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Antimagic Labelings

Def. magic labeling: an injection from the edges of G to
{1, 2, . . . , |E |} such that the sum of the labels incident to each ver-
tex is the same

Def. a graph is magic if it has an magic labeling
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Antimagic Labelings

Def. antimagic labeling: an injection from the edges of G to
{1, 2, . . . , |E |} such that the sum of the labels incident to each ver-
tex is distinct

Def. a graph is antimagic if it has an antimagic labeling

Conj. [Ringel 1990] Every connected graph other than K2 is
antimagic.

Thm. [Alon et al. 2004] ∃C s.t. ∀ n if G has n vertices and
δ(G ) ≥ C log n, then G is antimagic.

Thm. [Alon et al. 2004] If ∆(G ) ≥ n − 2, then G is antimagic.

Pf. for ∆(G ) = n − 1. Let d(v) = n − 1. Label G − v arbitrarily.
Label the final star in order of partial sum.

Thm. [Alon et al. 2004] Every complete partite graph other than
K2 is antimagic.
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Thm. [Cranston 2007] All k-regular bipartite graphs with k ≥ 2
are antimagic.

Prop. Cycles are antimagic.

Pf.

1

3 5 n − 3

n − 1

2

4 6 n − 2

n

Prop. If G1 and G2 are k-regular and antimagic, then so is their
disjoint union.

Pf. Increase each label on G2 by m1.

Today, I’ll prove the theorem for k ≥ 5 odd.
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Odd degree at least 5

constructing an antimagic labeling: resolving all potential conflicts

Plan for odd degree 2l + 5

◮ Decompose G into regular subgraphs G1, G2.

◮ G1 is (2l + 2)-regular and resolves conflicts between A and B .

◮ in G1, sums in A equal t and sums in B not equal t(mod3)

◮ G2 is 3-regular and resolves conflicts within A and within B .

◮ in G2, sums in A and in B are distinct multiples of 3

◮ order sums in G2 in B to match order of sums in G1 in B

24+42 30+42 21+42 27+42

21+16 24+41 27+41 30+70

G1 ∪ G2
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Lem. Let G be bipartite of degree 2l + 2. Let
t = (l + 1)(2ln + 1). We can label G so the sum at each vertex of
A is t and at each vertex of B is not equal to t(mod3).

Pf. Partition labels into pairs with sum 2ln + 1: (0, 0) and (1, 2)
mod 3. Decompose 2l -factor into l 2-factors; at each vertex of A

use pair of labels, at each vertex of B labels sum to 0(mod3).
Remaining 2-factor: at each vertex of A use pair of labels, at each
vertex of B labels don’t sum to 0(mod3).

1 1 1 12 2 2 2l 2-factors like this

0 1 0 2 10 2 0 1 2One 2-factor like this
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Lem. Let G be a 3-regular bipartite graph with parts A and B .
Let bi be an ordering of the vertices of B . We can label G with
the integers 1 through 3n so that at each bi the sum is 3n + 3i and
for each i exactly one vertex in A has sum 3n + 3i .

Pf. Decompose G into three 1-factors

bi

ai

3i
−

2

3n
+

3
−
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at bi sum is (3i − 2) + (3n + 3 − 3j) + (3j − 1) = 3n + 3i
at ai sum is (3i − 1) + (3n + 3 − 3l) + (3l − 2) = 3n + 3i

Hence, every regular bipartite graph of odd degree ≥ 5 is
antimagic.



Thank you!


