Daniel W. Cranston Virginia Commonwealth University dcranston@vcu.edu

Joint with Jiaao Li

CanaDAM, SFU 29 May 2019

Grötzsch's Thm: Every triangle-free planar graph is 3-colorable.

Grötzsch's Thm: Every triangle-free planar graph is 3-colorable.

Def: For graphs G and H, we can H-color G if there exists $f: V(G) \rightarrow V(H)$ such that $f(v)f(w) \in E(H)$ for all $vw \in E(G)$.

Grötzsch's Thm: Every triangle-free planar graph is 3-colorable.

Def: For graphs G and H, we can H-color G if there exists $f : V(G) \rightarrow V(H)$ such that $f(v)f(w) \in E(H)$ for all $vw \in E(G)$. That is, f preserves edges. In this case, $G \rightarrow H$.

Grötzsch's Thm: Every triangle-free planar graph is 3-colorable.

Def: For graphs G and H, we can H-color G if there exists $f: V(G) \rightarrow V(H)$ such that $f(v)f(w) \in E(H)$ for all $vw \in E(G)$. That is, f preserves edges. In this case, $G \rightarrow H$. **Obs:** H-coloring generalizes t-coloring $(H = K_t)$.

Grötzsch's Thm: Every triangle-free planar graph is 3-colorable.

Def: For graphs G and H, we can H-color G if there exists $f : V(G) \rightarrow V(H)$ such that $f(v)f(w) \in E(H)$ for all $vw \in E(G)$. That is, f preserves edges. In this case, $G \rightarrow H$. **Obs:** H-coloring generalizes t-coloring $(H = K_t)$. **Obs:** Closed walks map to closed walks.

Grötzsch's Thm: Every triangle-free planar graph is 3-colorable.

Def: For graphs G and H, we can H-color G if there exists $f : V(G) \rightarrow V(H)$ such that $f(v)f(w) \in E(H)$ for all $vw \in E(G)$. That is, f preserves edges. In this case, $G \rightarrow H$. **Obs:** H-coloring generalizes t-coloring $(H = K_t)$. **Obs:** Closed walks map to closed walks.

Ex: Circular Coloring.

Grötzsch's Thm: Every triangle-free planar graph is 3-colorable.

Def: For graphs G and H, we can H-color G if there exists $f : V(G) \rightarrow V(H)$ such that $f(v)f(w) \in E(H)$ for all $vw \in E(G)$. That is, f preserves edges. In this case, $G \rightarrow H$. **Obs:** H-coloring generalizes t-coloring $(H = K_t)$. **Obs:** Closed walks map to closed walks.

Ex: Circular Coloring.

Grötzsch's Thm: Every triangle-free planar graph is 3-colorable.

Def: For graphs G and H, we can H-color G if there exists $f : V(G) \rightarrow V(H)$ such that $f(v)f(w) \in E(H)$ for all $vw \in E(G)$. That is, f preserves edges. In this case, $G \rightarrow H$. **Obs:** H-coloring generalizes t-coloring $(H = K_t)$. **Obs:** Closed walks map to closed walks.

Ex: Circular Coloring. $C_7 \rightarrow C_5$

Grötzsch's Thm: Every triangle-free planar graph is 3-colorable.

Def: For graphs G and H, we can H-color G if there exists $f : V(G) \rightarrow V(H)$ such that $f(v)f(w) \in E(H)$ for all $vw \in E(G)$. That is, f preserves edges. In this case, $G \rightarrow H$. **Obs:** H-coloring generalizes t-coloring $(H = K_t)$. **Obs:** Closed walks map to closed walks.

Ex: Circular Coloring. $C_7 \rightarrow C_5$

Grötzsch's Thm: Every triangle-free planar graph is 3-colorable.

Def: For graphs G and H, we can H-color G if there exists $f : V(G) \rightarrow V(H)$ such that $f(v)f(w) \in E(H)$ for all $vw \in E(G)$. That is, f preserves edges. In this case, $G \rightarrow H$. **Obs:** H-coloring generalizes t-coloring $(H = K_t)$. **Obs:** Closed walks map to closed walks.

Ex: Circular Coloring. $C_7 \rightarrow C_5$

Grötzsch's Thm: Every triangle-free planar graph is 3-colorable.

Def: For graphs G and H, we can H-color G if there exists $f : V(G) \rightarrow V(H)$ such that $f(v)f(w) \in E(H)$ for all $vw \in E(G)$. That is, f preserves edges. In this case, $G \rightarrow H$. **Obs:** H-coloring generalizes t-coloring $(H = K_t)$. **Obs:** Closed walks map to closed walks.

Ex: Circular Coloring. $C_7 \rightarrow C_5$ and $C_5 \rightarrow C_3$

Grötzsch's Thm: Every triangle-free planar graph is 3-colorable.

Def: For graphs G and H, we can H-color G if there exists $f : V(G) \rightarrow V(H)$ such that $f(v)f(w) \in E(H)$ for all $vw \in E(G)$. That is, f preserves edges. In this case, $G \rightarrow H$. **Obs:** H-coloring generalizes t-coloring $(H = K_t)$. **Obs:** Closed walks map to closed walks.

Ex: Circular Coloring. $C_7 \rightarrow C_5$ and $C_5 \rightarrow C_3$, so $C_7 \rightarrow C_3$.

Grötzsch's Thm: Every triangle-free planar graph is 3-colorable.

Def: For graphs G and H, we can H-color G if there exists $f : V(G) \rightarrow V(H)$ such that $f(v)f(w) \in E(H)$ for all $vw \in E(G)$. That is, f preserves edges. In this case, $G \rightarrow H$. **Obs:** H-coloring generalizes t-coloring $(H = K_t)$. **Obs:** Closed walks map to closed walks.

Ex: Circular Coloring. $C_7 \rightarrow C_5$ and $C_5 \rightarrow C_3$, so $C_7 \rightarrow C_3$.

Proving $G \rightarrow C_7$ is stronger than $G \rightarrow C_5$,

Grötzsch's Thm: Every triangle-free planar graph is 3-colorable.

Def: For graphs G and H, we can H-color G if there exists $f : V(G) \rightarrow V(H)$ such that $f(v)f(w) \in E(H)$ for all $vw \in E(G)$. That is, f preserves edges. In this case, $G \rightarrow H$. **Obs:** H-coloring generalizes t-coloring $(H = K_t)$. **Obs:** Closed walks map to closed walks.

Ex: Circular Coloring. $C_7 \rightarrow C_5$ and $C_5 \rightarrow C_3$, so $C_7 \rightarrow C_3$.

Proving $G \to C_7$ is stronger than $G \to C_5$, since $C_5 \not\to C_7$.

Big Goal: For each $t \in \mathbb{Z}^+$, find min g(t) s.t. if G is planar with girth at least g(t), then $G \to C_{2t+1}$.

Big Goal: For each $t \in \mathbb{Z}^+$, find min g(t) s.t. if *G* is planar with girth at least g(t), then $G \to C_{2t+1}$. Since not all planar graphs are 3-colorable, Grötzsch's Theorem implies g(1) = 4.

Big Goal: For each $t \in \mathbb{Z}^+$, find min g(t) s.t. if *G* is planar with girth at least g(t), then $G \to C_{2t+1}$. Since not all planar graphs are 3-colorable, Grötzsch's Theorem implies g(1) = 4.

Prop: $g(t) \le 10t$

Big Goal: For each $t \in \mathbb{Z}^+$, find min g(t) s.t. if *G* is planar with girth at least g(t), then $G \to C_{2t+1}$. Since not all planar graphs are 3-colorable, Grötzsch's Theorem implies g(1) = 4.

Prop: $g(t) \leq 10t$ and [Devos] $g(t) \geq 4t$.

Big Goal: For each $t \in \mathbb{Z}^+$, find min g(t) s.t. if *G* is planar with girth at least g(t), then $G \to C_{2t+1}$. Since not all planar graphs are 3-colorable, Grötzsch's Theorem implies g(1) = 4.

Prop: $g(t) \leq 10t$ and [Devos] $g(t) \geq 4t$.

Big Goal: For each $t \in \mathbb{Z}^+$, find min g(t) s.t. if *G* is planar with girth at least g(t), then $G \to C_{2t+1}$. Since not all planar graphs are 3-colorable, Grötzsch's Theorem implies g(1) = 4.

Prop: $g(t) \leq 10t$ and [Devos] $g(t) \geq 4t$.

Planar Circular Coloring Conj: If G is planar with girth at least 4t, then $G \rightarrow C_{2t+1}$. That is, g(t) = 4t.

Big Goal: For each $t \in \mathbb{Z}^+$, find min g(t) s.t. if *G* is planar with girth at least g(t), then $G \to C_{2t+1}$. Since not all planar graphs are 3-colorable, Grötzsch's Theorem implies g(1) = 4.

Prop: $g(t) \leq 10t$ and [Devos] $g(t) \geq 4t$.

Planar Circular Coloring Conj: If G is planar with girth at least 4t, then $G \rightarrow C_{2t+1}$. That is, g(t) = 4t.

Breakthrough [Lovasz–Thomassen–Wu–Zhang '13]: $g(t) \le 6t$.

Big Goal: For each $t \in \mathbb{Z}^+$, find min g(t) s.t. if *G* is planar with girth at least g(t), then $G \to C_{2t+1}$. Since not all planar graphs are 3-colorable, Grötzsch's Theorem implies g(1) = 4.

Prop: $g(t) \leq 10t$ and [Devos] $g(t) \geq 4t$.

Planar Circular Coloring Conj: If G is planar with girth at least 4t, then $G \rightarrow C_{2t+1}$. That is, g(t) = 4t.

Breakthrough [Lovasz–Thomassen–Wu–Zhang '13]: $g(t) \le 6t$. **Our results:** $g(2) \le 10$ and $g(3) \le 16$.

Big Goal: For each $t \in \mathbb{Z}^+$, find min g(t) s.t. if *G* is planar with girth at least g(t), then $G \to C_{2t+1}$. Since not all planar graphs are 3-colorable, Grötzsch's Theorem implies g(1) = 4.

Prop: $g(t) \leq 10t$ and [Devos] $g(t) \geq 4t$.

Planar Circular Coloring Conj: If G is planar with girth at least 4t, then $G \rightarrow C_{2t+1}$. That is, g(t) = 4t.

Breakthrough [Lovasz–Thomassen–Wu–Zhang '13]: $g(t) \le 6t$. **Our results:** $g(2) \le 10$ and $g(3) \le 16$. That is: (A) If G is planar with girth ≥ 10 , then $G \to C_5$. (B) If G is planar with girth ≥ 16 , then $G \to C_7$.

▶ g(t) ≤ 10t - 4 [Nesetril-Zhu '96]

- $g(t) \leq 10t 4$ [Nesetril–Zhu '96]
- Folding Lemma [Klostermeyer–Zhang '00]

- $g(t) \leq 10t 4$ [Nesetril–Zhu '96]
- Folding Lemma [Klostermeyer–Zhang '00]
- ▶ g_o(t) ≤ 8t 3 [Zhu '01]

- $g(t) \leq 10t 4$ [Nesetril–Zhu '96]
- Folding Lemma [Klostermeyer–Zhang '00]
- ▶ g_o(t) ≤ 8t 3 [Zhu '01]
- $g(t) \leq \frac{20t-2}{3}$ [Borodin–Kim–Kostochka–West '04]

- $g(t) \leq 10t 4$ [Nesetril–Zhu '96]
- Folding Lemma [Klostermeyer–Zhang '00]
- ▶ g_o(t) ≤ 8t 3 [Zhu '01]
- $g(t) \leq \frac{20t-2}{3}$ [Borodin–Kim–Kostochka–West '04]
- $g_o(2) \leq 11$ [Dvořák–Postle '17]

- $g(t) \leq 10t 4$ [Nesetril–Zhu '96]
- Folding Lemma [Klostermeyer–Zhang '00]
- ▶ g_o(t) ≤ 8t 3 [Zhu '01]
- $g(t) \leq \frac{20t-2}{3}$ [Borodin–Kim–Kostochka–West '04]
- ▶ g_o(2) ≤ 11 [Dvořák–Postle '17]
- $g_o(3) \le 17$ [Postle–Smith-Roberge '19+]

- $g(t) \leq 10t 4$ [Nesetril–Zhu '96]
- Folding Lemma [Klostermeyer–Zhang '00]
- ▶ g_o(t) ≤ 8t 3 [Zhu '01]
- $g(t) \leq \frac{20t-2}{3}$ [Borodin–Kim–Kostochka–West '04]
- ▶ g_o(2) ≤ 11 [Dvořák–Postle '17]
- $g_o(3) \le 17$ [Postle–Smith-Roberge '19+]
- Conj: Every 4t-edge-connected graph has mod (2t + 1)-orientation. [Jaeger '84]

- $g(t) \leq 10t 4$ [Nesetril–Zhu '96]
- Folding Lemma [Klostermeyer–Zhang '00]
- ▶ g_o(t) ≤ 8t 3 [Zhu '01]
- $g(t) \leq \frac{20t-2}{3}$ [Borodin–Kim–Kostochka–West '04]
- ▶ g_o(2) ≤ 11 [Dvořák–Postle '17]
- $g_o(3) \le 17$ [Postle–Smith-Roberge '19+]
- Conj: Every 4t-edge-connected graph has mod (2t + 1)-orientation. [Jaeger '84]
- ► Conj: Every 4t + 1-odd-edge-connected graph has mod (2t + 1)-orientation. [Zhang '02]

- $g(t) \leq 10t 4$ [Nesetril–Zhu '96]
- Folding Lemma [Klostermeyer–Zhang '00]
- ▶ g_o(t) ≤ 8t 3 [Zhu '01]
- $g(t) \leq \frac{20t-2}{3}$ [Borodin–Kim–Kostochka–West '04]
- ▶ g_o(2) ≤ 11 [Dvořák–Postle '17]
- $g_o(3) \le 17$ [Postle–Smith-Roberge '19+]
- Conj: Every 4t-edge-connected graph has mod (2t + 1)-orientation. [Jaeger '84]
- ► Conj: Every 4t + 1-odd-edge-connected graph has mod (2t + 1)-orientation. [Zhang '02]
- Thm: Every 6t + 1-odd-edge-connected graph has mod (2t + 1)-orientation. [Lovász–Thomassen–Wu–Zhang '13]

- $g(t) \leq 10t 4$ [Nesetril–Zhu '96]
- Folding Lemma [Klostermeyer–Zhang '00]
- ▶ g_o(t) ≤ 8t 3 [Zhu '01]
- $g(t) \leq \frac{20t-2}{3}$ [Borodin–Kim–Kostochka–West '04]
- ▶ g_o(2) ≤ 11 [Dvořák–Postle '17]
- $g_o(3) \le 17$ [Postle–Smith-Roberge '19+]
- Conj: Every 4t-edge-connected graph has mod (2t + 1)-orientation. [Jaeger '84]
- ► Conj: Every 4t + 1-odd-edge-connected graph has mod (2t + 1)-orientation. [Zhang '02]
- Thm: Every 6t + 1-odd-edge-connected graph has mod (2t + 1)-orientation. [Lovász–Thomassen–Wu–Zhang '13]
- ► Thm: Jaeger's conjecture is false for every t ≥ 3. [Han–Li–Wu–Zhang '18]
Def: Let G^* denote planar dual of G.

Def: Let G^* denote planar dual of G. A (mod k)-orientation of G is orientation D s.t. $d_D^+(v) - d_D^-(v) \equiv 0 \mod k$ for all $v \in V(G)$.

Def: Let G^* denote planar dual of G. A (mod k)-orientation of G is orientation D s.t. $d_D^+(v) - d_D^-(v) \equiv 0 \mod k$ for all $v \in V(G)$.

Prop: $G \rightarrow C_{2t+1}$ iff G^* has a (mod 2t + 1)-orientation.

Def: Let G^* denote planar dual of G. A (mod k)-orientation of G is orientation D s.t. $d_D^+(v) - d_D^-(v) \equiv 0 \mod k$ for all $v \in V(G)$. **Prop:** $G \to C_{2t+1}$ iff G^* has a (mod 2t + 1)-orientation.

Def: Let G^* denote planar dual of G. A (mod k)-orientation of G is orientation D s.t. $d_D^+(v) - d_D^-(v) \equiv 0 \mod k$ for all $v \in V(G)$. **Prop:** $G \to C_{2t+1}$ iff G^* has a (mod 2t + 1)-orientation.

Def: A \mathbb{Z}_5 -boundary β for G is a function $\beta : V(G) \to \mathbb{Z}_5$ s.t. $\sum_{v \in V(G)} \beta(v) \equiv 0 \pmod{5}$.

Def: Let G^* denote planar dual of G. A (mod k)-orientation of G is orientation D s.t. $d_D^+(v) - d_D^-(v) \equiv 0 \mod k$ for all $v \in V(G)$. **Prop:** $G \to C_{2t+1}$ iff G^* has a (mod 2t + 1)-orientation.

Def: Let G^* denote planar dual of G. A (mod k)-orientation of G is orientation D s.t. $d_D^+(v) - d_D^-(v) \equiv 0 \mod k$ for all $v \in V(G)$. **Prop:** $G \to C_{2t+1}$ iff G^* has a (mod 2t + 1)-orientation.

Def: Let G^* denote planar dual of G. A (mod k)-orientation of G is orientation D s.t. $d_D^+(v) - d_D^-(v) \equiv 0 \mod k$ for all $v \in V(G)$. **Prop:** $G \to C_{2t+1}$ iff G^* has a (mod 2t + 1)-orientation.

Def: Let G^* denote planar dual of G. A (mod k)-orientation of G is orientation D s.t. $d_D^+(v) - d_D^-(v) \equiv 0 \mod k$ for all $v \in V(G)$. **Prop:** $G \to C_{2t+1}$ iff G^* has a (mod 2t + 1)-orientation.

Def: Let G^* denote planar dual of G. A (mod k)-orientation of G is orientation D s.t. $d_D^+(v) - d_D^-(v) \equiv 0 \mod k$ for all $v \in V(G)$. **Prop:** $G \to C_{2t+1}$ iff G^* has a (mod 2t + 1)-orientation.

Def: Let G^* denote planar dual of G. A (mod k)-orientation of G is orientation D s.t. $d_D^+(v) - d_D^-(v) \equiv 0 \mod k$ for all $v \in V(G)$. **Prop:** $G \to C_{2t+1}$ iff G^* has a (mod 2t + 1)-orientation.

Def: Let G^* denote planar dual of G. A (mod k)-orientation of G is orientation D s.t. $d_D^+(v) - d_D^-(v) \equiv 0 \mod k$ for all $v \in V(G)$. **Prop:** $G \to C_{2t+1}$ iff G^* has a (mod 2t + 1)-orientation.

Def: Let G^* denote planar dual of G. A (mod k)-orientation of G is orientation D s.t. $d_D^+(v) - d_D^-(v) \equiv 0 \mod k$ for all $v \in V(G)$. **Prop:** $G \to C_{2t+1}$ iff G^* has a (mod 2t + 1)-orientation.

Def: Let G^* denote planar dual of G. A (mod k)-orientation of G is orientation D s.t. $d_D^+(v) - d_D^-(v) \equiv 0 \mod k$ for all $v \in V(G)$. **Prop:** $G \to C_{2t+1}$ iff G^* has a (mod 2t + 1)-orientation.

Def: Let G^* denote planar dual of G. A (mod k)-orientation of G is orientation D s.t. $d_D^+(v) - d_D^-(v) \equiv 0 \mod k$ for all $v \in V(G)$. **Prop:** $G \to C_{2t+1}$ iff G^* has a (mod 2t + 1)-orientation.

Def: Let G^* denote planar dual of G. A (mod k)-orientation of G is orientation D s.t. $d_D^+(v) - d_D^-(v) \equiv 0 \mod k$ for all $v \in V(G)$. **Prop:** $G \to C_{2t+1}$ iff G^* has a (mod 2t + 1)-orientation.

Def: Let G^* denote planar dual of G. A (mod k)-orientation of G is orientation D s.t. $d_D^+(v) - d_D^-(v) \equiv 0 \mod k$ for all $v \in V(G)$. **Prop:** $G \to C_{2t+1}$ iff G^* has a (mod 2t + 1)-orientation.

Def: Let G^* denote planar dual of G. A (mod k)-orientation of G is orientation D s.t. $d_D^+(v) - d_D^-(v) \equiv 0 \mod k$ for all $v \in V(G)$. **Prop:** $G \to C_{2t+1}$ iff G^* has a (mod 2t + 1)-orientation.

Def: A \mathbb{Z}_5 -boundary β for G is a function $\beta : V(G) \to \mathbb{Z}_5$ s.t. $\sum_{v \in V(G)} \beta(v) \equiv 0 \pmod{5}$. A β -orientation of G is orientation D s.t. $d_D^+(v) - d_D^-(v) \equiv \beta(v)$ for all $v \in V(G)$. **Key Idea:** Generality allows induction.

Def: Let G^* denote planar dual of G. A (mod k)-orientation of G is orientation D s.t. $d_D^+(v) - d_D^-(v) \equiv 0 \mod k$ for all $v \in V(G)$. **Prop:** $G \to C_{2t+1}$ iff G^* has a (mod 2t + 1)-orientation.

Def: A \mathbb{Z}_5 -boundary β for G is a function $\beta : V(G) \to \mathbb{Z}_5$ s.t. $\sum_{v \in V(G)} \beta(v) \equiv 0 \pmod{5}$. A β -orientation of G is orientation D s.t. $d_D^+(v) - d_D^-(v) \equiv \beta(v)$ for all $v \in V(G)$. **Key Idea:** Generality allows induction.

Def: Let G^* denote planar dual of G. A (mod k)-orientation of G is orientation D s.t. $d_D^+(v) - d_D^-(v) \equiv 0 \mod k$ for all $v \in V(G)$. **Prop:** $G \to C_{2t+1}$ iff G^* has a (mod 2t + 1)-orientation.

Def: A \mathbb{Z}_5 -boundary β for G is a function $\beta : V(G) \to \mathbb{Z}_5$ s.t. $\sum_{v \in V(G)} \beta(v) \equiv 0 \pmod{5}$. A β -orientation of G is orientation D s.t. $d_D^+(v) - d_D^-(v) \equiv \beta(v)$ for all $v \in V(G)$. **Key Idea:** Generality allows induction.

Def: Let G^* denote planar dual of G. A (mod k)-orientation of G is orientation D s.t. $d_D^+(v) - d_D^-(v) \equiv 0 \mod k$ for all $v \in V(G)$. **Prop:** $G \to C_{2t+1}$ iff G^* has a (mod 2t + 1)-orientation.

Def: A \mathbb{Z}_5 -boundary β for G is a function $\beta : V(G) \to \mathbb{Z}_5$ s.t. $\sum_{v \in V(G)} \beta(v) \equiv 0 \pmod{5}$. A β -orientation of G is orientation D s.t. $d_D^+(v) - d_D^-(v) \equiv \beta(v)$ for all $v \in V(G)$. **Key Idea:** Generality allows induction.

Def: Let G^* denote planar dual of G. A (mod k)-orientation of G is orientation D s.t. $d_D^+(v) - d_D^-(v) \equiv 0 \mod k$ for all $v \in V(G)$. **Prop:** $G \to C_{2t+1}$ iff G^* has a (mod 2t + 1)-orientation.

Def: A \mathbb{Z}_5 -boundary β for G is a function $\beta : V(G) \to \mathbb{Z}_5$ s.t. $\sum_{v \in V(G)} \beta(v) \equiv 0 \pmod{5}$. A β -orientation of G is orientation D s.t. $d_D^+(v) - d_D^-(v) \equiv \beta(v)$ for all $v \in V(G)$. **Key Idea:** Generality allows induction.

Def: Let G^* denote planar dual of G. A (mod k)-orientation of G is orientation D s.t. $d_D^+(v) - d_D^-(v) \equiv 0 \mod k$ for all $v \in V(G)$. **Prop:** $G \to C_{2t+1}$ iff G^* has a (mod 2t + 1)-orientation.

Def: A \mathbb{Z}_5 -boundary β for G is a function $\beta : V(G) \to \mathbb{Z}_5$ s.t. $\sum_{v \in V(G)} \beta(v) \equiv 0 \pmod{5}$. A β -orientation of G is orientation D s.t. $d_D^+(v) - d_D^-(v) \equiv \beta(v)$ for all $v \in V(G)$. **Key Idea:** Generality allows induction.

Def: Let G^* denote planar dual of G. A (mod k)-orientation of G is orientation D s.t. $d_D^+(v) - d_D^-(v) \equiv 0 \mod k$ for all $v \in V(G)$. **Prop:** $G \to C_{2t+1}$ iff G^* has a (mod 2t + 1)-orientation.

Def: A \mathbb{Z}_5 -boundary β for G is a function $\beta : V(G) \to \mathbb{Z}_5$ s.t. $\sum_{v \in V(G)} \beta(v) \equiv 0 \pmod{5}$. A β -orientation of G is orientation D s.t. $d_D^+(v) - d_D^-(v) \equiv \beta(v)$ for all $v \in V(G)$. **Key Idea:** Generality allows induction.

Def: $T = \{2K_2, 3K_2, T_{1,3,3}, T_{2,2,3}\}.$

Def: For a partition $\mathcal{P} = \{P_1, \dots, P_t\}$ of V(G), let $w(\mathcal{P}) = \sum_{i=1}^t d(P_i) - 11t + 19.$

Def: $\mathcal{T} = \{2K_2, 3K_2, T_{1,3,3}, T_{2,2,3}\}.$

Def: For a partition $\mathcal{P} = \{P_1, \dots, P_t\}$ of V(G), let $w(\mathcal{P}) = \sum_{i=1}^t d(P_i) - 11t + 19.$

Def: $\mathcal{T} = \{2K_2, 3K_2, T_{1,3,3}, T_{2,2,3}\}.$

Def: For a partition $\mathcal{P} = \{P_1, \dots, P_t\}$ of V(G), let $w(\mathcal{P}) = \sum_{i=1}^t d(P_i) - 11t + 19.$

Def: For a partition $\mathcal{P} = \{P_1, \dots, P_t\}$ of V(G), let $w(\mathcal{P}) = \sum_{i=1}^t d(P_i) - 11t + 19.$

Main Thm: Let G be planar.

Def: For a partition $\mathcal{P} = \{P_1, \dots, P_t\}$ of V(G), let $w(\mathcal{P}) = \sum_{i=1}^t d(P_i) - 11t + 19.$

Main Thm: Let G be planar. If $w(\mathcal{P}) \ge 0$ for all partitions \mathcal{P} of V(G),

Def: For a partition $\mathcal{P} = \{P_1, \dots, P_t\}$ of V(G), let $w(\mathcal{P}) = \sum_{i=1}^t d(P_i) - 11t + 19.$

Main Thm: Let G be planar. If $w(\mathcal{P}) \ge 0$ for all partitions \mathcal{P} of V(G), and no \mathcal{P} has $G/\mathcal{P} \in \mathcal{T}$,

Def: For a partition $\mathcal{P} = \{P_1, \dots, P_t\}$ of V(G), let $w(\mathcal{P}) = \sum_{i=1}^t d(P_i) - 11t + 19.$

Def: $\mathcal{T} = \{2K_2, 3K_2, T_{1,3,3}, T_{2,2,3}\}.$

Def: For a partition $\mathcal{P} = \{P_1, \dots, P_t\}$ of V(G), let $w(\mathcal{P}) = \sum_{i=1}^t d(P_i) - 11t + 19.$

Def: $\mathcal{T} = \{2K_2, 3K_2, T_{1,3,3}, T_{2,2,3}\}.$

Def: For a partition $\mathcal{P} = \{P_1, \dots, P_t\}$ of V(G), let $w(\mathcal{P}) = \sum_{i=1}^t d(P_i) - 11t + 19.$

Def: For a partition $\mathcal{P} = \{P_1, \dots, P_t\}$ of V(G), let $w(\mathcal{P}) = \sum_{i=1}^t d(P_i) - 11t + 19.$

Def: For a partition $\mathcal{P} = \{P_1, \dots, P_t\}$ of V(G), let $w(\mathcal{P}) = \sum_{i=1}^t d(P_i) - 11t + 19.$

Main Thm: Let G be planar. If $w(\mathcal{P}) \ge 0$ for all partitions \mathcal{P} of V(G), and no \mathcal{P} has $G/\mathcal{P} \in \mathcal{T}$, then G is strongly \mathbb{Z}_5 -connected.

Def: For a partition $\mathcal{P} = \{P_1, \dots, P_t\}$ of V(G), let $w(\mathcal{P}) = \sum_{i=1}^t d(P_i) - 11t + 19.$

Main Thm: Let G be planar. If $w(\mathcal{P}) \ge 0$ for all partitions \mathcal{P} of V(G), and no \mathcal{P} has $G/\mathcal{P} \in \mathcal{T}$, then G is strongly \mathbb{Z}_5 -connected.

Cor: If G^* is an 11-edge-connected planar graph, then G^* is strongly \mathbb{Z}_5 -connected.

Def: For a partition $\mathcal{P} = \{P_1, \dots, P_t\}$ of V(G), let $w(\mathcal{P}) = \sum_{i=1}^t d(P_i) - 11t + 19.$

Main Thm: Let G be planar. If $w(\mathcal{P}) \ge 0$ for all partitions \mathcal{P} of V(G), and no \mathcal{P} has $G/\mathcal{P} \in \mathcal{T}$, then G is strongly \mathbb{Z}_5 -connected.

Cor: If G^* is an 11-edge-connected planar graph, then G^* is strongly \mathbb{Z}_5 -connected. So if G has girth ≥ 11 , then $G \rightarrow C_5$.

Def: For a partition $\mathcal{P} = \{P_1, \dots, P_t\}$ of V(G), let $w(\mathcal{P}) = \sum_{i=1}^t d(P_i) - 11t + 19.$

Main Thm: Let G be planar. If $w(\mathcal{P}) \ge 0$ for all partitions \mathcal{P} of V(G), and no \mathcal{P} has $G/\mathcal{P} \in \mathcal{T}$, then G is strongly \mathbb{Z}_5 -connected.

Cor: If G^* is an 11-edge-connected planar graph, then G^* is strongly \mathbb{Z}_5 -connected. So if G has girth ≥ 11 , then $G \rightarrow C_5$. **Pf:** Fix a partition \mathcal{P} . Since G^* is 11-edge-connected, $d(P_i) \geq 11$ for each i.

Def: For a partition $\mathcal{P} = \{P_1, \dots, P_t\}$ of V(G), let $w(\mathcal{P}) = \sum_{i=1}^t d(P_i) - 11t + 19.$

Main Thm: Let G be planar. If $w(\mathcal{P}) \ge 0$ for all partitions \mathcal{P} of V(G), and no \mathcal{P} has $G/\mathcal{P} \in \mathcal{T}$, then G is strongly \mathbb{Z}_5 -connected.

Cor: If G^* is an 11-edge-connected planar graph, then G^* is strongly \mathbb{Z}_5 -connected. So if G has girth ≥ 11 , then $G \to C_5$. **Pf:** Fix a partition \mathcal{P} . Since G^* is 11-edge-connected, $d(P_i) \geq 11$ for each i. So $\sum_{i=1}^{t} d(P_i) - 11t + 19 \geq 19$.

Def: For a partition $\mathcal{P} = \{P_1, \dots, P_t\}$ of V(G), let $w(\mathcal{P}) = \sum_{i=1}^t d(P_i) - 11t + 19.$

Main Thm: Let G be planar. If $w(\mathcal{P}) \ge 0$ for all partitions \mathcal{P} of V(G), and no \mathcal{P} has $G/\mathcal{P} \in \mathcal{T}$, then G is strongly \mathbb{Z}_5 -connected.

Cor: If G^* is an 11-edge-connected planar graph, then G^* is strongly \mathbb{Z}_5 -connected. So if G has girth ≥ 11 , then $G \to C_5$. **Pf:** Fix a partition \mathcal{P} . Since G^* is 11-edge-connected, $d(P_i) \geq 11$ for each i. So $\sum_{i=1}^{t} d(P_i) - 11t + 19 \geq 19$. Since each $H \in \mathcal{T}$ is not 11-edge-connected, we are done by the Main Theorem.

Strongly \mathbb{Z}_5 -connected Graphs Ques: Why $w(\mathcal{P}) = \sum_{i=1}^t d(P_i) - 11t + 19$?

Ques: Why $w(\mathcal{P}) = \sum_{i=1}^{t} d(P_i) - 11t + 19?$

Lem: Strongly $\mathbb{Z}_5\text{-connected} \Rightarrow 4$ edge-disjoint spanning trees.

Ques: Why $w(\mathcal{P}) = \sum_{i=1}^{t} d(P_i) - 11t + 19$? **Lem:** Strongly \mathbb{Z}_5 -connected \Rightarrow 4 edge-disjoint spanning trees. **Thm** [Tutte; Nash-Williams '60s]: *G* has *k* edge-disjoint spanning tree iff $\sum_{i=1}^{t} d(P_i) - 2tk + 2k \ge 0$ for all $\{P_1, \ldots, P_t\}$ of V(G).

Ques: Why $w(\mathcal{P}) = \sum_{i=1}^{t} d(P_i) - 11t + 19$? **Lem:** Strongly \mathbb{Z}_5 -connected $\Rightarrow 4$ edge-disjoint spanning trees. **Thm** [Tutte; Nash-Williams '60s]: *G* has *k* edge-disjoint spanning tree iff $\sum_{i=1}^{t} d(P_i) - 2tk + 2k \ge 0$ for all $\{P_1, \ldots, P_t\}$ of V(G).

Obs: Why are graphs not strongly \mathbb{Z}_5 -connected?

Ques: Why $w(\mathcal{P}) = \sum_{i=1}^{t} d(P_i) - 11t + 19$? **Lem:** Strongly \mathbb{Z}_5 -connected $\Rightarrow 4$ edge-disjoint spanning trees. **Thm** [Tutte; Nash-Williams '60s]: *G* has *k* edge-disjoint spanning tree iff $\sum_{i=1}^{t} d(P_i) - 2tk + 2k \ge 0$ for all $\{P_1, \ldots, P_t\}$ of V(G).

Obs: Why are graphs not strongly \mathbb{Z}_5 -connected?

Ques: Why $w(\mathcal{P}) = \sum_{i=1}^{t} d(P_i) - 11t + 19$? **Lem:** Strongly \mathbb{Z}_5 -connected $\Rightarrow 4$ edge-disjoint spanning trees. **Thm** [Tutte; Nash-Williams '60s]: *G* has *k* edge-disjoint spanning tree iff $\sum_{i=1}^{t} d(P_i) - 2tk + 2k \ge 0$ for all $\{P_1, \ldots, P_t\}$ of V(G).

Obs: Why are graphs not strongly \mathbb{Z}_5 -connected? Too few edges.

Ques: Why $w(\mathcal{P}) = \sum_{i=1}^{t} d(P_i) - 11t + 19$? **Lem:** Strongly \mathbb{Z}_5 -connected \Rightarrow 4 edge-disjoint spanning trees. **Thm** [Tutte; Nash-Williams '60s]: *G* has *k* edge-disjoint spanning tree iff $\sum_{i=1}^{t} d(P_i) - 2tk + 2k \ge 0$ for all $\{P_1, \ldots, P_t\}$ of V(G).

Obs: Why are graphs not strongly \mathbb{Z}_5 -connected? Too few edges.

Lem: Small strongly \mathbb{Z}_5 -connected graphs.

Ques: Why $w(\mathcal{P}) = \sum_{i=1}^{t} d(P_i) - 11t + 19$? **Lem:** Strongly \mathbb{Z}_5 -connected \Rightarrow 4 edge-disjoint spanning trees. **Thm** [Tutte; Nash-Williams '60s]: *G* has *k* edge-disjoint spanning tree iff $\sum_{i=1}^{t} d(P_i) - 2tk + 2k \ge 0$ for all $\{P_1, \ldots, P_t\}$ of V(G).

Obs: Why are graphs not strongly \mathbb{Z}_5 -connected? Too few edges.

Lem: Small strongly \mathbb{Z}_5 -connected graphs.

Ques: Why $w(\mathcal{P}) = \sum_{i=1}^{t} d(P_i) - 11t + 19$? **Lem:** Strongly \mathbb{Z}_5 -connected \Rightarrow 4 edge-disjoint spanning trees. **Thm** [Tutte; Nash-Williams '60s]: *G* has *k* edge-disjoint spanning tree iff $\sum_{i=1}^{t} d(P_i) - 2tk + 2k \ge 0$ for all $\{P_1, \ldots, P_t\}$ of V(G).

Obs: Why are graphs not strongly \mathbb{Z}_5 -connected? Too few edges.

Lem: Small strongly \mathbb{Z}_5 -connected graphs.

Ques: Why $w(\mathcal{P}) = \sum_{i=1}^{t} d(P_i) - 11t + 19$? **Lem:** Strongly \mathbb{Z}_5 -connected \Rightarrow 4 edge-disjoint spanning trees. **Thm** [Tutte; Nash-Williams '60s]: *G* has *k* edge-disjoint spanning tree iff $\sum_{i=1}^{t} d(P_i) - 2tk + 2k \ge 0$ for all $\{P_1, \ldots, P_t\}$ of V(G).

Obs: Why are graphs not strongly \mathbb{Z}_5 -connected? Too few edges.

Lem: Small strongly \mathbb{Z}_5 -connected graphs. All forbidden in *G*.

Key Idea: Show the following subgraphs are forbidden in G.

Key Idea: Show the following subgraphs are forbidden in G.

Pf Idea: Simulate one or two edges of a strongly \mathbb{Z}_5 -connected graph H by a pair of edges with a common endpt.

Key Idea: Show the following subgraphs are forbidden in G.

Pf Idea: Simulate one or two edges of a strongly \mathbb{Z}_5 -connected graph H by a pair of edges with a common endpt. Contract H, find good orienation by minimality, extend to G.

Key Idea: Show the following subgraphs are forbidden in G.

Pf Idea: Simulate one or two edges of a strongly \mathbb{Z}_5 -connected graph H by a pair of edges with a common endpt. Contract H, find good orienation by minimality, extend to G. **Problem:** Simulating edges of H reduces weights in G/H.

Key Idea: Show the following subgraphs are forbidden in G.

Pf Idea: Simulate one or two edges of a strongly \mathbb{Z}_5 -connected graph H by a pair of edges with a common endpt. Contract H, find good orienation by minimality, extend to G. **Problem:** Simulating edges of H reduces weights in G/H.

Gap Lem: Fix a partition $\mathcal{P} = \{P_1, \ldots, P_t\}$ of V(G).

- If $|\mathcal{P}| < |G|$, then $w(\mathcal{P}) \ge 5$.
- If $1 < |\mathcal{P}| < |\mathcal{G}| 1$, then $w(\mathcal{P}) \ge 8$.

Key Idea: Show the following subgraphs are forbidden in G.

Pf Idea: Simulate one or two edges of a strongly \mathbb{Z}_5 -connected graph H by a pair of edges with a common endpt. Contract H, find good orienation by minimality, extend to G. **Problem:** Simulating edges of H reduces weights in G/H.

Gap Lem: Fix a partition $\mathcal{P} = \{P_1, \ldots, P_t\}$ of V(G).

- If $|\mathcal{P}| < |G|$, then $w(\mathcal{P}) \geq 5$.
- If $1 < |\mathcal{P}| < |\mathcal{G}| 1$, then $w(\mathcal{P}) \ge 8$.

Solution: Each simulated edge drops weight by at most 4. So if $w(\mathcal{P}) \ge 8$ before simulating two edges, then $w(\mathcal{P}) \ge 0$ afterward.

Discharging Big Idea: Counting argument shows G has forbidden subgraph.

Big Idea: Counting argument shows *G* has forbidden subgraph. Assume no forbidden subgraph.

Big Idea: Counting argument shows *G* has forbidden subgraph. Assume no forbidden subgraph. Each face *f* gets charge $\ell(f)$.

Big Idea: Counting argument shows *G* has forbidden subgraph.

Assume no forbidden subgraph. Each face f gets charge $\ell(f)$.

Since $0 \le w(G) = 2|E(G)| - 11|G| + 19$, Euler's gives

Big Idea: Counting argument shows G has forbidden subgraph.

Assume no forbidden subgraph. Each face f gets charge $\ell(f)$. Since $0 \le w(G) = 2|E(G)| - 11|G| + 19$, Euler's gives

$$\sum_{f\in F(G)} \ell(f) = 2|E(G)| \le \frac{22}{9}|F(G)| - \frac{2}{3}.$$

Big Idea: Counting argument shows *G* has forbidden subgraph.

Assume no forbidden subgraph. Each face f gets charge $\ell(f)$. Since $0 \le w(G) = 2|E(G)| - 11|G| + 19$, Euler's gives

$$\sum_{f\in F(G)} \ell(f) = 2|E(G)| \le \frac{22}{9}|F(G)| - \frac{2}{3}.$$

Redistribute charge, so each f ends with $\geq 22/9$

Big Idea: Counting argument shows *G* has forbidden subgraph.

Assume no forbidden subgraph. Each face f gets charge $\ell(f)$. Since $0 \le w(G) = 2|E(G)| - 11|G| + 19$, Euler's gives

$$\sum_{f\in F(G)} \ell(f) = 2|E(G)| \le \frac{22}{9}|F(G)| - \frac{2}{3}.$$

Redistribute charge, so each f ends with $\geq 22/9$, contradiction!

Big Idea: Counting argument shows *G* has forbidden subgraph.

Assume no forbidden subgraph. Each face f gets charge $\ell(f)$. Since $0 \le w(G) = 2|E(G)| - 11|G| + 19$, Euler's gives

$$\sum_{f \in F(G)} \ell(f) = 2|E(G)| \le \frac{22}{9}|F(G)| - \frac{2}{3}.$$

Redistribute charge, so each f ends with $\geq 22/9$, contradiction!

Big Idea: Counting argument shows *G* has forbidden subgraph.

Assume no forbidden subgraph. Each face f gets charge $\ell(f)$. Since $0 \le w(G) = 2|E(G)| - 11|G| + 19$, Euler's gives

$$\sum_{f \in F(G)} \ell(f) = 2|E(G)| \le \frac{22}{9}|F(G)| - \frac{2}{3}.$$

Redistribute charge, so each f ends with $\geq 22/9$, contradiction!

Recall: Grötzsch's Thm: Triangle-free planar \Rightarrow 3-colorable

Recall: Grötzsch's Thm: Triangle-free planar \Rightarrow 3-colorable **Goal:** Refine this for planar graphs with high girth.

Recall: Grötzsch's Thm: Triangle-free planar \Rightarrow 3-colorable **Goal:** Refine this for planar graphs with high girth. Want to map V(G) into $V(C_{2t+1})$ to preserve edges $(G \rightarrow C_{2t+1})$.
Recall: Grötzsch's Thm: Triangle-free planar \Rightarrow 3-colorable **Goal:** Refine this for planar graphs with high girth. Want to map V(G) into $V(C_{2t+1})$ to preserve edges $(G \rightarrow C_{2t+1})$.

Conj: Planar and girth $\geq 4t \Rightarrow G \rightarrow C_{2t+1}$ (best possible).

Recall: Grötzsch's Thm: Triangle-free planar \Rightarrow 3-colorable **Goal:** Refine this for planar graphs with high girth. Want to map V(G) into $V(C_{2t+1})$ to preserve edges $(G \rightarrow C_{2t+1})$.

Conj: Planar and girth $\geq 4t \Rightarrow G \rightarrow C_{2t+1}$ (best possible). **Best known** [LTWZ '13]: Planar and girth $\geq 6t \Rightarrow G \rightarrow C_{2t+1}$

Recall: Grötzsch's Thm: Triangle-free planar \Rightarrow 3-colorable **Goal:** Refine this for planar graphs with high girth. Want to map V(G) into $V(C_{2t+1})$ to preserve edges $(G \rightarrow C_{2t+1})$.

Conj: Planar and girth $\geq 4t \Rightarrow G \rightarrow C_{2t+1}$ (best possible). **Best known** [LTWZ '13]: Planar and girth $\geq 6t \Rightarrow G \rightarrow C_{2t+1}$

Our results: Planar and girth $\geq 10 \Rightarrow G \rightarrow C_5$. Planar and girth $\geq 16 \Rightarrow G \rightarrow C_7$.

Recall: Grötzsch's Thm: Triangle-free planar \Rightarrow 3-colorable **Goal:** Refine this for planar graphs with high girth. Want to map V(G) into $V(C_{2t+1})$ to preserve edges $(G \rightarrow C_{2t+1})$.

Conj: Planar and girth $\geq 4t \Rightarrow G \rightarrow C_{2t+1}$ (best possible). **Best known** [LTWZ '13]: Planar and girth $\geq 6t \Rightarrow G \rightarrow C_{2t+1}$

Our results:

Planar and girth $\geq 10 \Rightarrow G \rightarrow C_5$. Also [Dvořák–Postle '17]. Planar and girth $\geq 16 \Rightarrow G \rightarrow C_7$. Also [Postle–Smith-Roberge '19+].

Recall: Grötzsch's Thm: Triangle-free planar \Rightarrow 3-colorable **Goal:** Refine this for planar graphs with high girth. Want to map V(G) into $V(C_{2t+1})$ to preserve edges $(G \rightarrow C_{2t+1})$.

Conj: Planar and girth $\geq 4t \Rightarrow G \rightarrow C_{2t+1}$ (best possible). **Best known** [LTWZ '13]: Planar and girth $\geq 6t \Rightarrow G \rightarrow C_{2t+1}$

Our results:

Planar and girth $\geq 10 \Rightarrow G \rightarrow C_5$. Also [Dvořák–Postle '17]. Planar and girth $\geq 16 \Rightarrow G \rightarrow C_7$. Also [Postle–Smith-Roberge '19+].

Outline: For planar dual, want mod (2t + 1)-orientation.

Recall: Grötzsch's Thm: Triangle-free planar \Rightarrow 3-colorable **Goal:** Refine this for planar graphs with high girth. Want to map V(G) into $V(C_{2t+1})$ to preserve edges $(G \rightarrow C_{2t+1})$.

Conj: Planar and girth $\geq 4t \Rightarrow G \rightarrow C_{2t+1}$ (best possible). **Best known** [LTWZ '13]: Planar and girth $\geq 6t \Rightarrow G \rightarrow C_{2t+1}$

Our results:

Planar and girth $\geq 10 \Rightarrow G \rightarrow C_5$. Also [Dvořák–Postle '17]. Planar and girth $\geq 16 \Rightarrow G \rightarrow C_7$. Also [Postle–Smith-Roberge '19+].

Outline: For planar dual, want mod (2t + 1)-orientation. Generalize to \mathbb{Z}_{2t+1} -boundary; allows induction by contraction.

Recall: Grötzsch's Thm: Triangle-free planar \Rightarrow 3-colorable **Goal:** Refine this for planar graphs with high girth. Want to map V(G) into $V(C_{2t+1})$ to preserve edges $(G \rightarrow C_{2t+1})$.

Conj: Planar and girth $\geq 4t \Rightarrow G \rightarrow C_{2t+1}$ (best possible). **Best known** [LTWZ '13]: Planar and girth $\geq 6t \Rightarrow G \rightarrow C_{2t+1}$

Our results:

Planar and girth $\geq 10 \Rightarrow G \rightarrow C_5$. Also [Dvořák–Postle '17]. Planar and girth $\geq 16 \Rightarrow G \rightarrow C_7$. Also [Postle–Smith-Roberge '19+].

Outline: For planar dual, want mod (2t + 1)-orientation. Generalize to \mathbb{Z}_{2t+1} -boundary; allows induction by contraction. **Key Tools:** strongly \mathbb{Z}_{2t+1} -connected graphs, simulating, gap lem

Recall: Grötzsch's Thm: Triangle-free planar \Rightarrow 3-colorable **Goal:** Refine this for planar graphs with high girth. Want to map V(G) into $V(C_{2t+1})$ to preserve edges $(G \rightarrow C_{2t+1})$.

Conj: Planar and girth $\geq 4t \Rightarrow G \rightarrow C_{2t+1}$ (best possible). **Best known** [LTWZ '13]: Planar and girth $\geq 6t \Rightarrow G \rightarrow C_{2t+1}$

Our results:

Planar and girth $\geq 10 \Rightarrow G \rightarrow C_5$. Also [Dvořák–Postle '17]. Planar and girth $\geq 16 \Rightarrow G \rightarrow C_7$. Also [Postle–Smith-Roberge '19+].

Outline: For planar dual, want mod (2t + 1)-orientation. Generalize to \mathbb{Z}_{2t+1} -boundary; allows induction by contraction. **Key Tools:** strongly \mathbb{Z}_{2t+1} -connected graphs, simulating, gap lem

Read More: https://arxiv.org/abs/1812.09833