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Planar Circular Coloring Conj: If G is planar with girth at least
4t, then G — Coip1. Thatis, g(t) = 4t.

Breakthrough [Lovasz—Thomassen-Wu—-Zhang '13]: g(t) < 6t¢.
Our results: g(2) < 10 and g(3) < 16. That is:
(A) If G is planar with girth > 10, then G — Gs.
(B) If G is planar with girth > 16, then G — (7.
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Def: A Zs-boundary [ for G is a function 5 : V(G) — Zs
st. > ,ev(g) Blv) = 0(mod 5). A S-orientation of G is
orientation D s.t. djy(v) — dp(v) = B(v) forall v € V(G).
Key Idea: Generality allows induction.
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w(P) =3t d(P;) — 11t + 19.
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Def: For a partition P = {Py,..., P} of V(G), let

w(P) = >, d(P;) — 11t + 19.

Main Thm: Let G be planar. If w(P) > 0 for all partitions P of
V(G), and no P has G/P € T, then G is strongly Zs-connected.

Cor: If G* is an 11-edge-connected planar graph, then G* is
strongly Zs-connected. So if G has girth > 11, then G — Gs.

Pf: Fix a partition P. Since G* is 11-edge-connected, d(P;) > 11
for each i. So > !, d(P;) — 11t + 19 > 19. Since each H € T is
not 11-edge-connected, we are done by the Main Theorem.
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Strongly Zs-connected Graphs

Ques: Why w(P) =>_i_, d(P;) — 11t + 197

Lem: Strongly Zs-connected = 4 edge-disjoint spanning trees.
Thm [Tutte; Nash-Williams ‘60s]: G has k edge-disjoint spanning
tree iff 5 0, d(P;) — 2tk + 2k > 0 for all {Py,..., P} of V(G).

Obs: Why are graphs not strongly Zs-connected? Too few edges.
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Lem: Small strongly Zs-connected graphs. All forbidden in G.
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Simulating Edges and the Gap Lemma

Key Idea: Show the following subgraphs are forbidden in G.

Pf Idea: Simulate one or two edges of a strongly Zs-connected
graph H by a pair of edges with a common endpt. Contract H,
find good orienation by minimality, extend to G.

Problem: Simulating edges of H reduces weights in G/H.

Gap Lem: Fix a partition P = {P1,..., P:} of V(G).

» If [P| < |G|, then w(P) > 5.

» If 1 <|P| < |G| -1, then w(P) > 8.
Solution: Each simulated edge drops weight by at most 4. So if
w(P) > 8 before simulating two edges, then w(P) > 0 afterward.
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