Crossings, Colorings, and Cliques

Daniel W. Cranston

DIMACS, Rutgers and Bell Labs dcransto@dimacs.rutgers.edu Joint with Mike Albertson and Jacob Fox. Lafayette Combinatorics Seminar

30 April 2009

Def. Crossing number of a graph G , $cr(G)$: minimum number of crossings in a (plane) drawing of G .

Def. Crossing number of a graph G , $cr(G)$: minimum number of crossings in a (plane) drawing of G .

e.g., $cr(K_5) = 1, cr(K_{3,3}) = 1$, $cr(G) = 0$ for all planar G.

Def. Crossing number of a graph G , $cr(G)$: minimum number of crossings in a (plane) drawing of G .

e.g., $cr(K_5) = 1, cr(K_{3,3}) = 1$, $cr(G) = 0$ for all planar G.

Def. Crossing number of a graph G , $cr(G)$: minimum number of crossings in a (plane) drawing of G .

e.g., $cr(K_5) = 1, cr(K_{3,3}) = 1$, $cr(G) = 0$ for all planar G.

Def. Crossing number of a graph G , $cr(G)$: minimum number of crossings in a (plane) drawing of G .

e.g., $cr(K_5) = 1, cr(K_{3,3}) = 1$, $cr(G) = 0$ for all planar G.

r	$cr(K_r)$	Albertson's Conjecture
≤ 4	0	trivial

Def. Crossing number of a graph G , $cr(G)$: minimum number of crossings in a (plane) drawing of G .

e.g., $cr(K_5) = 1, cr(K_{3,3}) = 1$, $cr(G) = 0$ for all planar G.

r	$cr(K_r)$	Albertson's Conjecture
≤ 4	0	trivial
5	1	4 Color Theorem

Def. Crossing number of a graph G , $cr(G)$: minimum number of crossings in a (plane) drawing of G .

e.g., $cr(K_5) = 1, cr(K_{3,3}) = 1$, $cr(G) = 0$ for all planar G.

Def. Crossing number of a graph G , $cr(G)$: minimum number of crossings in a (plane) drawing of G .

e.g., $cr(K_5) = 1, cr(K_{3,3}) = 1$, $cr(G) = 0$ for all planar G.

Def. Crossing number of a graph G , $cr(G)$: minimum number of crossings in a (plane) drawing of G .

e.g., $cr(K_5) = 1, cr(K_{3,3}) = 1$, $cr(G) = 0$ for all planar G.

Conj. [Albertson '07] If $\chi(G) = r$, then $\text{cr}(G) > \text{cr}(K_r)$.

Prop. If $\chi(G) = 7$, then $\text{cr}(G) \ge 7$.

Def. G is a critical graph iff $\forall e \in E(G)$: $\chi(G - e) < \chi(G)$.

Def. G is a critical graph iff $\forall e \in E(G)$: $\chi(G - e) < \chi(G)$.

Obs. Every G contains a critical subgraph H with $\chi(H) = \chi(G)$.

Def. G is a critical graph iff $\forall e \in E(G)$: $\chi(G - e) < \chi(G)$.

Obs. Every G contains a critical subgraph H with $\chi(H) = \chi(G)$.

Def. G is a critical graph iff $\forall e \in E(G)$: $\chi(G - e) < \chi(G)$.

Obs. Every G contains a critical subgraph H with $\chi(H) = \chi(G)$.

Obs. If G is r-critical, then $\delta(G) \ge r - 1$.

Def. G is a critical graph iff $\forall e \in E(G)$: $\chi(G - e) < \chi(G)$.

Obs. Every G contains a critical subgraph H with $\chi(H) = \chi(G)$.

Obs. If G is r-critical, then $\delta(G) \ge r - 1$.

Prop. If $\chi(G) = 7$, then cr(G) ≥ 7 .

Pf. Assume G is 7-critical and $K_7 \not\subseteq G$.

Def. G is a critical graph iff $\forall e \in E(G)$: $\chi(G - e) < \chi(G)$.

Obs. Every G contains a critical subgraph H with $\chi(H) = \chi(G)$.

Obs. If G is r-critical, then $\delta(G) \ge r - 1$.

Prop. If $\chi(G) = 7$, then $\text{cr}(G) \ge 7$.

Pf. Assume G is 7-critical and $K_7 \not\subseteq G$. Since $\chi(G) = 7$, $\delta(G) \ge 6$; so $m \ge \frac{6n}{2} = 3n$.

Def. G is a critical graph iff $\forall e \in E(G)$: $\chi(G - e) < \chi(G)$.

Obs. Every G contains a critical subgraph H with $\chi(H) = \chi(G)$.

Obs. If G is r-critical, then $\delta(G) \ge r - 1$.

Prop. If $\chi(G) = 7$, then $\text{cr}(G) > 7$.

Pf. Assume G is 7-critical and $K_7 \not\subset G$. Since $\chi(G) = 7$, $\delta(G) \ge 6$; so $m \ge \frac{6n}{2} = 3n$. Thus $cr(G) > m - (3n - 6) > 6$.

Def. G is a critical graph iff $\forall e \in E(G)$: $\chi(G - e) < \chi(G)$.

Obs. Every G contains a critical subgraph H with $\chi(H) = \chi(G)$.

Obs. If G is r-critical, then $\delta(G) \ge r - 1$.

Prop. If $\chi(G) = 7$, then $\text{cr}(G) > 7$.

Pf. Assume G is 7-critical and $K_7 \not\subset G$. Since $\chi(G) = 7$, $\delta(G) \ge 6$; so $m \ge \frac{6n}{2} = 3n$. Thus $cr(G) > m - (3n - 6) > 6$.

Thm. (Brooks' Theorem) If G is connected and not a complete graph or odd cycle, then $\chi(G) \leq \Delta(G)$.

Def. G is a critical graph iff $\forall e \in E(G)$: $\chi(G - e) < \chi(G)$.

Obs. Every G contains a critical subgraph H with $\chi(H) = \chi(G)$.

Obs. If G is r-critical, then $\delta(G) \ge r - 1$.

Prop. If $\chi(G) = 7$, then $\text{cr}(G) > 7$.

Pf. Assume G is 7-critical and $K_7 \not\subset G$. Since $\chi(G) = 7$, $\delta(G) \ge 6$; so $m \ge \frac{6n}{2} = 3n$. Thus $cr(G) > m - (3n - 6) > 6$.

Thm. (Brooks' Theorem) If G is connected and not a complete graph or odd cycle, then $\chi(G) \leq \Delta(G)$.

Thus, $\Delta(G)$ > 7.

Def. G is a critical graph iff $\forall e \in E(G)$: $\chi(G - e) < \chi(G)$.

Obs. Every G contains a critical subgraph H with $\chi(H) = \chi(G)$.

Obs. If G is r-critical, then $\delta(G) \ge r - 1$.

Prop. If $\chi(G) = 7$, then $\text{cr}(G) > 7$.

Pf. Assume G is 7-critical and $K_7 \not\subset G$. Since $\chi(G) = 7$, $\delta(G) \ge 6$; so $m \ge \frac{6n}{2} = 3n$. Thus $cr(G) > m - (3n - 6) > 6$.

Thm. (Brooks' Theorem) If G is connected and not a complete graph or odd cycle, then $\chi(G) \leq \Delta(G)$.

Thus, $\Delta(G)$ > 7. Hence $m > 3n + 1$ and $cr(G) > m - (3n - 6) > 7$.

4 Color Theorem: Every planar graph is 4-colorable.

4 Color Theorem: Every planar graph is 4-colorable.

Relaxations of Planarity

4 Color Theorem: Every planar graph is 4-colorable. Relaxations of Planarity

Def. Genus of a graph G , $g(G)$: min number of handles we must add to the plane to embed G , e.g., $g(K_7) = 1$.

4 Color Theorem: Every planar graph is 4-colorable. Relaxations of Planarity

Def. Genus of a graph G , $g(G)$: min number of handles we must add to the plane to embed G , e.g., $g(K_7) = 1$.

Def. Thickness of a graph G , $\tau(G)$: min k such that $E(G)$ has a partition into k planar graphs, e.g., $\tau(K_6) = 2$.

4 Color Theorem: Every planar graph is 4-colorable. Relaxations of Planarity

Def. Genus of a graph G , $g(G)$: min number of handles we must add to the plane to embed G , e.g., $g(K_7) = 1$.

Def. Thickness of a graph G , $\tau(G)$: min k such that $E(G)$ has a partition into k planar graphs, e.g., $\tau(K_6) = 2$.

Def. Crossing number, $cr(G)$; e.g., $cr(K_6) = 3$.

4 Color Theorem: Every planar graph is 4-colorable. Relaxations of Planarity

Def. Genus of a graph G , $g(G)$: min number of handles we must add to the plane to embed G , e.g., $g(K_7) = 1$.

Def. Thickness of a graph G , $\tau(G)$: min k such that $E(G)$ has a partition into k planar graphs, e.g., $\tau(K_6) = 2$.

Def. Crossing number, $cr(G)$; e.g., $cr(K_6) = 3$.

Bound $\chi(G)$ in g(G), $\tau(G)$, or cr(G)?

4 Color Theorem: Every planar graph is 4-colorable. Relaxations of Planarity

Def. Genus of a graph G , $g(G)$: min number of handles we must add to the plane to embed G , e.g., $g(K_7) = 1$.

Def. Thickness of a graph G , $\tau(G)$: min k such that $E(G)$ has a partition into k planar graphs, e.g., $\tau(K_6) = 2$.

Def. Crossing number, $cr(G)$; e.g., $cr(K_6) = 3$.

Bound $\chi(G)$ in g(G), $\tau(G)$, or cr(G)? If so, what are the extremal graphs?

Suppose *G* has genus $g \geq 1$.

Suppose G has genus $g \geq 1$. Recall that $e \leq 3n - 6 + 6g$.

Suppose G has genus $g \geq 1$. Recall that $e \leq 3n - 6 + 6g$. Note that $\chi(G) \leq 1 + \frac{2(3n-6+6g)}{n}$

Suppose G has genus $g \geq 1$. Recall that $e \leq 3n - 6 + 6g$. Note that $\chi(G) \leq \min(n, 1 + \frac{2(3n-6+6g)}{n})$

Suppose G has genus $g \geq 1$. Recall that $e \leq 3n - 6 + 6g$. Note that $\chi(G) \le \min(n, 1 + \frac{2(3n-6+6g)}{n}) \le \lfloor \frac{7+\sqrt{1+48g}}{2} \rfloor$ $\frac{1+40g}{2}$.

Suppose G has genus $g \geq 1$. Recall that $e \leq 3n - 6 + 6g$. Note that $\chi(G) \le \min(n, 1 + \frac{2(3n-6+6g)}{n}) \le \lfloor \frac{7+\sqrt{1+48g}}{2} \rfloor$ $\frac{1+40g}{2}$. Thm. [Ringel-Youngs '68] The max $\chi(\overline{G})$ such that \overline{G} embeds in S_g is $\lfloor \frac{7+\sqrt{1+48g}}{2} \rfloor$ $\frac{1+40g}{2}$.

Suppose G has genus $g \geq 1$. Recall that $e \leq 3n - 6 + 6g$. Note that $\chi(G) \le \min(n, 1 + \frac{2(3n-6+6g)}{n}) \le \lfloor \frac{7+\sqrt{1+48g}}{2} \rfloor$ $\frac{1+40g}{2}$. **Thm.** [Ringel-Youngs '68] The max $\chi(\overline{G})$ such that \overline{G} embeds in S_g is $\lfloor \frac{7+\sqrt{1+48g}}{2} \rfloor$ $\frac{1+40g}{2}$.

Suppose G has thickness t. Note that $\chi(G) \leq 6t$.

Suppose G has genus $g \geq 1$. Recall that $e \leq 3n - 6 + 6g$. Note that $\chi(G) \le \min(n, 1 + \frac{2(3n-6+6g)}{n}) \le \lfloor \frac{7+\sqrt{1+48g}}{2} \rfloor$ $\frac{1+40g}{2}$. **Thm.** [Ringel-Youngs '68] The max $\chi(\overline{G})$ such that \overline{G} embeds in S_g is $\lfloor \frac{7+\sqrt{1+48g}}{2} \rfloor$ $\frac{1+40g}{2}$.

Suppose G has thickness t. Note that $\chi(G) \leq 6t$. Note that $\tau(K_n) \geq \Big \lceil \frac{{n \choose 2}}{3n-4} \Big \rceil$ ³n−⁶ $\Big| = \Big\lceil \frac{n+2}{6} \Big\rceil$.

Suppose G has genus $g \geq 1$. Recall that $e \leq 3n - 6 + 6g$. Note that $\chi(G) \le \min(n, 1 + \frac{2(3n-6+6g)}{n}) \le \lfloor \frac{7+\sqrt{1+48g}}{2} \rfloor$ $\frac{1+40g}{2}$. **Thm.** [Ringel-Youngs '68] The max $\chi(\overline{G})$ such that \overline{G} embeds in S_g is $\lfloor \frac{7+\sqrt{1+48g}}{2} \rfloor$ $\frac{1+40g}{2}$.

Suppose G has thickness t. Note that $\chi(G) \leq 6t$. Note that $\tau(K_n) \geq \Big \lceil \frac{{n \choose 2}}{3n-4} \Big \rceil$ ³n−⁶ $\Big| = \Big\lceil \frac{n+2}{6} \Big\rceil$.

Thm. [Beineke-Harary '65; Alekseev-Goňcakov '76] $\tau(K_n) = \left\lceil \frac{n+2}{6} \right\rceil$ for $n \neq 9, 10$ and $\tau(K_9) = \tau(K_{10}) = 3$.

Suppose G has genus $g \geq 1$. Recall that $e \leq 3n - 6 + 6g$. Note that $\chi(G) \le \min(n, 1 + \frac{2(3n-6+6g)}{n}) \le \lfloor \frac{7+\sqrt{1+48g}}{2} \rfloor$ $\frac{1+40g}{2}$. **Thm.** [Ringel-Youngs '68] The max $\chi(\overline{G})$ such that \overline{G} embeds in S_g is $\lfloor \frac{7+\sqrt{1+48g}}{2} \rfloor$ $\frac{1+40g}{2}$.

Suppose G has thickness t. Note that $\chi(G) \leq 6t$. Note that $\tau(K_n) \geq \Big \lceil \frac{{n \choose 2}}{3n-4} \Big \rceil$ ³n−⁶ $\Big| = \Big\lceil \frac{n+2}{6} \Big\rceil$.

Thm. [Beineke-Harary '65; Alekseev-Goňcakov '76] $\tau(K_n) = \left\lceil \frac{n+2}{6} \right\rceil$ for $n \neq 9, 10$ and $\tau(K_9) = \tau(K_{10}) = 3$.

Cor. Max $\chi(G)$ such that $\tau(G) = t$ satisfies $6t - 2 \leq \chi(G) \leq 6t$.

Thm. (Crossing Lemma) [Leighton; Ajtai et. al. '82] If $m \geq 4n$, then

$$
\mathrm{cr}(\mathsf{G})\geq \frac{1}{64}\frac{m^3}{n^2}.
$$

Thm. (Crossing Lemma) [Leighton; Ajtai et. al. '82] If $m > 4n$, then

$$
\mathrm{cr}(\mathsf{G})\geq \frac{1}{64}\frac{m^3}{n^2}.
$$

Obs. $cr(K_n) = \Omega(n^4)$

Thm. (Crossing Lemma) [Leighton; Ajtai et. al. '82] If $m > 4n$, then $\overline{\mathbf{3}}$

$$
\operatorname{cr}(G)\geq \frac{1}{64}\frac{m^3}{n^2}.
$$

Obs. $cr(K_n) = \Omega(n^4)$ **Pf.** Crossing Lemma.

Thm. (Crossing Lemma) [Leighton; Ajtai et. al. '82] If $m > 4n$, then

$$
\mathrm{cr}(\mathsf{G})\geq \frac{1}{64}\frac{m^3}{n^2}.
$$

Obs. $cr(K_n) = \Omega(n^4)$ **Pf.** Crossing Lemma.

$$
\frac{1}{4}\left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor \approx n^4/64
$$

Thm. (Crossing Lemma) [Leighton; Ajtai et. al. '82] If $m > 4n$, then

$$
\mathrm{cr}(\mathsf{G})\geq \frac{1}{64}\frac{m^3}{n^2}.
$$

Obs. $cr(K_n) = \Omega(n^4)$ **Pf.** Crossing Lemma.

Thm. [Zarankiewski] $cr(K_n) = Z(n)$

Thm. (Crossing Lemma) [Leighton; Ajtai et. al. '82] If $m > 4n$, then

$$
\mathrm{cr}(\mathsf{G})\geq \frac{1}{64}\frac{m^3}{n^2}.
$$

Obs. $cr(K_n) = \Omega(n^4)$ **Pf.** Crossing Lemma.

Thm. \overline{Z} arankiewski $\overline{er(K_n)} = \overline{Z(n)}$ Conj. [Guy '69] $\overline{cr(K_n)} = \overline{Z(n)}$

Thm. (Crossing Lemma) [Leighton; Ajtai et. al. '82] If $m > 4n$, then

$$
\mathrm{cr}(\mathsf{G})\geq \frac{1}{64}\frac{m^3}{n^2}.
$$

Obs. $cr(K_n) = \Omega(n^4)$ **Pf.** Crossing Lemma.

Thm. \overline{Z} arankiewski $\overline{er(K_n)} = \overline{Z(n)}$ Conj. [Guy '69] $\overline{cr(K_n)} = \overline{Z(n)}$ **Thm.** [Guy '69; Pan-Richter '07] $cr(K_n) = Z(n)$ for all $n \le 12$

Thm. (Crossing Lemma) [Leighton; Ajtai et. al. '82] If $m > 4n$, then \overline{a}

$$
\operatorname{cr}(G)\geq \frac{1}{64}\frac{m^3}{n^2}.
$$

Obs. $cr(K_n) = \Omega(n^4)$ **Pf.** Crossing Lemma.

$$
Z(n) = \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor \approx n^4/64
$$

Thm. \overline{z} arankiewski $\overline{er(K_n)} = \overline{z(n)}$ Conj. [Guy '69] $\operatorname{cr}(K_n) = \overline{z(n)}$ **Thm.** [Guy '69; Pan-Richter '07] $cr(K_n) = Z(n)$ for all $n \le 12$ **Thm.** [de Klerk et. al. '07] .8594 $Z(n) < \text{cr}(K_n) < Z(n)$

Thm. (Crossing Lemma) [Leighton; Ajtai et. al. '82] If $m > 4n$, then

$$
\mathrm{cr}(\mathsf{G})\geq \frac{1}{64}\frac{m^3}{n^2}.
$$

Obs. $cr(K_n) = \Omega(n^4)$ **Pf.** Crossing Lemma.

$$
Z(n) = \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor \approx n^4/64
$$

Thm. \overline{z} arankiewski $\overline{er(K_n)} = \overline{z(n)}$ Conj. [Guy '69] $\operatorname{cr}(K_n) = \overline{z(n)}$ **Thm.** [Guy '69; Pan-Richter '07] $cr(K_n) = Z(n)$ for all $n \le 12$ **Thm.** [de Klerk et. al. '07] .8594 $Z(n) < \text{cr}(K_n) < Z(n)$ **Conj.** [Albertson '07] If $\chi(G) = r$, then $\text{cr}(G) > \text{cr}(K_r)$.

Outline of Meta-proof

0. Consider only critical G.

- 0. Consider only critical G.
- 1. Prove lower bound on m.

- 0. Consider only critical G.
- 1. Prove lower bound on *m*. (e.g. $m \geq \frac{r-1}{2}n+1$)

- 0. Consider only critical G.
- 1. Prove lower bound on *m*. (e.g. $m \geq \frac{r-1}{2}n+1$)
- 2. Prove lower bound on $cr(G)$ in m.

- 0. Consider only critical G.
- 1. Prove lower bound on m. (e.g. $m \geq \frac{r-1}{2}n+1$)
- 2. Prove lower bound on $cr(G)$ in m. (e.g. $cr(G) \geq m (3n 6)$)

Outline of Meta-proof

- 0. Consider only critical G.
- 1. Prove lower bound on m. (e.g. $m \geq \frac{r-1}{2}n+1$)
- 2. Prove lower bound on $cr(G)$ in m. (e.g. $cr(G) \geq m (3n 6)$)

Idea. Improvements in 1. or 2. should help us prove more cases of Albertson's Conjecture.

Outline of Meta-proof

- 0. Consider only critical G.
- 1. Prove lower bound on m. (e.g. $m \geq \frac{r-1}{2}n+1$)
- 2. Prove lower bound on $cr(G)$ in m. (e.g. $cr(G) \geq m (3n 6)$)

Idea. Improvements in 1. or 2. should help us prove more cases of Albertson's Conjecture.

Thm. [Dirac '52] If G is r-critical and $G \neq K_r$, then

$$
m\geq \frac{r-1}{2}n+\frac{r-3}{2}.
$$

Outline of Meta-proof

- 0. Consider only critical G.
- 1. Prove lower bound on m. (e.g. $m \geq \frac{r-1}{2}n+1$)
- 2. Prove lower bound on $cr(G)$ in m. (e.g. $cr(G) \geq m (3n 6)$)

Idea. Improvements in 1. or 2. should help us prove more cases of Albertson's Conjecture.

Thm. [Dirac '52] If G is r-critical and $G \neq K_r$, then

$$
m\geq \frac{r-1}{2}n+\frac{r-3}{2}.
$$

Thm. [Kostochka-Stiebitz '96] If G is r-critical and $G \neq K_r$ and $n \neq 2r - 1$, then

$$
m\geq \frac{r-1}{2}n+r-3.
$$

Proving Albertson's Conjecture (for lots more cases) **Crossing Lemma** [Leighton; Ajtai et. al. '82] If $m \ge 4n$, then $\operatorname{cr}(G) \geq \frac{1}{64}$ 64 $m³$ $\frac{n}{n^2}$.

Thm. [Pach et. al. '06]

$$
\text{cr}(G) \geq (7/3)m - (25/3)(n-2) \n\text{cr}(G) \geq 3m - (35/3)(n-2) \n\text{cr}(G) \geq 4m - (103/6)(n-2)
$$

Thm. [Pach et. al. '06] $cr(G) > (7/3)m - (25/3)(n-2)$ $cr(G) > 3m - (35/3)(n-2)$ cr(G) > $4m - (103/6)(n-2)$

Prop. Albertson's Conjecture for $r = 9$. (Recall $cr(K_9) = 36$.)

Thm. [Pach et. al. '06] $cr(G) > (7/3)m - (25/3)(n-2)$ $cr(G) > 3m - (35/3)(n-2)$ $cr(G) > 4m - (103/6)(n-2)$

Prop. Albertson's Conjecture for $r = 9$. (Recall $cr(K_9) = 36$.) **Pf.** Assume G is 9-critical and $G \neq K_9$. Note $n > 10$.

Thm. [Pach et. al. '06] $cr(G) > (7/3)m - (25/3)(n-2)$ $cr(G) > 3m - (35/3)(n-2)$ cr(G) > $4m - (103/6)(n-2)$

Prop. Albertson's Conjecture for $r = 9$. (Recall $cr(K_9) = 36$.) **Pf.** Assume G is 9-critical and $G \neq K_9$. Note $n \geq 10$. If $n \neq 17$, then Kostochka-Stiebitz bound gives $m \geq 4n + 6$, so cr(G) > $(7/3)m - (25/3)(n-2)$ > $n + (92/3)$ > 40.

Thm. [Pach et. al. '06] $cr(G) > (7/3)m - (25/3)(n-2)$ $cr(G) > 3m - (35/3)(n-2)$ $cr(G) > 4m - (103/6)(n-2)$

Prop. Albertson's Conjecture for $r = 9$. (Recall $cr(K_9) = 36$.) **Pf.** Assume G is 9-critical and $G \neq K_9$. Note $n \geq 10$. If $n \neq 17$, then Kostochka-Stiebitz bound gives $m \geq 4n + 6$, so cr(G) > $(7/3)m - (25/3)(n-2)$ > $n + (92/3)$ > 40. If $n = 17$, then Dirac's bound gives $m \ge 4n + 3$, so cr(G) > $(7/3)m - (25/3)(n-2)$ > $122/3$ > 40.

Thm. [Pach et. al. '06] $cr(G) > (7/3)m - (25/3)(n-2)$ $cr(G) > 3m - (35/3)(n-2)$ $cr(G) > 4m - (103/6)(n-2)$

Prop. Albertson's Conjecture for $r = 9$. (Recall $cr(K_9) = 36$.) **Pf.** Assume G is 9-critical and $G \neq K_9$. Note $n \geq 10$. If $n \neq 17$, then Kostochka-Stiebitz bound gives $m \geq 4n + 6$, so cr(G) > $(7/3)m - (25/3)(n-2)$ > $n + (92/3)$ > 40. If $n = 17$, then Dirac's bound gives $m \ge 4n + 3$, so cr(G) > $(7/3)m - (25/3)(n-2)$ > $122/3$ > 40.

Thm. Albertson's Conjecture is true for $r \le 12$.