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Circular Coloring of Planar Graphs

Grötzsch’s Thm: Every triangle-free planar graph is 3-colorable.

Def: For graphs G and H, we can H-color G if there exists
f : V (G ) ! V (H) such that f (v)f (w) 2 E (H) for all vw 2 E (G ).
That is, f preserves edges. In this case, G ! H.
Obs: H-coloring generalizes t-coloring (H = K

t

).
Obs: Closed walks map to closed walks.

Ex: Circular Coloring.
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Grötzsch’s Thm: Every triangle-free planar graph is 3-colorable.

Def: For graphs G and H, we can H-color G if there exists
f : V (G ) ! V (H) such that f (v)f (w) 2 E (H) for all vw 2 E (G ).
That is, f preserves edges. In this case, G ! H.
Obs: H-coloring generalizes t-coloring (H = K

t

).

Obs: Closed walks map to closed walks.

Ex: Circular Coloring.

C
7

! C
5

and C
5

! C
3

, so C
7

! C
3

.

1

2

34

5

a

b

c

b

c

!
1

2

3

4

5

4

5

a

b

c

b

c

b

c

!

a

b

c

Proving G ! C
7

is stronger than G ! C
5

, since C
5

6! C
7

.



Circular Coloring of Planar Graphs
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Grötzsch’s Thm: Every triangle-free planar graph is 3-colorable.

Def: For graphs G and H, we can H-color G if there exists
f : V (G ) ! V (H) such that f (v)f (w) 2 E (H) for all vw 2 E (G ).
That is, f preserves edges. In this case, G ! H.
Obs: H-coloring generalizes t-coloring (H = K

t

).
Obs: Closed walks map to closed walks.

Ex: Circular Coloring.

C
7

! C
5

and C
5

! C
3

, so C
7

! C
3

.

1

2

34

5

a

b

c

b

c

!
1

2

3

4

5

4

5

a

b

c

b

c

b

c

!

a

b

c

Proving G ! C
7

is stronger than G ! C
5

, since C
5

6! C
7

.



Circular Coloring of Planar Graphs

Grötzsch’s Thm: Every triangle-free planar graph is 3-colorable.

Def: For graphs G and H, we can H-color G if there exists
f : V (G ) ! V (H) such that f (v)f (w) 2 E (H) for all vw 2 E (G ).
That is, f preserves edges. In this case, G ! H.
Obs: H-coloring generalizes t-coloring (H = K

t

).
Obs: Closed walks map to closed walks.

Ex: Circular Coloring.

C
7

! C
5

and C
5

! C
3

, so C
7

! C
3

.

1

2

34

5

a

b

c

b

c!
1

2

3

4

5

4

5

a

b

c

b

c

b

c

!

a

b

c

Proving G ! C
7

is stronger than G ! C
5

, since C
5

6! C
7

.



Circular Coloring of Planar Graphs
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The Bigger Picture

Big Goal: For each t 2 Z+, find min g(t) s.t. if G is planar with
girth at least g(t), then G ! C

2t+1

.

Since not all planar graphs
are 3-colorable, Grötzsch’s Theorem implies g(1) = 4.

Prop: g(t)  10t and [Devos] g(t) � 4t.

�!6
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Planar Circular Coloring Conj: If G is planar with girth at least
4t, then G ! C

2t+1

. That is, g(t) = 4t.

Breakthrough [Lovasz–Thomassen–Wu–Zhang ’13]: g(t)  6t.
Our results: g(2)  10 and g(3)  16. That is:
(A) If G is planar with girth � 10, then G ! C

5

.
(B) If G is planar with girth � 16, then G ! C

7

.
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History

I g(t)  10t � 4 [Nesetril–Zhu ’96]

I Folding Lemma [Klostermeyer–Zhang ’00]

I g
o

(t)  8t � 3 [Zhu ’01]

I g(t)  20t�2

3

[Borodin–Kim–Kostochka–West ’04]

I g
o

(2)  11 [Dvǒrák–Postle ’17]

I g
o

(3)  17 [Postle–Smith-Roberge ’19+]

I Conj: Every 4t-edge-connected graph has mod
(2t + 1)-orientation. [Jaeger ’84]

I Conj: Every 4t + 1-odd-edge-connected graph has mod
(2t + 1)-orientation. [Zhang ’02]

I Thm: Every 6t + 1-odd-edge-connected graph has mod
(2t + 1)-orientation. [Lovász–Thomassen–Wu–Zhang ’13]

I Thm: Jaeger’s conjecture is false for every t � 3.
[Han–Li–Wu–Zhang ’18]
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(2)  11 [Dvǒrák–Postle ’17]

I g
o

(3)  17 [Postle–Smith-Roberge ’19+]

I Conj: Every 4t-edge-connected graph has mod
(2t + 1)-orientation. [Jaeger ’84]

I Conj: Every 4t + 1-odd-edge-connected graph has mod
(2t + 1)-orientation. [Zhang ’02]

I Thm: Every 6t + 1-odd-edge-connected graph has mod
(2t + 1)-orientation. [Lovász–Thomassen–Wu–Zhang ’13]

I Thm: Jaeger’s conjecture is false for every t � 3.
[Han–Li–Wu–Zhang ’18]



History

I g(t)  10t � 4 [Nesetril–Zhu ’96]

I Folding Lemma [Klostermeyer–Zhang ’00]

I g
o

(t)  8t � 3 [Zhu ’01]

I g(t)  20t�2

3

[Borodin–Kim–Kostochka–West ’04]

I g
o

(2)  11 [Dvǒrák–Postle ’17]
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(2)  11 [Dvǒrák–Postle ’17]

I g
o

(3)  17 [Postle–Smith-Roberge ’19+]

I Conj: Every 4t-edge-connected graph has mod
(2t + 1)-orientation. [Jaeger ’84]

I Conj: Every 4t + 1-odd-edge-connected graph has mod
(2t + 1)-orientation. [Zhang ’02]

I Thm: Every 6t + 1-odd-edge-connected graph has mod
(2t + 1)-orientation. [Lovász–Thomassen–Wu–Zhang ’13]

I Thm: Jaeger’s conjecture is false for every t � 3.
[Han–Li–Wu–Zhang ’18]



History

I g(t)  10t � 4 [Nesetril–Zhu ’96]

I Folding Lemma [Klostermeyer–Zhang ’00]

I g
o

(t)  8t � 3 [Zhu ’01]

I g(t)  20t�2

3

[Borodin–Kim–Kostochka–West ’04]

I g
o
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Orientations

Def: Let G ⇤ denote planar dual of G .

A (mod k)-orientation of G
is orientation D s.t. d+

D

(v)� d�
D

(v) ⌘ 0 mod k for all v 2 V (G ).

Prop: G ! C
2t+1

i↵ G ⇤ has a (mod 2t + 1)-orientation.

Def: A Z
5

-boundary � for G is a function � : V (G ) ! Z
5

s.t.
P

v2V (G)

�(v) ⌘ 0(mod 5). A �-orientation of G is

orientation D s.t. d+

D

(v)� d�
D

(v) ⌘ �(v) for all v 2 V (G ).

Key Idea: Generality allows induction.
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5
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Strongly Z5-connected Graphs

Ques: Why w(P) =
P
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d(P
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Lem: Strongly Z

5

-connected ) 4 edge-disjoint spanning trees.
Thm [Tutte; Nash-Williams ‘60s]: G has k edge-disjoint spanning
tree i↵

P
t

i=1

d(P
i

)� 2tk + 2k � 0 for all {P
1

, . . . ,P
t

} of V (G ).

Obs: Why are graphs not strongly Z
5

-connected?

Too few edges.

Lem: Small strongly Z
5

-connected graphs.

All forbidden in G .



Strongly Z5-connected Graphs

Ques: Why w(P) =
P

t

i=1

d(P
i

)� 11t + 19?

Lem: Strongly Z
5

-connected ) 4 edge-disjoint spanning trees.
Thm [Tutte; Nash-Williams ‘60s]: G has k edge-disjoint spanning
tree i↵

P
t

i=1

d(P
i

)� 2tk + 2k � 0 for all {P
1

, . . . ,P
t

} of V (G ).

Obs: Why are graphs not strongly Z
5

-connected?

Too few edges.

Lem: Small strongly Z
5

-connected graphs.

All forbidden in G .



Strongly Z5-connected Graphs

Ques: Why w(P) =
P

t

i=1

d(P
i

)� 11t + 19?
Lem: Strongly Z

5

-connected ) 4 edge-disjoint spanning trees.

Thm [Tutte; Nash-Williams ‘60s]: G has k edge-disjoint spanning
tree i↵

P
t

i=1

d(P
i

)� 2tk + 2k � 0 for all {P
1

, . . . ,P
t

} of V (G ).

Obs: Why are graphs not strongly Z
5

-connected?

Too few edges.

Lem: Small strongly Z
5

-connected graphs.

All forbidden in G .



Strongly Z5-connected Graphs

Ques: Why w(P) =
P

t

i=1

d(P
i

)� 11t + 19?
Lem: Strongly Z

5

-connected ) 4 edge-disjoint spanning trees.
Thm [Tutte; Nash-Williams ‘60s]: G has k edge-disjoint spanning
tree i↵

P
t

i=1

d(P
i

)� 2tk + 2k � 0 for all {P
1

, . . . ,P
t

} of V (G ).

Obs: Why are graphs not strongly Z
5

-connected?

Too few edges.

Lem: Small strongly Z
5

-connected graphs.

All forbidden in G .



Strongly Z5-connected Graphs

Ques: Why w(P) =
P

t

i=1

d(P
i

)� 11t + 19?
Lem: Strongly Z

5

-connected ) 4 edge-disjoint spanning trees.
Thm [Tutte; Nash-Williams ‘60s]: G has k edge-disjoint spanning
tree i↵

P
t

i=1

d(P
i

)� 2tk + 2k � 0 for all {P
1

, . . . ,P
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Obs: Why are graphs not strongly Z
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-connected?
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Lem: Small strongly Z
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-connected graphs.
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Simulating Edges and the Gap Lemma

Key Idea: Show the following subgraphs are forbidden in G .

Pf Idea: Simulate one or two edges of a strongly Z
5

-connected
graph H by a pair of edges with a common endpt. Contract H,
find good orienation by minimality, extend to G .
Problem: Simulating edges of H reduces weights in G/H.

Gap Lem: Fix a partition P = {P
1

, . . . ,P
t

} of V (G ).

I If |P| < |G |, then w(P) � 5.

I If 1 < |P| < |G |� 1, then w(P) � 8.

Solution: Each simulated edge drops weight by at most 4. So if
w(P) � 8 before simulating two edges, then w(P) � 0 afterward.
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Discharging
Big Idea: Counting argument shows G has forbidden subgraph.

Assume no forbidden subgraph. Each face f gets charge `(f ).
Since 0  w(G ) = 2|E (G )|� 11|G |+ 19, Euler’s gives

X

f 2F (G)

`(f ) = 2|E (G )|  22

9
|F (G )|� 2

3
.

Redistribute charge, so each f ends with � 22/9, contradiction!
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Summary

Recall: Grötzsch’s Thm: Triangle-free planar ) 3-colorable
Goal: Refine this for planar graphs with high girth.
Want to map V (G ) into V (C

2t+1

) to preserve edges (G ! C
2t+1

).

Conj: Planar and girth � 4t ) G ! C
2t+1

(best possible).
Best known [LTWZ ’13]: Planar and girth � 6t ) G ! C

2t+1

Our results:
Planar and girth � 10 ) G ! C

5

.

Also [Dvǒrák–Postle ’17].

Planar and girth � 16 ) G ! C
7

.

Also [Postle–Smith-Roberge ’19+].

Outline: For planar dual, want mod (2t + 1)-orientation.
Generalize to Z

2t+1

-boundary; allows induction by contraction.
Key Tools: strongly Z

2t+1

-connected graphs, simulating, gap lem

Read More: https://arxiv.org/abs/1812.09833
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. Also [Dvǒrák–Postle ’17].
Planar and girth � 16 ) G ! C

7

. Also [Postle–Smith-Roberge ’19+].

Outline: For planar dual, want mod (2t + 1)-orientation.
Generalize to Z

2t+1

-boundary; allows induction by contraction.

Key Tools: strongly Z
2t+1

-connected graphs, simulating, gap lem

Read More: https://arxiv.org/abs/1812.09833

https://arxiv.org/abs/1812.09833


Summary
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