Crossings, Colorings, and Cliques

Daniel W. Cranston

DIMACS, Rutgers and Bell Labs dcransto@dimacs.rutgers.edu Joint with Mike Albertson and Jacob Fox.

> Lafayette Combinatorics Seminar 30 April 2009

Def. Crossing number of a graph G, cr(G): minimum number of crossings in a (plane) drawing of G.

Def. Crossing number of a graph G, cr(G): minimum number of crossings in a (plane) drawing of G.

e.g., $cr(K_5) = 1$, $cr(K_{3,3}) = 1$, cr(G) = 0 for all planar G.

Def. Crossing number of a graph G, cr(G): minimum number of crossings in a (plane) drawing of G.

e.g., $\operatorname{cr}(K_5) = 1$, $\operatorname{cr}(K_{3,3}) = 1$, $\operatorname{cr}(G) = 0$ for all planar G.

Def. Crossing number of a graph G, cr(G): minimum number of crossings in a (plane) drawing of G.

e.g., $\operatorname{cr}(K_5) = 1$, $\operatorname{cr}(K_{3,3}) = 1$, $\operatorname{cr}(G) = 0$ for all planar G.

Def. Crossing number of a graph G, cr(G): minimum number of crossings in a (plane) drawing of G.

e.g., $\operatorname{cr}(K_5) = 1$, $\operatorname{cr}(K_{3,3}) = 1$, $\operatorname{cr}(G) = 0$ for all planar G.

r
$$cr(K_r)$$
Albertson's Conjecture ≤ 4 0trivial

Def. Crossing number of a graph G, cr(G): minimum number of crossings in a (plane) drawing of G.

e.g., $\operatorname{cr}(K_5) = 1$, $\operatorname{cr}(K_{3,3}) = 1$, $\operatorname{cr}(G) = 0$ for all planar G.

r	$\operatorname{cr}(K_r)$	Albertson's Conjecture
<u> </u>	0	trivial
5	1	4 Color Theorem

Def. Crossing number of a graph G, cr(G): minimum number of crossings in a (plane) drawing of G.

e.g., $\operatorname{cr}(K_5) = 1$, $\operatorname{cr}(K_{3,3}) = 1$, $\operatorname{cr}(G) = 0$ for all planar G.

r	$\operatorname{cr}(K_r)$	Albertson's Conjecture
<u>≤</u> 4	0	trivial
5	1	4 Color Theorem
6	3	not hard, done

Def. Crossing number of a graph G, cr(G): minimum number of crossings in a (plane) drawing of G.

e.g., $\operatorname{cr}(K_5) = 1$, $\operatorname{cr}(K_{3,3}) = 1$, $\operatorname{cr}(G) = 0$ for all planar G.

r	$\operatorname{cr}(K_r)$	Albertson's Conjecture
<u>≤</u> 4	0	trivial
5	1	4 Color Theorem
6	3	not hard, done
7	9	open

Def. Crossing number of a graph G, cr(G): minimum number of crossings in a (plane) drawing of G.

e.g., $\operatorname{cr}(K_5) = 1$, $\operatorname{cr}(K_{3,3}) = 1$, $\operatorname{cr}(G) = 0$ for all planar G.

Conj. [Albertson '07] If $\chi(G) = r$, then $cr(G) \ge cr(K_r)$.

r	$\operatorname{cr}(K_r)$	Albertson's Conjecture
\leq 4	0	trivial
5	1	4 Color Theorem
6	3	not hard, done
7	9	open

Prop. If $\chi(G) = 7$, then $cr(G) \ge 7$.

Def. G is a critical graph iff $\forall e \in E(G)$: $\chi(G - e) < \chi(G)$.

Def. G is a critical graph iff $\forall e \in E(G)$: $\chi(G - e) < \chi(G)$.

Obs. Every G contains a critical subgraph H with $\chi(H) = \chi(G)$.

Def. G is a critical graph iff $\forall e \in E(G)$: $\chi(G - e) < \chi(G)$.

Obs. Every G contains a critical subgraph H with $\chi(H) = \chi(G)$.

Def. G is a critical graph iff $\forall e \in E(G)$: $\chi(G - e) < \chi(G)$.

Obs. Every G contains a critical subgraph H with $\chi(H) = \chi(G)$.

Obs. If G is r-critical, then $\delta(G) \ge r - 1$.

Def. G is a critical graph iff $\forall e \in E(G)$: $\chi(G - e) < \chi(G)$.

Obs. Every G contains a critical subgraph H with $\chi(H) = \chi(G)$.

Obs. If G is r-critical, then $\delta(G) \ge r - 1$.

Prop. If $\chi(G) = 7$, then $cr(G) \ge 7$.

Pf. Assume G is 7-critical and $K_7 \not\subseteq G$.

Def. G is a critical graph iff $\forall e \in E(G)$: $\chi(G - e) < \chi(G)$.

Obs. Every G contains a critical subgraph H with $\chi(H) = \chi(G)$.

Obs. If G is r-critical, then $\delta(G) \ge r - 1$.

Prop. If $\chi(G) = 7$, then $cr(G) \ge 7$.

Pf. Assume G is 7-critical and $K_7 \not\subseteq G$. Since $\chi(G) = 7$, $\delta(G) \ge 6$; so $m \ge \frac{6n}{2} = 3n$.

Def. G is a critical graph iff $\forall e \in E(G)$: $\chi(G - e) < \chi(G)$.

Obs. Every G contains a critical subgraph H with $\chi(H) = \chi(G)$.

Obs. If G is r-critical, then $\delta(G) \ge r - 1$.

Prop. If $\chi(G) = 7$, then $cr(G) \ge 7$.

Pf. Assume G is 7-critical and $K_7 \not\subseteq G$. Since $\chi(G) = 7$, $\delta(G) \ge 6$; so $m \ge \frac{6n}{2} = 3n$. Thus $\operatorname{cr}(G) \ge m - (3n - 6) \ge 6$.

Def. G is a critical graph iff $\forall e \in E(G)$: $\chi(G - e) < \chi(G)$.

Obs. Every G contains a critical subgraph H with $\chi(H) = \chi(G)$.

Obs. If G is r-critical, then $\delta(G) \ge r - 1$.

Prop. If $\chi(G) = 7$, then $cr(G) \ge 7$.

Pf. Assume G is 7-critical and $K_7 \not\subseteq G$. Since $\chi(G) = 7$, $\delta(G) \ge 6$; so $m \ge \frac{6n}{2} = 3n$. Thus $\operatorname{cr}(G) \ge m - (3n - 6) \ge 6$.

Thm. (Brooks' Theorem) If G is connected and not a complete graph or odd cycle, then $\chi(G) \leq \Delta(G)$.

Def. G is a critical graph iff $\forall e \in E(G)$: $\chi(G - e) < \chi(G)$.

Obs. Every G contains a critical subgraph H with $\chi(H) = \chi(G)$.

Obs. If G is r-critical, then $\delta(G) \ge r - 1$.

Prop. If $\chi(G) = 7$, then $cr(G) \ge 7$.

Pf. Assume G is 7-critical and $K_7 \not\subseteq G$. Since $\chi(G) = 7$, $\delta(G) \ge 6$; so $m \ge \frac{6n}{2} = 3n$. Thus $\operatorname{cr}(G) \ge m - (3n - 6) \ge 6$.

Thm. (Brooks' Theorem) If G is connected and not a complete graph or odd cycle, then $\chi(G) \leq \Delta(G)$.

Thus, $\Delta(G) \geq 7$.

Def. G is a critical graph iff $\forall e \in E(G)$: $\chi(G - e) < \chi(G)$.

Obs. Every G contains a critical subgraph H with $\chi(H) = \chi(G)$.

Obs. If G is r-critical, then $\delta(G) \ge r - 1$.

Prop. If $\chi(G) = 7$, then $cr(G) \ge 7$.

Pf. Assume G is 7-critical and $K_7 \not\subseteq G$. Since $\chi(G) = 7$, $\delta(G) \ge 6$; so $m \ge \frac{6n}{2} = 3n$. Thus $\operatorname{cr}(G) \ge m - (3n - 6) \ge 6$.

Thm. (Brooks' Theorem) If G is connected and not a complete graph or odd cycle, then $\chi(G) \leq \Delta(G)$.

Thus, $\Delta(G) \ge 7$. Hence $m \ge 3n + 1$ and $\operatorname{cr}(G) \ge m - (3n - 6) \ge 7$.

4 Color Theorem: Every planar graph is 4-colorable.

4 Color Theorem: Every planar graph is 4-colorable.

Relaxations of Planarity

4 Color Theorem: Every planar graph is 4-colorable. Relaxations of Planarity

Def. Genus of a graph G, g(G): min number of handles we must add to the plane to embed G, e.g., $g(K_7) = 1$.

4 Color Theorem: Every planar graph is 4-colorable. Relaxations of Planarity

Def. Genus of a graph G, g(G): min number of handles we must add to the plane to embed G, e.g., $g(K_7) = 1$.

Def. Thickness of a graph G, $\tau(G)$: min k such that E(G) has a partition into k planar graphs, e.g., $\tau(K_6) = 2$.

4 Color Theorem: Every planar graph is 4-colorable. Relaxations of Planarity

Def. Genus of a graph G, g(G): min number of handles we must add to the plane to embed G, e.g., $g(K_7) = 1$.

Def. Thickness of a graph G, $\tau(G)$: min k such that E(G) has a partition into k planar graphs, e.g., $\tau(K_6) = 2$.

Def. Crossing number, cr(G); e.g., $cr(K_6) = 3$.

4 Color Theorem: Every planar graph is 4-colorable. Relaxations of Planarity

Def. Genus of a graph G, g(G): min number of handles we must add to the plane to embed G, e.g., $g(K_7) = 1$.

Def. Thickness of a graph G, $\tau(G)$: min k such that E(G) has a partition into k planar graphs, e.g., $\tau(K_6) = 2$.

Def. Crossing number, cr(G); e.g., $cr(K_6) = 3$.

Bound $\chi(G)$ in g(G), $\tau(G)$, or cr(G)?

4 Color Theorem: Every planar graph is 4-colorable. Relaxations of Planarity

Def. Genus of a graph G, g(G): min number of handles we must add to the plane to embed G, e.g., $g(K_7) = 1$.

Def. Thickness of a graph G, $\tau(G)$: min k such that E(G) has a partition into k planar graphs, e.g., $\tau(K_6) = 2$.

Def. Crossing number, cr(G); e.g., $cr(K_6) = 3$.

Bound $\chi(G)$ in g(G), $\tau(G)$, or cr(G)? If so, what are the extremal graphs?

Suppose G has genus $g \ge 1$.

Suppose G has genus $g \ge 1$. Recall that $e \le 3n - 6 + 6g$.

Suppose G has genus $g \ge 1$. Recall that $e \le 3n - 6 + 6g$. Note that $\chi(G) \le 1 + \frac{2(3n - 6 + 6g)}{n}$

Suppose G has genus $g \ge 1$. Recall that $e \le 3n - 6 + 6g$. Note that $\chi(G) \le \min(n, 1 + \frac{2(3n - 6 + 6g)}{n})$

Suppose G has genus $g \ge 1$. Recall that $e \le 3n - 6 + 6g$. Note that $\chi(G) \le \min(n, 1 + \frac{2(3n - 6 + 6g)}{n}) \le \lfloor \frac{7 + \sqrt{1 + 48g}}{2} \rfloor$.

Suppose G has genus $g \ge 1$. Recall that $e \le 3n - 6 + 6g$. Note that $\chi(G) \le \min(n, 1 + \frac{2(3n - 6 + 6g)}{n}) \le \lfloor \frac{7 + \sqrt{1 + 48g}}{2} \rfloor$. **Thm.** [Ringel-Youngs '68] The max $\chi(G)$ such that G embeds in S_g is $\lfloor \frac{7 + \sqrt{1 + 48g}}{2} \rfloor$.

Suppose G has genus $g \ge 1$. Recall that $e \le 3n - 6 + 6g$. Note that $\chi(G) \le \min(n, 1 + \frac{2(3n - 6 + 6g)}{n}) \le \lfloor \frac{7 + \sqrt{1 + 48g}}{2} \rfloor$. **Thm.** [Ringel-Youngs '68] The max $\chi(G)$ such that G embeds in S_g is $\lfloor \frac{7 + \sqrt{1 + 48g}}{2} \rfloor$.

Suppose G has thickness t. Note that $\chi(G) \leq 6t$.

Suppose G has genus $g \ge 1$. Recall that $e \le 3n - 6 + 6g$. Note that $\chi(G) \le \min(n, 1 + \frac{2(3n - 6 + 6g)}{n}) \le \lfloor \frac{7 + \sqrt{1 + 48g}}{2} \rfloor$. **Thm.** [Ringel-Youngs '68] The max $\chi(G)$ such that G embeds in S_g is $\lfloor \frac{7 + \sqrt{1 + 48g}}{2} \rfloor$.

Suppose *G* has thickness *t*. Note that $\chi(G) \leq 6t$. Note that $\tau(K_n) \geq \left\lceil \frac{\binom{n}{2}}{3n-6} \right\rceil = \left\lceil \frac{n+2}{6} \right\rceil$.

Suppose G has genus $g \ge 1$. Recall that $e \le 3n - 6 + 6g$. Note that $\chi(G) \le \min(n, 1 + \frac{2(3n - 6 + 6g)}{n}) \le \lfloor \frac{7 + \sqrt{1 + 48g}}{2} \rfloor$. **Thm.** [Ringel-Youngs '68] The max $\chi(G)$ such that G embeds in S_g is $\lfloor \frac{7 + \sqrt{1 + 48g}}{2} \rfloor$.

Suppose *G* has thickness *t*. Note that $\chi(G) \le 6t$. Note that $\tau(K_n) \ge \left\lceil \frac{\binom{n}{2}}{3n-6} \right\rceil = \left\lceil \frac{n+2}{6} \right\rceil$.

Thm. [Beineke-Harary '65; Alekseev-Goňcakov '76] $\tau(K_n) = \left\lceil \frac{n+2}{6} \right\rceil$ for $n \neq 9, 10$ and $\tau(K_9) = \tau(K_{10}) = 3$.

Chromatic number vs. genus and thickness

Suppose G has genus $g \ge 1$. Recall that $e \le 3n - 6 + 6g$. Note that $\chi(G) \le \min(n, 1 + \frac{2(3n - 6 + 6g)}{n}) \le \lfloor \frac{7 + \sqrt{1 + 48g}}{2} \rfloor$. **Thm.** [Ringel-Youngs '68] The max $\chi(G)$ such that G embeds in S_g is $\lfloor \frac{7 + \sqrt{1 + 48g}}{2} \rfloor$.

Suppose *G* has thickness *t*. Note that $\chi(G) \le 6t$. Note that $\tau(K_n) \ge \left\lceil \frac{\binom{n}{2}}{3n-6} \right\rceil = \left\lceil \frac{n+2}{6} \right\rceil$.

Thm. [Beineke-Harary '65; Alekseev-Goňcakov '76] $\tau(K_n) = \lfloor \frac{n+2}{6} \rfloor$ for $n \neq 9, 10$ and $\tau(K_9) = \tau(K_{10}) = 3$.

Cor. Max $\chi(G)$ such that $\tau(G) = t$ satisfies $6t - 2 \le \chi(G) \le 6t$.

Thm. (Crossing Lemma) [Leighton; Ajtai et. al. '82] If $m \ge 4n$, then

$$\operatorname{cr}(G) \geq \frac{1}{64} \frac{m^3}{n^2}.$$

Thm. (Crossing Lemma) [Leighton; Ajtai et. al. '82] If $m \ge 4n$, then

$$\operatorname{cr}(G) \geq \frac{1}{64} \frac{m^3}{n^2}.$$

Obs. $cr(K_n) = \Omega(n^4)$

Thm. (Crossing Lemma) [Leighton; Ajtai et. al. '82] If $m \ge 4n$, then

$$\operatorname{cr}(G) \geq \frac{1}{64} \frac{m^3}{n^2}.$$

Obs. $cr(K_n) = \Omega(n^4)$ **Pf.** Crossing Lemma.

Thm. (Crossing Lemma) [Leighton; Ajtai et. al. '82] If $m \ge 4n$, then $1 m^3$

$$\operatorname{cr}(G) \geq \frac{1}{64} \frac{m^2}{n^2}.$$

Obs. $cr(K_n) = \Omega(n^4)$ **Pf.** Crossing Lemma.

$$\frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor \approx n^4/64$$

Thm. (Crossing Lemma) [Leighton; Ajtai et. al. '82] If $m \ge 4n$, then $1 m^3$

$$\operatorname{cr}(G) \geq \frac{1}{64} \frac{m^2}{n^2}.$$

Obs. $cr(K_n) = \Omega(n^4)$ **Pf.** Crossing Lemma.

Thm. [Zarankiewski] $cr(K_n) = Z(n)$

Thm. (Crossing Lemma) [Leighton; Ajtai et. al. '82] If $m \ge 4n$, then $1 m^3$

$$\operatorname{cr}(G) \geq \frac{1}{64} \frac{m^3}{n^2}.$$

Obs. $cr(K_n) = \Omega(n^4)$ **Pf.** Crossing Lemma.

Thm. [Zarankiewski]er(\mathcal{K}_n) = Z(n) **Conj.** [Guy '69] cr(\mathcal{K}_n) = Z(n)

Thm. (Crossing Lemma) [Leighton; Ajtai et. al. '82] If $m \ge 4n$, then $1 m^3$

$$\operatorname{cr}(G) \geq \frac{1}{64} \frac{m^2}{n^2}.$$

Obs. $cr(K_n) = \Omega(n^4)$ **Pf.** Crossing Lemma.

Thm. [Zarankiewski] $\operatorname{cr}(K_n) = Z(n)$ **Conj.** [Guy '69] $\operatorname{cr}(K_n) = Z(n)$ **Thm.** [Guy '69; Pan-Richter '07] $\operatorname{cr}(K_n) = Z(n)$ for all $n \leq 12$

Thm. (Crossing Lemma) [Leighton; Ajtai et. al. '82] If $m \ge 4n$, then $1 m^3$

$$\operatorname{cr}(G) \geq \frac{1}{64} \frac{m^2}{n^2}.$$

Obs. $cr(K_n) = \Omega(n^4)$ **Pf.** Crossing Lemma.

$$Z(n) = \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor \approx n^4/64$$

Thm. [Zarankiewski] $\operatorname{cr}(K_n) = Z(n)$ Conj. [Guy '69] $\operatorname{cr}(K_n) = Z(n)$ Thm. [Guy '69; Pan-Richter '07] $\operatorname{cr}(K_n) = Z(n)$ for all $n \le 12$ Thm. [de Klerk et. al. '07] .8594 $Z(n) \le \operatorname{cr}(K_n) \le Z(n)$

Thm. (Crossing Lemma) [Leighton; Ajtai et. al. '82] If $m \ge 4n$, then $1 m^3$

 $\operatorname{cr}(G) \geq \frac{1}{64} \frac{m^3}{n^2}.$

Obs. $cr(K_n) = \Omega(n^4)$ **Pf.** Crossing Lemma.

$$Z(n) = \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor \approx n^4/64$$

Thm. [Zarankiewski] $cr(K_n) = Z(n)$ Conj. [Guy '69] $cr(K_n) = Z(n)$ Thm. [Guy '69; Pan-Richter '07] $cr(K_n) = Z(n)$ for all $n \le 12$

Thm. [de Klerk et. al. '07] .8594 $Z(n) \le cr(K_n) \le Z(n)$

Conj. [Albertson '07] If $\chi(G) = r$, then $\operatorname{cr}(G) \ge \operatorname{cr}(K_r)$.

Outline of Meta-proof

0. Consider only critical G.

- 0. Consider only critical G.
- 1. Prove lower bound on *m*.

- 0. Consider only critical G.
- 1. Prove lower bound on *m*. (e.g. $m \ge \frac{r-1}{2}n+1$)

- 0. Consider only critical G.
- 1. Prove lower bound on *m*. (e.g. $m \ge \frac{r-1}{2}n+1$)
- 2. Prove lower bound on cr(G) in *m*.

- 0. Consider only critical G.
- 1. Prove lower bound on *m*. (e.g. $m \ge \frac{r-1}{2}n+1$)
- 2. Prove lower bound on cr(G) in m. (e.g. $cr(G) \ge m (3n 6)$)

Outline of Meta-proof

- 0. Consider only critical G.
- 1. Prove lower bound on *m*. (e.g. $m \ge \frac{r-1}{2}n+1$)
- 2. Prove lower bound on cr(G) in m. (e.g. $cr(G) \ge m (3n 6)$)

Idea. Improvements in 1. or 2. should help us prove more cases of Albertson's Conjecture.

Outline of Meta-proof

- 0. Consider only critical G.
- 1. Prove lower bound on *m*. (e.g. $m \ge \frac{r-1}{2}n+1$)
- 2. Prove lower bound on cr(G) in m. (e.g. $cr(G) \ge m (3n 6)$)

Idea. Improvements in 1. or 2. should help us prove more cases of Albertson's Conjecture.

Thm. [Dirac '52] If G is r-critical and $G \neq K_r$, then

$$m\geq \frac{r-1}{2}n+\frac{r-3}{2}.$$

Outline of Meta-proof

- 0. Consider only critical G.
- 1. Prove lower bound on *m*. (e.g. $m \ge \frac{r-1}{2}n+1$)
- 2. Prove lower bound on cr(G) in m. (e.g. $cr(G) \ge m (3n 6)$)

Idea. Improvements in 1. or 2. should help us prove more cases of Albertson's Conjecture.

Thm. [Dirac '52] If G is r-critical and $G \neq K_r$, then

$$m\geq \frac{r-1}{2}n+\frac{r-3}{2}.$$

Thm. [Kostochka-Stiebitz '96] If G is r-critical and $G \neq K_r$ and $n \neq 2r - 1$, then

$$m\geq \frac{r-1}{2}n+r-3.$$

Proving Albertson's Conjecture (for lots more cases) **Crossing Lemma** [Leighton; Ajtai et. al. '82] If $m \ge 4n$, then $cr(G) \ge \frac{1}{64} \frac{m^3}{n^2}$.

Thm. [Pach et. al. '06] $\operatorname{cr}(G) \geq (7/3)m - (25/3)(n-2)$ $\operatorname{cr}(G) \geq 3m - (35/3)(n-2)$ $\operatorname{cr}(G) \geq 4m - (103/6)(n-2)$

Thm. [Pach et. al. '06] $\operatorname{cr}(G) \geq (7/3)m - (25/3)(n-2)$ $\operatorname{cr}(G) \geq 3m - (35/3)(n-2)$ $\operatorname{cr}(G) \geq 4m - (103/6)(n-2)$

Prop. Albertson's Conjecture for r = 9. (Recall $cr(K_9) = 36$.)

Thm. [Pach et. al. '06] $\operatorname{cr}(G) \geq (7/3)m - (25/3)(n-2)$ $\operatorname{cr}(G) \geq 3m - (35/3)(n-2)$ $\operatorname{cr}(G) \geq 4m - (103/6)(n-2)$

Prop. Albertson's Conjecture for r = 9. (Recall $cr(K_9) = 36$.) **Pf.** Assume *G* is 9-critical and $G \neq K_9$. Note $n \ge 10$.

Thm. [Pach et. al. '06] $\operatorname{cr}(G) \geq (7/3)m - (25/3)(n-2)$ $\operatorname{cr}(G) \geq 3m - (35/3)(n-2)$ $\operatorname{cr}(G) \geq 4m - (103/6)(n-2)$

Prop. Albertson's Conjecture for r = 9. (Recall $cr(K_9) = 36$.) **Pf.** Assume G is 9-critical and $G \neq K_9$. Note $n \ge 10$. If $n \ne 17$, then Kostochka-Stiebitz bound gives $m \ge 4n + 6$, so $cr(G) \ge (7/3)m - (25/3)(n-2) \ge n + (92/3) > 40$.

Thm. [Pach et. al. '06] $\operatorname{cr}(G) \geq (7/3)m - (25/3)(n-2)$ $\operatorname{cr}(G) \geq 3m - (35/3)(n-2)$ $\operatorname{cr}(G) \geq 4m - (103/6)(n-2)$

Prop. Albertson's Conjecture for r = 9. (Recall $cr(K_9) = 36$.) **Pf.** Assume *G* is 9-critical and $G \neq K_9$. Note $n \ge 10$. If $n \ne 17$, then Kostochka-Stiebitz bound gives $m \ge 4n + 6$, so $cr(G) \ge (7/3)m - (25/3)(n-2) \ge n + (92/3) > 40$. If n = 17, then Dirac's bound gives $m \ge 4n + 3$, so $cr(G) \ge (7/3)m - (25/3)(n-2) \ge 122/3 > 40$.

Thm. [Pach et. al. '06] $\operatorname{cr}(G) \geq (7/3)m - (25/3)(n-2)$ $\operatorname{cr}(G) \geq 3m - (35/3)(n-2)$ $\operatorname{cr}(G) \geq 4m - (103/6)(n-2)$

Prop. Albertson's Conjecture for r = 9. (Recall $cr(K_9) = 36$.) **Pf.** Assume *G* is 9-critical and $G \neq K_9$. Note $n \ge 10$. If $n \ne 17$, then Kostochka-Stiebitz bound gives $m \ge 4n + 6$, so $cr(G) \ge (7/3)m - (25/3)(n-2) \ge n + (92/3) > 40$. If n = 17, then Dirac's bound gives $m \ge 4n + 3$, so $cr(G) \ge (7/3)m - (25/3)(n-2) \ge 122/3 > 40$.

Thm. Albertson's Conjecture is true for $r \leq 12$.