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Doug's big reveal mid-lecture.







You put 40 problems, 30 students, and a few faculty in a room;
mix thoroughly, then wait for papers to precipitate out.
—Doug explaining REGS
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Coloring graphs with roughly A colors

Prop: For all G we have y < A + 1.
Thm [Brooks 1941]:
If A>3 and w < A then y < A.

Borodin-Kostochka Conj. (B-K) [1977]:
If A>9and w <A —1then y <A —1.

Why A > 97 Why A — 17

A=8 w=06 a=2 A=t,w=t—2

x = [15/2] =8 x=(t—-4)+3=t—-1
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If w = A — 4, then let / be a hitting set expanded to be a maximal
independent set; otherwise let / be any maximal independent set.

o If A(G — 1) < A(G) — 3, then win by greedy coloring.
o If A(G—1)=A(G)— 2, then win by Brooks" Theorem.

o If A(G—1)=A(G)—1, then G — [ is a smaller counterexample,
contradiction!
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If 4dp < 1, then with positive probability no bad events occur,
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y . . . w+A+1
Reed’s Conjecture: y < [“t2H ],

Theorem (Reed): There exists ¢ > 0 such that
X < Jew+ (1 —e)(A+1)].
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The four-colour theorem is the tip of the iceberg, the thin end of
the wedge, and the first cuckoo of Spring. —William Tutte

Reed’s Conjecture: y < [%AH] -

Theorem (Reed): There exists ¢ > 0 such that

y < [ew + (1 —€)(A +1)]. Conjectured that ¢ = % works.
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Summary

In Review

B-K Conj: Every graph with y = A > 9 contains Ka.

@ If true, then best possible.

@ True for claw-free graphs, and also for large A.
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into clubhouses Vi, ..., Vs and a vertex v with certain properties.
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Def: A Mozhan Partition of a graph G with A = 13 is a partition of V/
into clubhouses Vi, ..., Vs and a vertex v with certain properties.
For each V;, components of G[V;] are clubs meeting in clubhouse V;.

@ The club R containing v is a K. @
@ All other clubs are 3-colorable.

@ Forwe V(R)and j € {1,...,4}:
If dy (w) = 3, then G[V; + w]
has a K, component. 4
@ Forwe V(R)and e {1,...,4}:
If w has 2 neighbors in club S of @
clubhouse Vj, then (S + w) = 4.

(S

Lem: Every A-critical graph with Vi e V4
A = 13 has a Mozhan partition.
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The Vertex Shuffle

Lemma 2: If G has y = A = 13, then G has a K.

Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member
of the active K to a clubhouse where it has only 3 neighbors (forming a
new Kj), always at least 2 options. Move each vertex only once. Never
move between clubs joined to each other. Find either a 12-coloring or Kig.

Claim 1: No clubs become

y w
(in)complete to each other.
u
Claim 2: If G has K,
joined to K3's in two other
clubhouses, then G has Kip. uv
Claim 3: Each club is

active at most three times. @ @
X

Claim 4: G contains K.
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