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eventually periodic.

Dan Cranston Boundedness of Max-type Reciprocal Difference Equations



Background
Main Results

Origins
Breakthrough

A brief history (cont’d)

xn =
{

An−1

xn−1
, Bn−1

xn−2

}

xn =
{

An−1

xn−1
, Bn−1

xn−3

}
xn =

{
An−1

xn−2
, Bn−1

xn−3

}
xn = max

1≤i≤t

{
Ai
n

xn−i

}
(1)

Bidwell and Franke: If a solution to (1) is bounded, then it is
eventually periodic.

Dan Cranston Boundedness of Max-type Reciprocal Difference Equations



Background
Main Results

Origins
Breakthrough

A brief history (cont’d)

xn =
{

An−1

xn−1
, Bn−1

xn−2

}
xn =

{
An−1

xn−1
, Bn−1

xn−3

}

xn =
{

An−1

xn−2
, Bn−1

xn−3

}
xn = max

1≤i≤t

{
Ai
n

xn−i

}
(1)

Bidwell and Franke: If a solution to (1) is bounded, then it is
eventually periodic.

Dan Cranston Boundedness of Max-type Reciprocal Difference Equations



Background
Main Results

Origins
Breakthrough

A brief history (cont’d)

xn =
{

An−1

xn−1
, Bn−1

xn−2

}
xn =

{
An−1

xn−1
, Bn−1

xn−3

}
xn =

{
An−1

xn−2
, Bn−1

xn−3

}

xn = max
1≤i≤t

{
Ai
n

xn−i

}
(1)

Bidwell and Franke: If a solution to (1) is bounded, then it is
eventually periodic.

Dan Cranston Boundedness of Max-type Reciprocal Difference Equations



Background
Main Results

Origins
Breakthrough

A brief history (cont’d)

xn =
{

An−1

xn−1
, Bn−1

xn−2

}
xn =

{
An−1

xn−1
, Bn−1

xn−3

}
xn =

{
An−1

xn−2
, Bn−1

xn−3

}
xn = max

1≤i≤t

{
Ai
n

xn−i

}
(1)

Bidwell and Franke: If a solution to (1) is bounded, then it is
eventually periodic.

Dan Cranston Boundedness of Max-type Reciprocal Difference Equations



Background
Main Results

Origins
Breakthrough

A brief history (cont’d)

xn =
{

An−1

xn−1
, Bn−1

xn−2

}
xn =

{
An−1

xn−1
, Bn−1

xn−3

}
xn =

{
An−1

xn−2
, Bn−1

xn−3

}
xn = max

1≤i≤t

{
Ai
n

xn−i

}
(1)

Bidwell and Franke: If a solution to (1) is bounded, then it is
eventually periodic.

Dan Cranston Boundedness of Max-type Reciprocal Difference Equations



Background
Main Results

A Key Lemma
Illuminating Example
Some Handwaving
The Finale

Main Result: All Solutions are Bounded

xn = max
1≤i≤t

{
Ai
n

xn−i

}
(1)

Main Theorem (Boundedness): If the periodic coefficient A’s
are “nice”, then every positive solution {xn} of (1) is bounded.

Proof idea: Assume {xn} is unbounded, and so does not persist.
Given ε (defined later), find smallest N such that xN < ε. Our
lemmas will imply that for some constant C , we get xN ≥ xN−C .
But now xN−C < ε, which contradicts minimality of N.
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Determining xi ’s . . .

Lemma 1:

There is r s.t.

given P ∈ Z+ there exists ε > 0 s.t. if
xP(t+1) < ε, then for all i ∈ {1, . . . , t} and all k ∈ {0, . . . ,P − 1}

xk(t+1) < εrP−k

xk(t+1)+i =
Ai
k(t+1)+i−1

xk(t+1)
.
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Proof by Example

Example:
Let ε = 10−1000, t = 3, maxAi

j < 103, minAi
j > 10−2.

If x40 < ε, then x40 = max{A
∗
∗

x39
, A

∗
∗

x38
, A

∗
∗

x37
}, so

x37, x38, x39 > 10998.

Now x39 = max{A
∗
∗

x38
, A

∗
∗

x37
, A

∗
∗

x36
}, so x36 < 10−995.

Repeating: x33, x34, x35 > 10993 and x32 < 10−990, etc.

This implies x39 = A∗
∗

x36
, x38 = A∗

∗
x36

, x37 = A∗
∗

x36
,

and again x35 = A∗
∗

x32
, x34 = A∗

∗
x32

, x33 = A∗
∗

x32
, etc.
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Showing that xP(t+1) ≥ x0

Lemma 2: Let the A’s be nice, and let P = P(A). If for all
i ∈ {1, . . . , t} and all k ∈ {0, . . . ,P − 1} we have

xk(t+1)+i =
Ai
k(t+1)+i−1

xk(t+1)

then xP(t+1) ≥ x0.

x40 = max{A
∗
∗

x39
, A

∗
∗

x38
, A

∗
∗

x37
} = x36 max{A

∗
∗

A∗
∗
, · · · } = x0 max{A

∗
∗···A∗

∗
A∗
∗···A∗

∗
, · · · }
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Combining the Lemmas

Lemma 1: There is r s.t. given P ∈ Z+ there exists ε > 0 s.t. if
xP(t+1) < ε, then for all i ∈ {1, . . . , t} and all k ∈ {0, . . . ,P − 1}

xk(t+1)+i =
Ai
k(t+1)+i−1

xk(t+1)
.

Lemma 2: Let the A’s be nice, and let P = P(A). If for all
i ∈ {1, . . . , t} and all k ∈ {0, . . . ,P − 1} we have

xk(t+1)+i =
Ai
k(t+1)+i−1

xk(t+1)

then xP(t+1) ≥ x0.

Corollary: Let the A’s be nice. There is P ∈ Z+ and ε > 0 s.t. if
there is N ≥ P(t + 1) with xN < ε, then xN ≥ xN−P(t+1).
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The Big Payoff

Main Theorem (Boundedness): If the periodic coefficient A’s
are “nice”, then every positive solution {xn} of (1) is bounded.

Proof Sketch: Assume {xn} doesn’t persist; choose {xnk}∞k=0

greedily to be a decreasing subsequence. (So limk→∞ xnk = 0.)

xn : x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, . . . , x43, x44, x45, x46, . . .

xnk :

Say t = 3, and from Corollary 3, say P = 10, and say x46 < ε.
Now x46 ≥ x46−10(3+1) = x6 (by our corollary). Also, x6 ≥ x5

(since x6 was excluded from xnk ). So x46 ≥ x5, and also x46 < x5.
This contradiction implies that {xn} persists (and is bounded). �
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xn : x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, . . . , x43, x44, x45, x46, . . .

xnk :

Say t = 3, and from Corollary 3, say P = 10, and say x46 < ε.
Now x46 ≥ x46−10(3+1) = x6 (by our corollary). Also, x6 ≥ x5

(since x6 was excluded from xnk ). So x46 ≥ x5, and also x46 < x5.
This contradiction implies that {xn} persists (and is bounded). �
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