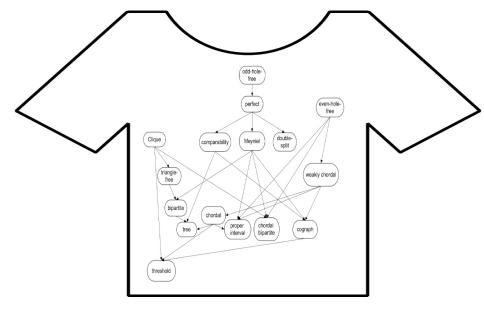
Graphs with $\chi = \Delta$ have big cliques

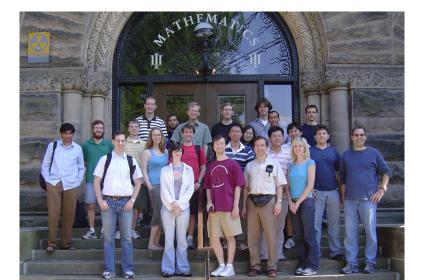
Daniel W. Cranston
Virginia Commonwealth University
dcranston@vcu.edu

Joint with Landon Rabern Slides available on my webpage

West Fest A celebration of Doug's 60th birthday! 20 June 2014



Doug's big reveal mid-lecture.



You put 40 problems, 30 students, and a few faculty in a room; mix thoroughly, then wait for papers to precipitate out.

-Doug explaining REGS

Prop: For all G we have $\chi \leq \Delta + 1$.

Prop: For all *G* we have $\chi \leq \Delta + 1$.

Thm [Brooks 1941]:

If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.

Prop: For all G we have $\chi \leq \Delta + 1$.

Thm [Brooks 1941]:

If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.

Borodin-Kostochka Conj. (B-K) [1977]:

If $\Delta \geq 9$ and $\omega \leq \Delta - 1$ then $\chi \leq \Delta - 1$.

Prop: For all G we have $\chi \leq \Delta + 1$.

Thm [Brooks 1941]:

If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.

Borodin-Kostochka Conj. (B-K) [1977]:

If $\Delta \geq 9$ and $\omega \leq \Delta - 1$ then $\chi \leq \Delta - 1$.

Why $\Delta \geq 9$?

Prop: For all *G* we have $\chi \leq \Delta + 1$.

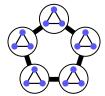
Thm [Brooks 1941]:

If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.

Borodin-Kostochka Conj. (B-K) [1977]:

If $\Delta \geq 9$ and $\omega \leq \Delta - 1$ then $\chi \leq \Delta - 1$.

Why $\Delta \ge 9$?



Prop: For all G we have $\chi \leq \Delta + 1$.

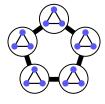
Thm [Brooks 1941]:

If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.

Borodin-Kostochka Conj. (B-K) [1977]:

If $\Delta \geq 9$ and $\omega \leq \Delta - 1$ then $\chi \leq \Delta - 1$.

Why $\Delta \ge 9$?



$$\Delta = 8$$

Prop: For all *G* we have $\chi \leq \Delta + 1$.

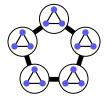
Thm [Brooks 1941]:

If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.

Borodin-Kostochka Conj. (B-K) [1977]:

If $\Delta \geq 9$ and $\omega \leq \Delta - 1$ then $\chi \leq \Delta - 1$.

Why $\Delta \geq 9$?



$$\Delta = 8$$
, $\omega = 6$

Prop: For all *G* we have $\chi \leq \Delta + 1$.

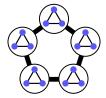
Thm [Brooks 1941]:

If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.

Borodin-Kostochka Conj. (B-K) [1977]:

If $\Delta \geq 9$ and $\omega \leq \Delta - 1$ then $\chi \leq \Delta - 1$.

Why $\Delta \ge 9$?



$$\Delta = 8$$
, $\omega = 6$, $\alpha = 2$

Prop: For all G we have $\chi \leq \Delta + 1$.

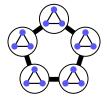
Thm [Brooks 1941]:

If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.

Borodin-Kostochka Conj. (B-K) [1977]:

If $\Delta \geq 9$ and $\omega \leq \Delta - 1$ then $\chi \leq \Delta - 1$.

Why $\Delta \ge 9$?



$$\Delta = 8$$
, $\omega = 6$, $\alpha = 2$
 $\chi = \lceil 15/2 \rceil = 8$

Prop: For all G we have $\chi \leq \Delta + 1$.

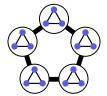
Thm [Brooks 1941]:

If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.

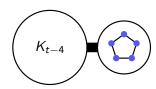
Borodin-Kostochka Conj. (B-K) [1977]:

If $\Delta \geq 9$ and $\omega \leq \Delta - 1$ then $\chi \leq \Delta - 1$.

Why $\Delta \ge 9$?



$$\Delta = 8$$
, $\omega = 6$, $\alpha = 2$
 $\chi = \lceil 15/2 \rceil = 8$



Prop: For all G we have $\chi \leq \Delta + 1$.

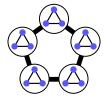
Thm [Brooks 1941]:

If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.

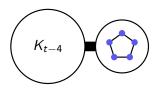
Borodin-Kostochka Conj. (B-K) [1977]:

If $\Delta \geq 9$ and $\omega \leq \Delta - 1$ then $\chi \leq \Delta - 1$.

Why $\Delta \ge 9$?



$$\Delta = 8$$
, $\omega = 6$, $\alpha = 2$
 $\chi = \lceil 15/2 \rceil = 8$



$$\Delta = t$$

Prop: For all G we have $\chi \leq \Delta + 1$.

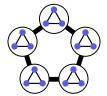
Thm [Brooks 1941]:

If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.

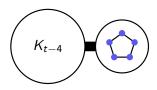
Borodin-Kostochka Conj. (B-K) [1977]:

If $\Delta \geq 9$ and $\omega \leq \Delta - 1$ then $\chi \leq \Delta - 1$.

Why $\Delta \geq 9$?



$$\Delta = 8$$
, $\omega = 6$, $\alpha = 2$
 $\chi = \lceil 15/2 \rceil = 8$



$$\Delta = t$$
, $\omega = t - 2$

Prop: For all *G* we have $\chi \leq \Delta + 1$.

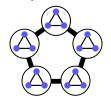
Thm [Brooks 1941]:

If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.

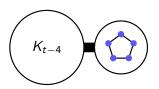
Borodin-Kostochka Conj. (B-K) [1977]:

If $\Delta \geq 9$ and $\omega \leq \Delta - 1$ then $\chi \leq \Delta - 1$.

Why $\Delta \geq 9$?



$$\Delta = 8$$
, $\omega = 6$, $\alpha = 2$
 $\chi = \lceil 15/2 \rceil = 8$



$$\Delta = t$$
, $\omega = t - 2$
 $\chi = (t - 4) + 3 = t - 1$

B-K Conjecture is true for claw-free graphs [C.-Rabern '13]

- B-K Conjecture is true for claw-free graphs [C.-Rabern '13]
- B-K Conjecture is true when $\Delta \ge 10^{14}$ [Reed '98]

- B-K Conjecture is true for claw-free graphs [C.-Rabern '13]
- B-K Conjecture is true when $\Delta \geq 10^{14}$ [Reed '98] and likely $\Delta > 10^6$ suffices

- B-K Conjecture is true for claw-free graphs [C.-Rabern '13]
- B-K Conjecture is true when $\Delta \ge 10^{14}$ [Reed '98] and likely $\Delta \ge 10^6$ suffices
- Finding big cliques: If $\chi = \Delta$,

- B-K Conjecture is true for claw-free graphs [C.-Rabern '13]
- B-K Conjecture is true when $\Delta \ge 10^{14}$ [Reed '98] and likely $\Delta > 10^6$ suffices
- Finding big cliques: If $\chi = \Delta$,
 - then $\omega \geq \lfloor \frac{\Delta+1}{2} \rfloor$ [Borodin-Kostochka '77]

- B-K Conjecture is true for claw-free graphs [C.-Rabern '13]
- B-K Conjecture is true when $\Delta > 10^{14}$ [Reed '98] and likely $\Delta > 10^6$ suffices
- Finding big cliques: If $\chi = \Delta$,
 - then $\omega \geq \lfloor \frac{\Delta+1}{2} \rfloor$ [Borodin-Kostochka '77]
 - then $\omega \geq \lfloor \frac{2\Delta+1}{2} \rfloor$ [Mozhan '83]

- B-K Conjecture is true for claw-free graphs [C.-Rabern '13]
- B-K Conjecture is true when $\Delta > 10^{14}$ [Reed '98] and likely $\Delta > 10^6$ suffices
- Finding big cliques: If $\chi = \Delta$,
 - then $\omega \geq \lfloor \frac{\Delta+1}{2} \rfloor$ [Borodin-Kostochka '77]
 - then $\omega \geq \lfloor \frac{2\Delta+1}{2} \rfloor$ [Mozhan '83]
 - then $\omega > \Delta 28$ [Kostochka '80]

- B-K Conjecture is true for claw-free graphs [C.-Rabern '13]
- B-K Conjecture is true when $\Delta > 10^{14}$ [Reed '98] and likely $\Delta > 10^6$ suffices
- Finding big cliques: If $\chi = \Delta$,
 - then $\omega \geq \lfloor \frac{\Delta+1}{2} \rfloor$ [Borodin-Kostochka '77]
 - then $\omega \geq \lfloor \frac{2\Delta+1}{2} \rfloor$ [Mozhan '83]
 - then $\omega > \Delta 28$ [Kostochka '80]
 - then $\omega \ge \Delta 3$ when $\Delta \ge 31$ [Mozhan '87]

- B-K Conjecture is true for claw-free graphs [C.-Rabern '13]
- B-K Conjecture is true when $\Delta \geq 10^{14}$ [Reed '98] and likely $\Delta \geq 10^6$ suffices
- Finding big cliques: If $\chi = \Delta$,
 - then $\omega \geq \lfloor \frac{\Delta+1}{2} \rfloor$ [Borodin-Kostochka '77]
 - then $\omega \geq \lfloor \frac{2\bar{\Delta}+1}{3} \rfloor$ [Mozhan '83]
 - then $\omega \ge \Delta 28$ [Kostochka '80]
 - then $\omega \ge \Delta 3$ when $\Delta \ge 31$ [Mozhan '87]
 - then $\omega \ge \Delta 3$ when $\Delta \ge 13$ [C.-Rabern '13+]

Def: A hitting set is independent set intersecting every maximum clique.

Def: A hitting set is independent set intersecting every maximum clique.

Lemma 1: Every G with $\chi = \Delta \ge 14$ and $\omega = \Delta - 4$ has a hitting set.

Def: A hitting set is independent set intersecting every maximum clique.

Lemma 1: Every G with $\chi = \Delta \ge 14$ and $\omega = \Delta - 4$ has a hitting set.

Lemma 2: If G has $\chi = \Delta = 13$, then G contains K_{10} .

Def: A hitting set is independent set intersecting every maximum clique.

Lemma 1: Every G with $\chi = \Delta \ge 14$ and $\omega = \Delta - 4$ has a hitting set.

Lemma 2: If G has $\chi = \Delta = 13$, then G contains K_{10} .

Main Theorem: Every graph with $\chi = \Delta \ge 13$ contains $K_{\Delta-3}$.

Def: A hitting set is independent set intersecting every maximum clique.

Lemma 1: Every G with $\chi = \Delta \ge 14$ and $\omega = \Delta - 4$ has a hitting set.

Lemma 2: If G has $\chi = \Delta = 13$, then G contains K_{10} .

Main Theorem: Every graph with $\chi = \Delta \ge 13$ contains $K_{\Delta-3}$.

Proof: Let G be minimal counterexample. $\Delta \geq 14$ by Lemma 2.

Def: A hitting set is independent set intersecting every maximum clique.

Lemma 1: Every G with $\chi = \Delta \ge 14$ and $\omega = \Delta - 4$ has a hitting set.

Lemma 2: If G has $\chi = \Delta = 13$, then G contains K_{10} .

Main Theorem: Every graph with $\chi = \Delta \ge 13$ contains $K_{\Delta-3}$.

Proof: Let G be minimal counterexample. $\Delta \geq 14$ by Lemma 2.

If $\omega = \Delta - 4$, then let I be a hitting set expanded to be a maximal independent set; otherwise let I be any maximal independent set.

Def: A hitting set is independent set intersecting every maximum clique.

Lemma 1: Every G with $\chi = \Delta \ge 14$ and $\omega = \Delta - 4$ has a hitting set.

Lemma 2: If G has $\chi = \Delta = 13$, then G contains K_{10} .

Main Theorem: Every graph with $\chi = \Delta \ge 13$ contains $K_{\Delta-3}$.

Proof: Let G be minimal counterexample. $\Delta \geq 14$ by Lemma 2. If $\omega = \Delta - 4$, then let I be a hitting set expanded to be a maximal independent set; otherwise let I be any maximal independent set.

• If $\Delta(G - I) \leq \Delta(G) - 3$, then win by greedy coloring.

Def: A hitting set is independent set intersecting every maximum clique.

Lemma 1: Every G with $\chi = \Delta \ge 14$ and $\omega = \Delta - 4$ has a hitting set.

Lemma 2: If G has $\chi = \Delta = 13$, then G contains K_{10} .

Main Theorem: Every graph with $\chi = \Delta \ge 13$ contains $K_{\Delta-3}$.

Proof: Let G be minimal counterexample. $\Delta \geq 14$ by Lemma 2. If $\omega = \Delta - 4$, then let I be a hitting set expanded to be a maximal independent set; otherwise let I be any maximal independent set.

- If $\Delta(G I) \leq \Delta(G) 3$, then win by greedy coloring.
- If $\Delta(G I) = \Delta(G) 2$, then win by Brooks' Theorem.

Def: A hitting set is independent set intersecting every maximum clique.

Lemma 1: Every G with $\chi = \Delta > 14$ and $\omega = \Delta - 4$ has a hitting set.

Lemma 2: If G has $\chi = \Delta = 13$, then G contains K_{10} .

Main Theorem: Every graph with $\chi = \Delta > 13$ contains $K_{\Delta=3}$.

Proof: Let G be minimal counterexample. $\Delta > 14$ by Lemma 2. If $\omega = \Delta - 4$, then let I be a hitting set expanded to be a maximal independent set; otherwise let / be any maximal independent set.

- If $\Delta(G I) \leq \Delta(G) 3$, then win by greedy coloring.
- If $\Delta(G I) = \Delta(G) 2$, then win by Brooks' Theorem.
- If $\Delta(G-I) = \Delta(G) 1$, then G-I is a smaller counterexample, contradiction!

Lovász Local Lemma: Suppose we do a random experiment.

Let $\mathcal{E} = \{E_1, E_2, \ldots\}$ be a set of bad events such that

- $Pr(E_i) \le p < 1$ for all i, and
- each E_i is mutually independent of all but d events.

If $4dp \le 1$, then with positive probability no bad events occur,

Lovász Local Lemma: Suppose we do a random experiment.

Let $\mathcal{E} = \{E_1, E_2, \ldots\}$ be a set of bad events such that

- $Pr(E_i) \le p < 1$ for all i, and
- each E_i is mutually independent of all but d events.

If $4dp \le 1$, then with positive probability no bad events occur, so we win!

Lovász Local Lemma: Suppose we do a random experiment.

Let $\mathcal{E} = \{E_1, E_2, \ldots\}$ be a set of bad events such that

- $Pr(E_i) \le p < 1$ for all i, and
- each E_i is mutually independent of all but d events.

If $4dp \le 1$, then with positive probability no bad events occur, so we win!

Lemma 1': Every G with $\chi = \Delta \ge 89$ and $\omega = \Delta - 4$ has a hitting set I.

Lovász Local Lemma: Suppose we do a random experiment.

Let $\mathcal{E} = \{E_1, E_2, \ldots\}$ be a set of bad events such that

- $Pr(E_i) \le p < 1$ for all i, and
- each E_i is mutually independent of all but d events.

If $4dp \le 1$, then with positive probability no bad events occur, so we win!

Lemma 1': Every G with $\chi = \Delta \geq 89$ and $\omega = \Delta - 4$ has a hitting set I. **Proof:** Get disjoint cliques S_1, S_2, \ldots of size $k := \Delta - 9$ so each maximum clique contains one.

Lovász Local Lemma: Suppose we do a random experiment.

Let $\mathcal{E} = \{E_1, E_2, \ldots\}$ be a set of bad events such that

- $Pr(E_i) \le p < 1$ for all i, and
- each E_i is mutually independent of all but d events.

If $4dp \le 1$, then with positive probability no bad events occur, so we win!

Lemma 1': Every G with $\chi = \Delta \geq 89$ and $\omega = \Delta - 4$ has a hitting set I. **Proof:** Get disjoint cliques S_1, S_2, \ldots of size $k := \Delta - 9$ so each maximum clique contains one. To form I, choose one vertex from each S_i randomly.

Lovász Local Lemma: Suppose we do a random experiment.

Let $\mathcal{E} = \{E_1, E_2, \ldots\}$ be a set of bad events such that

- $\Pr(E_i) \leq p < 1$ for all i, and
- each E_i is mutually independent of all but d events.

If $4dp \le 1$, then with positive probability no bad events occur, so we win!

Lemma 1': Every G with $\chi=\Delta\geq 89$ and $\omega=\Delta-4$ has a hitting set I. **Proof:** Get disjoint cliques S_1,S_2,\ldots of size $k:=\Delta-9$ so each maximum clique contains one. To form I, choose one vertex from each S_i randomly. For each edge uv with endpoints u,v in distinct S_i , event E_{uv} is that u,v both chosen for I.

Lovász Local Lemma: Suppose we do a random experiment.

Let $\mathcal{E} = \{E_1, E_2, \ldots\}$ be a set of bad events such that

- $Pr(E_i) \le p < 1$ for all i, and
- each E_i is mutually independent of all but d events.

If $4dp \le 1$, then with positive probability no bad events occur, so we win!

Lemma 1': Every G with $\chi = \Delta \geq 89$ and $\omega = \Delta - 4$ has a hitting set I. **Proof:** Get disjoint cliques S_1, S_2, \ldots of size $k := \Delta - 9$ so each maximum clique contains one. To form I, choose one vertex from each S_i randomly. For each edge uv with endpoints u, v in distinct S_i , event E_{uv} is that u, v both chosen for I. $\Pr(E_{uv}) = \frac{1}{|S_{vv}|} \frac{1}{|S_{vv}|} = k^{-2}$.

Lovász Local Lemma: Suppose we do a random experiment.

Let $\mathcal{E} = \{E_1, E_2, \ldots\}$ be a set of bad events such that

- $\Pr(E_i) \leq p < 1$ for all i, and
- each E_i is mutually independent of all but d events.

If $4dp \le 1$, then with positive probability no bad events occur, so we win!

Lemma 1': Every G with $\chi=\Delta\geq 89$ and $\omega=\Delta-4$ has a hitting set I. **Proof:** Get disjoint cliques S_1,S_2,\ldots of size $k:=\Delta-9$ so each maximum clique contains one. To form I, choose one vertex from each S_i randomly. For each edge uv with endpoints u,v in distinct S_i , event E_{uv} is that u,v both chosen for I. $\Pr(E_{uv})=\frac{1}{|S_u|}\frac{1}{|S_v|}=k^{-2}$. E_{uv} is independent of all but $2k(\Delta-(k-1))=20k$ events.

Lovász Local Lemma: Suppose we do a random experiment.

Let $\mathcal{E} = \{E_1, E_2, \ldots\}$ be a set of bad events such that

- $\Pr(E_i) \leq p < 1$ for all i, and
- each E_i is mutually independent of all but d events.

If $4dp \le 1$, then with positive probability no bad events occur, so we win!

Lemma 1': Every G with $\chi = \Delta \geq 89$ and $\omega = \Delta - 4$ has a hitting set I. **Proof:** Get disjoint cliques S_1, S_2, \ldots of size $k := \Delta - 9$ so each maximum clique contains one. To form I, choose one vertex from each S_i randomly. For each edge uv with endpoints u, v in distinct S_i , event E_{uv} is that u, v both chosen for I. $\Pr(E_{uv}) = \frac{1}{|S_u|} \frac{1}{|S_v|} = k^{-2}$. E_{uv} is independent of all but $2k(\Delta - (k-1)) = 20k$ events. Finally, $4(20k)k^{-2} \leq 1$

Lovász Local Lemma: Suppose we do a random experiment.

Let $\mathcal{E} = \{E_1, E_2, \ldots\}$ be a set of bad events such that

- $Pr(E_i) \le p < 1$ for all i, and
- each E_i is mutually independent of all but d events.

If $4dp \le 1$, then with positive probability no bad events occur, so we win!

Lemma 1': Every G with $\chi=\Delta\geq 89$ and $\omega=\Delta-4$ has a hitting set I. **Proof:** Get disjoint cliques S_1,S_2,\ldots of size $k:=\Delta-9$ so each maximum clique contains one. To form I, choose one vertex from each S_i randomly. For each edge uv with endpoints u,v in distinct S_i , event E_{uv} is that u,v both chosen for I. $\Pr(E_{uv})=\frac{1}{|S_u|}\frac{1}{|S_v|}=k^{-2}$. E_{uv} is independent of all but $2k(\Delta-(k-1))=20k$ events. Finally, $4(20k)k^{-2}<1\Leftrightarrow k>80$

Lovász Local Lemma: Suppose we do a random experiment.

Let $\mathcal{E} = \{E_1, E_2, \ldots\}$ be a set of bad events such that

- $Pr(E_i) \le p < 1$ for all i, and
- each E_i is mutually independent of all but d events.

If $4dp \le 1$, then with positive probability no bad events occur, so we win!

Lemma 1': Every G with $\chi = \Delta \geq 89$ and $\omega = \Delta - 4$ has a hitting set I. **Proof:** Get disjoint cliques S_1, S_2, \ldots of size $k := \Delta - 9$ so each maximum clique contains one. To form I, choose one vertex from each S_i randomly. For each edge uv with endpoints u, v in distinct S_i , event E_{uv} is that u, v both chosen for I. $\Pr(E_{uv}) = \frac{1}{|S_u|} \frac{1}{|S_v|} = k^{-2}$. E_{uv} is independent of all but $2k(\Delta - (k-1)) = 20k$ events. Finally, $4(20k)k^{-2} \leq 1 \Leftrightarrow k \geq 80 \Leftrightarrow \Delta \geq 89$.

The four-colour theorem is the tip of the iceberg, the thin end of the wedge, and the first cuckoo of Spring.

-William Tutte

The four-colour theorem is the tip of the iceberg, the thin end of the wedge, and the first cuckoo of Spring.

-William Tutte

Reed's Conjecture:
$$\chi \leq \left\lceil \frac{\omega + \Delta + 1}{2} \right\rceil$$
.

The four-colour theorem is the tip of the iceberg, the thin end of the wedge, and the first cuckoo of Spring.

-William Tutte

Reed's Conjecture:
$$\chi \leq \left\lceil \frac{\omega + \Delta + 1}{2} \right\rceil$$
.

Theorem (Reed): There exists
$$\epsilon > 0$$
 such that $\chi \leq \lceil \epsilon \omega + (1 - \epsilon)(\Delta + 1) \rceil$.

The four-colour theorem is the tip of the iceberg, the thin end of the wedge, and the first cuckoo of Spring.

-William Tutte

Reed's Conjecture:
$$\chi \leq \left\lceil \frac{\omega + \Delta + 1}{2} \right\rceil$$
 .

Theorem (Reed): There exists $\epsilon > 0$ such that $\chi \leq \lceil \epsilon \omega + (1 - \epsilon)(\Delta + 1) \rceil$. Conjectured that $\epsilon = \frac{1}{2}$ works.

- **B-K Conj:** Every graph with $\chi = \Delta \geq 9$ contains K_{Δ} .
 - If true, then best possible.
 - True for claw-free graphs, and also for large Δ .

- **B-K Conj:** Every graph with $\chi = \Delta \geq 9$ contains K_{Δ} .
 - If true, then best possible.
 - True for claw-free graphs, and also for large Δ .

Main Result: Every graph with $\chi = \Delta \ge 13$ contains $K_{\Delta-3}$.

- Hitting sets reduce to the case $\Delta = 13$.
 - Local Lemma for $\Delta \geq 89$.
 - Smaller Δ are trickier, but it works for $\Delta \geq 14$.
- If $\Delta=13$, then $\chi\leq 12$ or G has K_{10} .

B-K Conj: Every graph with $\chi = \Delta \geq 9$ contains K_{Δ} .

- If true, then best possible.
- True for claw-free graphs, and also for large Δ .

Main Result: Every graph with $\chi = \Delta \ge 13$ contains $K_{\Delta-3}$.

- Hitting sets reduce to the case $\Delta = 13$.
 - Local Lemma for $\Delta > 89$.
 - Smaller Δ are trickier, but it works for $\Delta \geq 14$.
- If $\Delta=13$, then $\chi\leq 12$ or G has K_{10} .

B-K Conj: Every graph with $\chi = \Delta \geq 9$ contains K_{Δ} .

- If true, then best possible.
- True for claw-free graphs, and also for large Δ .

Main Result: Every graph with $\chi = \Delta \ge 13$ contains $K_{\Delta-3}$.

- Hitting sets reduce to the case $\Delta = 13$.
 - Local Lemma for $\Delta > 89$.
 - Smaller Δ are trickier, but it works for $\Delta \geq 14$.
- If $\Delta=13$, then $\chi\leq 12$ or G has K_{10} .

B-K Conj: Every graph with $\chi = \Delta \geq 9$ contains K_{Δ} .

- If true, then best possible.
- True for claw-free graphs, and also for large Δ .

Main Result: Every graph with $\chi = \Delta \ge 13$ contains $K_{\Delta-3}$.

- Hitting sets reduce to the case $\Delta = 13$.
 - Local Lemma for $\Delta > 89$.
 - Smaller Δ are trickier, but it works for $\Delta \geq 14$.
- If $\Delta=13$, then $\chi\leq 12$ or G has K_{10} .

B-K Conj: Every graph with $\chi = \Delta \geq 9$ contains K_{Δ} .

- If true, then best possible.
- True for claw-free graphs, and also for large Δ .

Main Result: Every graph with $\chi = \Delta \ge 13$ contains $K_{\Delta-3}$.

- Hitting sets reduce to the case $\Delta = 13$.
 - Local Lemma for $\Delta > 89$.
 - Smaller Δ are trickier, but it works for $\Delta \geq 14$.
- If $\Delta=13$, then $\chi\leq 12$ or G has K_{10} .

Def: A Mozhan Partition of a graph G with $\Delta = 13$ is a partition of V into clubhouses V_1, \ldots, V_4 and a vertex V with certain properties.

Def: A Mozhan Partition of a graph G with $\Delta=13$ is a partition of V into clubhouses V_1,\ldots,V_4 and a vertex v with certain properties. For each V_i , components of $G[V_i]$ are clubs meeting in clubhouse V_i .

Def: A Mozhan Partition of a graph G with $\Delta = 13$ is a partition of V into clubhouses V_1, \ldots, V_4 and a vertex ν with certain properties. For each V_i , components of $G[V_i]$ are clubs meeting in clubhouse V_i .

• The club R containing v is a K_4 .

Def: A Mozhan Partition of a graph G with $\Delta = 13$ is a partition of V into clubhouses V_1, \ldots, V_4 and a vertex ν with certain properties. For each V_i , components of $G[V_i]$ are clubs meeting in clubhouse V_i .

- The club R containing v is a K_4 .
- All other clubs are 3-colorable.

Def: A Mozhan Partition of a graph G with $\Delta=13$ is a partition of V into clubhouses V_1,\ldots,V_4 and a vertex v with certain properties. For each V_i , components of $G[V_i]$ are clubs meeting in clubhouse V_i .

- The club R containing v is a K_4 .
- All other clubs are 3-colorable.

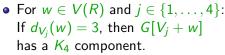
$$V_1$$

Def: A Mozhan Partition of a graph G with $\Delta = 13$ is a partition of V into clubhouses V_1, \ldots, V_4 and a vertex ν with certain properties. For each V_i , components of $G[V_i]$ are clubs meeting in clubhouse V_i .

- The club R containing v is a K_4 .
- All other clubs are 3-colorable.
- For $w \in V(R)$ and $j \in \{1, ..., 4\}$: If $d_{V_i}(w) = 3$, then $G[V_i + w]$ has a K_4 component.

Def: A Mozhan Partition of a graph G with $\Delta=13$ is a partition of V into clubhouses V_1,\ldots,V_4 and a vertex v with certain properties. For each V_i , components of $G[V_i]$ are clubs meeting in clubhouse V_i .

- The club R containing v is a K_4 .
- All other clubs are 3-colorable.

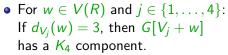


• For $w \in V(R)$ and $j \in \{1, ..., 4\}$: If w has 2 neighbors in club S of clubhouse V_i , then $\chi(S + w) = 4$.

 $V_1 \cdots$

Def: A Mozhan Partition of a graph G with $\Delta=13$ is a partition of V into clubhouses V_1,\ldots,V_4 and a vertex v with certain properties. For each V_i , components of $G[V_i]$ are clubs meeting in clubhouse V_i .

- The club R containing v is a K_4 .
- All other clubs are 3-colorable.



• For $w \in V(R)$ and $j \in \{1, ..., 4\}$: If w has 2 neighbors in club S of clubhouse V_i , then $\chi(S + w) = 4$.

Lem: Every Δ -critical graph with $\Delta = 13$ has a Mozhan partition.

Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10} .

Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10} .

Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options.

The Base Case

The Vertex Shuffle

Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10} .

Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other.

Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10} .

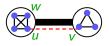
Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10} .

Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10} .

Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10} .

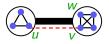
Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10} .

Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10} .



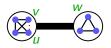
Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10} .

Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10} .



Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10} .

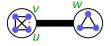
Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10} .



Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10} .

Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10} .

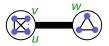
Claim 1: No clubs become (in)complete to each other.



Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10} .

Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10} .

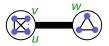
Claim 1: No clubs become (in)complete to each other.

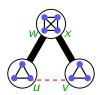


Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10} .

Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10} .

Claim 1: No clubs become (in)complete to each other.

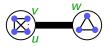


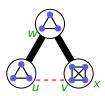


Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10} .

Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10} .

Claim 1: No clubs become (in)complete to each other.

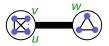


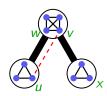


Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10} .

Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10} .

Claim 1: No clubs become (in)complete to each other.

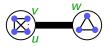


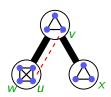


Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10} .

Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10} .

Claim 1: No clubs become (in)complete to each other.

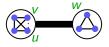


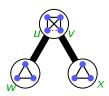


Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10} .

Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10} .

Claim 1: No clubs become (in)complete to each other.





The Base Case

The Vertex Shuffle

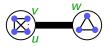
Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10} .

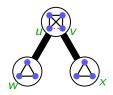
Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10} .

Claim 1: No clubs become (in)complete to each other.

Claim 2: If G has K_4 joined to K_3 's in two other clubhouses, then G has K_{10} .

Claim 3: Each club is active at most three times.





Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10} .

Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10} .

Claim 1: No clubs become (in)complete to each other.

Claim 2: If G has K_4 joined to K_3 's in two other clubhouses, then G has K_{10} .

Claim 3: Each club is active at most three times.

Claim 4: G contains K_{10} .

