Odd degree at least 5

Lem. Let G be a 3-regular bipartite graph with parts A and B.
Let b; be an ordering of the vertices of B. We can label G with
the integers 1 through 3n so that at each b; the sum is 3n+ 3/ and
for each i exactly one vertex in A has sum 3n + 3/.

Pf. Decompose G into three 1-factors

at bj sumis (3i —2)+(3n+3-3j)+(3/—1)=3n+3i
at aj sumis (3i — 1)+ (3n+3—-3/)+(3/—2)=3n+3i

Hence, every regular bipartite graph of odd degree > 5 is
antimagic.
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Thank you!



