Boundedness of Max-type Reciprocal Difference Equations

Daniel W. Cranston Virginia Commonwealth University dcranston@vcu.edu

Joint with Candace Kent Slides available on my webpage

> George Mason 6 September 2013

A brief history

Dan Cranston [Boundedness of Max-type Reciprocal Difference Equations](#page-0-0)

$$
\bullet \; x_n = \tfrac{1}{x_{n-1}} : 5
$$

$$
\bullet \; x_n = \tfrac{1}{x_{n-1}} : 5 \; , \tfrac{1}{5}
$$

$$
\bullet \; x_n = \tfrac{1}{x_{n-1}} : 5 \; , \tfrac{1}{5} \; , 5
$$

•
$$
x_n = \frac{1}{x_{n-1}} : 5, \frac{1}{5}, 5, \frac{1}{5}
$$

•
$$
x_n = \frac{1}{x_{n-1}} : 5, \frac{1}{5}, 5, \frac{1}{5}, 5, \frac{1}{5}, 5, \frac{1}{5}, \ldots
$$

\n- $$
x_n = \frac{1}{x_{n-1}} : 5, \frac{1}{5}, 5, \frac{1}{5}, 5, \frac{1}{5}, 5, \frac{1}{5}, \ldots
$$
\n- $x_n = \frac{1}{x_{n-3}} : 5, 3, 12$
\n

\n- $$
x_n = \frac{1}{x_{n-1}} : 5, \frac{1}{5}, 5, \frac{1}{5}, 5, \frac{1}{5}, 5, \frac{1}{5}, \ldots
$$
\n- $x_n = \frac{1}{x_{n-3}} : 5, 3, 12, \frac{1}{5}$
\n

\n- $$
x_n = \frac{1}{x_{n-1}} : 5, \frac{1}{5}, 5, \frac{1}{5}, 5, \frac{1}{5}, 5, \frac{1}{5}, \ldots
$$
\n- $x_n = \frac{1}{x_{n-3}} : 5, 3, 12, \frac{1}{5}, \frac{1}{3}$
\n

\n- $$
x_n = \frac{1}{x_{n-1}} : 5, \frac{1}{5}, 5, \frac{1}{5}, 5, \frac{1}{5}, 5, \frac{1}{5}, \ldots
$$
\n- $x_n = \frac{1}{x_{n-3}} : 5, 3, 12, \frac{1}{5}, \frac{1}{3}, \frac{1}{12}$
\n

\n- $$
x_n = \frac{1}{x_{n-1}} : 5, \frac{1}{5}, 5, \frac{1}{5}, 5, \frac{1}{5}, 5, \frac{1}{5}, \ldots
$$
\n- $x_n = \frac{1}{x_{n-3}} : 5, 3, 12, \frac{1}{5}, \frac{1}{3}, \frac{1}{12}, 5, 3, 12, \frac{1}{5}, \frac{1}{3}, \frac{1}{12}, \ldots$
\n

\n- $$
x_n = \frac{1}{x_{n-1}} : 5, \frac{1}{5}, 5, \frac{1}{5}, 5, \frac{1}{5}, 5, \frac{1}{5}, \ldots
$$
\n- $x_n = \frac{1}{x_{n-3}} : 5, 3, 12, \frac{1}{5}, \frac{1}{3}, \frac{1}{12}, 5, 3, 12, \frac{1}{5}, \frac{1}{3}, \frac{1}{12}, \ldots$
\n- $y_n = |y_{n-1}| - y_{n-2}$
\n

\n- $$
x_n = \frac{1}{x_{n-1}} : 5, \frac{1}{5}, 5, \frac{1}{5}, 5, \frac{1}{5}, 5, \frac{1}{5}, \ldots
$$
\n- $x_n = \frac{1}{x_{n-3}} : 5, 3, 12, \frac{1}{5}, \frac{1}{3}, \frac{1}{12}, 5, 3, 12, \frac{1}{5}, \frac{1}{3}, \frac{1}{12}, \ldots$
\n- $y_n = |y_{n-1}| - y_{n-2}$
\n- $x_n = \max\left\{\frac{x_{n-1}}{x_{n-2}}, \frac{1}{x_{n-1}x_{n-2}}\right\}$
\n

A brief history

\n- $$
x_n = \frac{1}{x_{n-1}} : 5, \frac{1}{5}, 5, \frac{1}{5}, 5, \frac{1}{5}, 5, \frac{1}{5}, \ldots
$$
\n- $x_n = \frac{1}{x_{n-3}} : 5, 3, 12, \frac{1}{5}, \frac{1}{3}, \frac{1}{12}, 5, 3, 12, \frac{1}{5}, \frac{1}{3}, \frac{1}{12}, \ldots$
\n- $y_n = |y_{n-1}| - y_{n-2}$
\n- $x_n = \max\left\{\frac{x_{n-1}}{x_{n-2}}, \frac{1}{x_{n-1}x_{n-2}}\right\}$
\n- $x_n = \max\left\{\frac{1}{x_{n-1}}, \frac{A}{x_{n-2}}\right\}$
\n

Dan Cranston [Boundedness of Max-type Reciprocal Difference Equations](#page-0-0)

A brief history

\n- \n
$$
x_n = \frac{1}{x_{n-1}} : 5, \frac{1}{5}, 5, \frac{1}{5}, 5, \frac{1}{5}, 5, \frac{1}{5}, \ldots
$$
\n
\n- \n $x_n = \frac{1}{x_{n-3}} : 5, 3, 12, \frac{1}{5}, \frac{1}{3}, \frac{1}{12}, 5, 3, 12, \frac{1}{5}, \frac{1}{3}, \frac{1}{12}, \ldots$ \n
\n- \n $y_n = |y_{n-1}| - y_{n-2}$ \n $x_n = \max\left\{\frac{x_{n-1}}{x_{n-2}}, \frac{1}{x_{n-1}x_{n-2}}\right\}$ \n
\n- \n $x_n = \max\left\{\frac{1}{x_{n-1}}, \frac{A}{x_{n-2}}\right\}$ \n
\n- \n $x_n = \max\left\{\frac{1}{x_{n-1}}, \frac{A_{n-1}}{x_{n-2}}\right\}$ \n
\n

Dan Cranston [Boundedness of Max-type Reciprocal Difference Equations](#page-0-0)

•
$$
x_n = \left\{ \frac{A_{n-1}}{x_{n-1}}, \frac{B_{n-1}}{x_{n-2}} \right\}
$$

•
$$
x_n = \left\{ \frac{A_{n-1}}{x_{n-1}}, \frac{B_{n-1}}{x_{n-2}} \right\}
$$

• $x_n = \left\{ \frac{A_{n-1}}{x_{n-1}}, \frac{B_{n-1}}{x_{n-3}} \right\}$

$$
\bullet \; x_n = \left\{ \frac{A_{n-1}}{x_{n-1}}, \frac{B_{n-1}}{x_{n-2}} \right\}
$$

$$
\bullet \; x_n = \left\{ \frac{A_{n-1}}{x_{n-1}}, \frac{B_{n-1}}{x_{n-3}} \right\}
$$

$$
\bullet \; x_n = \left\{ \frac{A_{n-1}}{x_{n-2}}, \frac{B_{n-1}}{x_{n-3}} \right\}
$$

A brief history (cont'd)

•
$$
x_n = \left\{ \frac{A_{n-1}}{x_{n-1}}, \frac{B_{n-1}}{x_{n-2}} \right\}
$$

\n• $x_n = \left\{ \frac{A_{n-1}}{x_{n-1}}, \frac{B_{n-1}}{x_{n-3}} \right\}$
\n• $x_n = \left\{ \frac{A_{n-1}}{x_{n-2}}, \frac{B_{n-1}}{x_{n-3}} \right\}$

$$
x_n = \max_{1 \le i \le t} \left\{ \frac{A_n^i}{x_{n-i}} \right\} \tag{1}
$$

Dan Cranston [Boundedness of Max-type Reciprocal Difference Equations](#page-0-0)

A brief history (cont'd)

$$
\bullet \; x_n = \left\{ \frac{A_{n-1}}{x_{n-1}}, \frac{B_{n-1}}{x_{n-2}} \right\}
$$

$$
\bullet \; x_n = \left\{ \frac{A_{n-1}}{x_{n-1}}, \frac{B_{n-1}}{x_{n-3}} \right\}
$$

$$
\bullet \; x_n = \left\{ \frac{A_{n-1}}{x_{n-2}}, \frac{B_{n-1}}{x_{n-3}} \right\}
$$

$$
x_n = \max_{1 \le i \le t} \left\{ \frac{A_n^i}{x_{n-i}} \right\} \tag{1}
$$

Bidwell and Franke: If a solution to (1) is bounded, then it is eventually periodic.

[A Key Lemma](#page-24-0) [Illuminating Example](#page-38-0) [Some Handwaving](#page-48-0) [The Finale](#page-54-0)

Main Result: All Solutions are Bounded

$$
x_n = \max_{1 \le i \le t} \left\{ \frac{A_n^i}{x_{n-i}} \right\} \tag{1}
$$

Main Theorem (Boundedness): If the periodic coefficient A 's are "nice", then every positive solution $\{x_n\}$ of (1) is bounded.

[A Key Lemma](#page-24-0) [Illuminating Example](#page-38-0) [Some Handwaving](#page-48-0) [The Finale](#page-54-0)

Main Result: All Solutions are Bounded

$$
x_n = \max_{1 \le i \le t} \left\{ \frac{A_n^i}{x_{n-i}} \right\} \tag{1}
$$

Main Theorem (Boundedness): If the periodic coefficient A 's are "nice", then every positive solution $\{x_n\}$ of (1) is bounded.

Proof idea: Assume $\{x_n\}$ is unbounded, and so does not persist. Given ϵ (defined later), find smallest N such that $x_N < \epsilon$. Our lemmas will imply that for some constant C, we get $x_N \ge x_{N-C}$. But now $x_{N-C} < \epsilon$, which contradicts minimality of N.

[A Key Lemma](#page-37-0) [Illuminating Example](#page-38-0) [Some Handwaving](#page-48-0) [The Finale](#page-54-0)

Determining x_i 's ...

[A Key Lemma](#page-37-0) [Illuminating Example](#page-38-0) [Some Handwaving](#page-48-0) [The Finale](#page-54-0)

Determining x_i 's \dots in reverse

[A Key Lemma](#page-37-0) [Illuminating Example](#page-38-0) [Some Handwaving](#page-48-0) [The Finale](#page-54-0)

Determining x_i 's \dots in reverse

Lemma 1: given $P \in \mathbb{Z}^+$ there exists $\epsilon > 0$ s.t. if $x_{P(t+1)} < \epsilon$, then for all $i \in \{1, \ldots, t\}$ and all $k \in \{0, \ldots, P-1\}$

$$
x_{k(t+1)+i} = \frac{A^i_{k(t+1)+i-1}}{x_{k(t+1)}}.
$$

[A Key Lemma](#page-37-0) [Illuminating Example](#page-38-0) [Some Handwaving](#page-48-0) [The Finale](#page-54-0)

Determining x_i 's \dots in reverse

Lemma 1: There is r s.t. given $P \in \mathbb{Z}^+$ there exists $\epsilon > 0$ s.t. if $x_{P(t+1)} < \epsilon$, then for all $i \in \{1, \ldots, t\}$ and all $k \in \{0, \ldots, P-1\}$

$$
x_{k(t+1)} < \epsilon r^{P-k}
$$

$$
x_{k(t+1)+i} = \frac{A_{k(t+1)+i-1}^{i}}{x_{k(t+1)}}.
$$

[A Key Lemma](#page-37-0) [Illuminating Example](#page-38-0) [Some Handwaving](#page-48-0) [The Finale](#page-54-0)

Determining x_i 's \dots in reverse

Lemma 1: There is r s.t. given $P \in \mathbb{Z}^+$ there exists $\epsilon > 0$ s.t. if $x_{P(t+1)} < \epsilon$, then for all $i \in \{1, \ldots, t\}$ and all $k \in \{0, \ldots, P-1\}$

$$
x_{k(t+1)} < \epsilon r^{P-k}
$$

$$
x_{k(t+1)+i} = \frac{A_{k(t+1)+i-1}^{i}}{x_{k(t+1)}}.
$$

[A Key Lemma](#page-37-0) [Illuminating Example](#page-38-0) [Some Handwaving](#page-48-0) [The Finale](#page-54-0)

Determining x_i 's \dots in reverse

Lemma 1: There is r s.t. given $P \in \mathbb{Z}^+$ there exists $\epsilon > 0$ s.t. if $x_{P(t+1)} < \epsilon$, then for all $i \in \{1, \ldots, t\}$ and all $k \in \{0, \ldots, P-1\}$

$$
x_{k(t+1)} < \epsilon r^{P-k}
$$

$$
x_{k(t+1)+i} = \frac{A^i_{k(t+1)+i-1}}{x_{k(t+1)}}.
$$

 $\overline{\cdots}$

[A Key Lemma](#page-37-0) [Illuminating Example](#page-38-0) [Some Handwaving](#page-48-0) [The Finale](#page-54-0)

Determining x_i 's \dots in reverse

÷,

Lemma 1: There is r s.t. given $P \in \mathbb{Z}^+$ there exists $\epsilon > 0$ s.t. if $x_{P(t+1)} < \epsilon$, then for all $i \in \{1, \ldots, t\}$ and all $k \in \{0, \ldots, P-1\}$

$$
x_{k(t+1)} < \epsilon r^{P-k}
$$

$$
x_{k(t+1)+i} = \frac{A_{k(t+1)+i-1}^{i}}{x_{k(t+1)}}.
$$

[A Key Lemma](#page-37-0) [Illuminating Example](#page-38-0) [Some Handwaving](#page-48-0) [The Finale](#page-54-0)

Determining x_i 's \dots in reverse

Lemma 1: There is r s.t. given $P \in \mathbb{Z}^+$ there exists $\epsilon > 0$ s.t. if $x_{P(t+1)} < \epsilon$, then for all $i \in \{1, \ldots, t\}$ and all $k \in \{0, \ldots, P-1\}$

$$
x_{k(t+1)} < \epsilon r^{P-k}
$$

$$
x_{k(t+1)+i} = \frac{A_{k(t+1)+i-1}^{i}}{x_{k(t+1)}}.
$$

 $\overline{\cdots}$ $\bullet\bullet\bullet$

[A Key Lemma](#page-37-0) [Illuminating Example](#page-38-0) [Some Handwaving](#page-48-0) [The Finale](#page-54-0)

Determining x_i 's \dots in reverse

Lemma 1: There is r s.t. given $P \in \mathbb{Z}^+$ there exists $\epsilon > 0$ s.t. if $x_{P(t+1)} < \epsilon$, then for all $i \in \{1, \ldots, t\}$ and all $k \in \{0, \ldots, P-1\}$

$$
x_{k(t+1)} < \epsilon r^{P-k}
$$

$$
x_{k(t+1)+i} = \frac{A_{k(t+1)+i-1}^{i}}{x_{k(t+1)}}.
$$

[A Key Lemma](#page-37-0) [Illuminating Example](#page-38-0) [Some Handwaving](#page-48-0) [The Finale](#page-54-0)

Determining x_i 's \dots in reverse

Lemma 1: There is r s.t. given $P \in \mathbb{Z}^+$ there exists $\epsilon > 0$ s.t. if $x_{P(t+1)} < \epsilon$, then for all $i \in \{1, \ldots, t\}$ and all $k \in \{0, \ldots, P-1\}$

$$
x_{k(t+1)} < \epsilon r^{P-k}
$$

$$
x_{k(t+1)+i} = \frac{A_{k(t+1)+i-1}^{i}}{x_{k(t+1)}}.
$$

 $\overline{\cdots}$ \bullet \bullet \bullet $\bullet\hspace{0.1cm} \bullet\hspace{0.1cm}\bullet\hspace{0.1cm}\bullet$

[A Key Lemma](#page-37-0) [Illuminating Example](#page-38-0) [Some Handwaving](#page-48-0) [The Finale](#page-54-0)

Determining x_i 's \dots in reverse

Lemma 1: There is r s.t. given $P \in \mathbb{Z}^+$ there exists $\epsilon > 0$ s.t. if $x_{P(t+1)} < \epsilon$, then for all $i \in \{1, \ldots, t\}$ and all $k \in \{0, \ldots, P-1\}$

$$
x_{k(t+1)} < \epsilon r^{P-k}
$$

$$
x_{k(t+1)+i} = \frac{A_{k(t+1)+i-1}^{i}}{x_{k(t+1)}}.
$$

 $\overline{\cdots}$ \bullet \bullet \bullet $\bullet\bullet\bullet$

[A Key Lemma](#page-37-0) [Illuminating Example](#page-38-0) [Some Handwaving](#page-48-0) [The Finale](#page-54-0)

Determining x_i 's \dots in reverse

Lemma 1: There is r s.t. given $P \in \mathbb{Z}^+$ there exists $\epsilon > 0$ s.t. if $x_{P(t+1)} < \epsilon$, then for all $i \in \{1, \ldots, t\}$ and all $k \in \{0, \ldots, P-1\}$

$$
x_{k(t+1)} < \epsilon r^{P-k}
$$

$$
x_{k(t+1)+i} = \frac{A_{k(t+1)+i-1}^{i}}{x_{k(t+1)}}.
$$

 $\overline{\cdots}$ $\bullet\bullet\bullet$

[A Key Lemma](#page-37-0) [Illuminating Example](#page-38-0) [Some Handwaving](#page-48-0) [The Finale](#page-54-0)

Determining x_i 's \dots in reverse

Lemma 1: There is r s.t. given $P \in \mathbb{Z}^+$ there exists $\epsilon > 0$ s.t. if $x_{P(t+1)} < \epsilon$, then for all $i \in \{1, \ldots, t\}$ and all $k \in \{0, \ldots, P-1\}$

$$
x_{k(t+1)} < \epsilon r^{P-k}
$$

$$
x_{k(t+1)+i} = \frac{A_{k(t+1)+i-1}^{i}}{x_{k(t+1)}}.
$$

 $\overline{\cdots}$ \bullet \bullet \bullet

Dan Cranston [Boundedness of Max-type Reciprocal Difference Equations](#page-0-0)

[A Key Lemma](#page-24-0) [Illuminating Example](#page-38-0) [Some Handwaving](#page-48-0) [The Finale](#page-54-0)

Determining x_i 's \dots in reverse

Lemma 1: There is r s.t. given $P \in \mathbb{Z}^+$ there exists $\epsilon > 0$ s.t. if $x_{P(t+1)} < \epsilon$, then for all $i \in \{1, \ldots, t\}$ and all $k \in \{0, \ldots, P-1\}$

$$
x_{k(t+1)} < \epsilon r^{P-k}
$$

$$
x_{k(t+1)+i} = \frac{A_{k(t+1)+i-1}^{i}}{x_{k(t+1)}}.
$$

Dan Cranston [Boundedness of Max-type Reciprocal Difference Equations](#page-0-0)

[A Key Lemma](#page-24-0) [Illuminating Example](#page-47-0) [Some Handwaving](#page-48-0) [The Finale](#page-54-0)

Proof by Example

Example:

[A Key Lemma](#page-24-0) [Illuminating Example](#page-47-0) [Some Handwaving](#page-48-0) [The Finale](#page-54-0)

Proof by Example

Example:

Let $\epsilon=10^{-1000}$, $t=3$, max $A^i_j < 10^3$, min $A^i_j > 10^{-2}$.

If $x_{40} < \epsilon$, then $x_{40} = \max\{\frac{A_{*}^{*}}{x_{39}}, \frac{A_{*}^{*}}{x_{38}}, \frac{A_{*}^{*}}{x_{37}}\}$, so $x_{37}, x_{38}, x_{39} > 10^{998}.$

[A Key Lemma](#page-24-0) [Illuminating Example](#page-47-0) [Some Handwaving](#page-48-0) [The Finale](#page-54-0)

Proof by Example

Example:

Let $\epsilon=10^{-1000}$, $t=3$, max $A^i_j < 10^3$, min $A^i_j > 10^{-2}$.

If $x_{40} < \epsilon$, then $x_{40} = \max\{\frac{A_{*}^{*}}{x_{39}}, \frac{A_{*}^{*}}{x_{38}}, \frac{A_{*}^{*}}{x_{37}}\}$, so $x_{37}, x_{38}, x_{39} > 10^{998}.$

• Now
$$
x_{39} = \max\{\frac{A^*_{*}}{x_{38}}, \frac{A^*_{*}}{x_{37}}, \frac{A^*_{*}}{x_{36}}\}
$$
, so $x_{36} < 10^{-995}$.

[A Key Lemma](#page-24-0) [Illuminating Example](#page-47-0) [Some Handwaving](#page-48-0) [The Finale](#page-54-0)

Proof by Example

Example:

- If $x_{40} < \epsilon$, then $x_{40} = \max\{\frac{A_{*}^{*}}{x_{39}}, \frac{A_{*}^{*}}{x_{38}}, \frac{A_{*}^{*}}{x_{37}}\}$, so $x_{37}, x_{38}, x_{39} > 10^{998}.$
- Now $x_{39} = \max\{\frac{A^*_{*}}{x_{38}}, \frac{A^*_{*}}{x_{37}}, \frac{A^*_{*}}{x_{36}}\}$, so $x_{36} < 10^{-995}$. Repeating: x_{33} , x_{34} , x_{35} > 10^{993} and x_{32} < 10^{-990} . etc.

[A Key Lemma](#page-24-0) [Illuminating Example](#page-47-0) [Some Handwaving](#page-48-0) [The Finale](#page-54-0)

Proof by Example

Example:

- If $x_{40} < \epsilon$, then $x_{40} = \max\{\frac{A_{*}^{*}}{x_{39}}, \frac{A_{*}^{*}}{x_{38}}, \frac{A_{*}^{*}}{x_{37}}\}$, so $x_{37}, x_{38}, x_{39} > 10^{998}.$
- Now $x_{39} = \max\{\frac{A^*_{*}}{x_{38}}, \frac{A^*_{*}}{x_{37}}, \frac{A^*_{*}}{x_{36}}\}$, so $x_{36} < 10^{-995}$. Repeating: x_{33} , x_{34} , x_{35} > 10^{993} and x_{32} < 10^{-990} . etc.
- This implies $x_{39} = \frac{A^*_{*}}{x_{36}}$,

[A Key Lemma](#page-24-0) [Illuminating Example](#page-47-0) [Some Handwaving](#page-48-0) [The Finale](#page-54-0)

Proof by Example

Example:

- If $x_{40} < \epsilon$, then $x_{40} = \max\{\frac{A_{*}^{*}}{x_{39}}, \frac{A_{*}^{*}}{x_{38}}, \frac{A_{*}^{*}}{x_{37}}\}$, so $x_{37}, x_{38}, x_{39} > 10^{998}.$
- Now $x_{39} = \max\{\frac{A^*_{*}}{x_{38}}, \frac{A^*_{*}}{x_{37}}, \frac{A^*_{*}}{x_{36}}\}$, so $x_{36} < 10^{-995}$. Repeating: x_{33} , x_{34} , x_{35} > 10^{993} and x_{32} < 10^{-990} . etc.
- This implies $x_{39} = \frac{A^*}{x_{36}}$, $x_{38} = \frac{A^*}{x_{36}}$,

[A Key Lemma](#page-24-0) [Illuminating Example](#page-47-0) [Some Handwaving](#page-48-0) [The Finale](#page-54-0)

Proof by Example

Example:

- If $x_{40} < \epsilon$, then $x_{40} = \max\{\frac{A_{*}^{*}}{x_{39}}, \frac{A_{*}^{*}}{x_{38}}, \frac{A_{*}^{*}}{x_{37}}\}$, so $x_{37}, x_{38}, x_{39} > 10^{998}.$
- Now $x_{39} = \max\{\frac{A^*_{*}}{x_{38}}, \frac{A^*_{*}}{x_{37}}, \frac{A^*_{*}}{x_{36}}\}$, so $x_{36} < 10^{-995}$. Repeating: x_{33} , x_{34} , x_{35} > 10^{993} and x_{32} < 10^{-990} . etc.
- This implies $x_{39} = \frac{A^*_{*}}{x_{36}}$, $x_{38} = \frac{A^*_{*}}{x_{36}}$, $x_{37} = \frac{A^*_{*}}{x_{36}}$,

[A Key Lemma](#page-24-0) [Illuminating Example](#page-47-0) [Some Handwaving](#page-48-0) [The Finale](#page-54-0)

Proof by Example

Example:

- If $x_{40} < \epsilon$, then $x_{40} = \max\{\frac{A_{*}^{*}}{x_{39}}, \frac{A_{*}^{*}}{x_{38}}, \frac{A_{*}^{*}}{x_{37}}\}$, so $x_{37}, x_{38}, x_{39} > 10^{998}.$
- Now $x_{39} = \max\{\frac{A^*_{*}}{x_{38}}, \frac{A^*_{*}}{x_{37}}, \frac{A^*_{*}}{x_{36}}\}$, so $x_{36} < 10^{-995}$. Repeating: x_{33} , x_{34} , x_{35} > 10^{993} and x_{32} < 10^{-990} . etc.

• This implies
$$
x_{39} = \frac{A^*_{*}}{x_{36}}
$$
, $x_{38} = \frac{A^*_{*}}{x_{36}}$, $x_{37} = \frac{A^*_{*}}{x_{36}}$, and again $x_{35} = \frac{A^*_{*}}{x_{32}}$,

[A Key Lemma](#page-24-0) [Illuminating Example](#page-47-0) [Some Handwaving](#page-48-0) [The Finale](#page-54-0)

Proof by Example

Example:

- If $x_{40} < \epsilon$, then $x_{40} = \max\{\frac{A_{*}^{*}}{x_{39}}, \frac{A_{*}^{*}}{x_{38}}, \frac{A_{*}^{*}}{x_{37}}\}$, so $x_{37}, x_{38}, x_{39} > 10^{998}.$
- Now $x_{39} = \max\{\frac{A^*_{*}}{x_{38}}, \frac{A^*_{*}}{x_{37}}, \frac{A^*_{*}}{x_{36}}\}$, so $x_{36} < 10^{-995}$. Repeating: x_{33} , x_{34} , x_{35} > 10^{993} and x_{32} < 10^{-990} . etc.
- This implies $x_{39} = \frac{A^*_{*}}{x_{36}}$, $x_{38} = \frac{A^*_{*}}{x_{36}}$, $x_{37} = \frac{A^*_{*}}{x_{36}}$, and again $x_{35} = \frac{A^*_{*}}{x_{32}}$, $x_{34} = \frac{A^*_{*}}{x_{32}}$,

[A Key Lemma](#page-24-0) [Illuminating Example](#page-38-0) [Some Handwaving](#page-48-0) [The Finale](#page-54-0)

Proof by Example

Example:

- If $x_{40} < \epsilon$, then $x_{40} = \max\{\frac{A_{*}^{*}}{x_{39}}, \frac{A_{*}^{*}}{x_{38}}, \frac{A_{*}^{*}}{x_{37}}\}$, so $x_{37}, x_{38}, x_{39} > 10^{998}.$
- Now $x_{39} = \max\{\frac{A^*_{*}}{x_{38}}, \frac{A^*_{*}}{x_{37}}, \frac{A^*_{*}}{x_{36}}\}$, so $x_{36} < 10^{-995}$. Repeating: x_{33} , x_{34} , x_{35} > 10^{993} and x_{32} < 10^{-990} . etc.
- This implies $x_{39} = \frac{A^*_{*}}{x_{36}}$, $x_{38} = \frac{A^*_{*}}{x_{36}}$, $x_{37} = \frac{A^*_{*}}{x_{36}}$, and again $x_{35} = \frac{A^*_{*}}{x_{32}}, x_{34} = \frac{A^*_{*}}{x_{32}}, x_{33} = \frac{A^*_{*}}{x_{32}},$ etc.

[A Key Lemma](#page-24-0) [Illuminating Example](#page-38-0) [Some Handwaving](#page-53-0) [The Finale](#page-54-0)

Showing that $x_{P(t+1)} \geq x_0$

Lemma 2: Let the A's be nice, and let $P = P(A)$. If for all $i \in \{1, ..., t\}$ and all $k \in \{0, ..., P-1\}$ we have

$$
x_{k(t+1)+i} = \frac{A_{k(t+1)+i-1}^i}{x_{k(t+1)}}
$$

then $x_{P(t+1)} \geq x_0$.

[A Key Lemma](#page-24-0) [Illuminating Example](#page-38-0) [Some Handwaving](#page-53-0) [The Finale](#page-54-0)

Showing that $x_{P(t+1)} \geq x_0$

Lemma 2: Let the A's be nice, and let $P = P(A)$. If for all $i \in \{1, ..., t\}$ and all $k \in \{0, ..., P - 1\}$ we have

$$
x_{k(t+1)+i} = \frac{A_{k(t+1)+i-1}^i}{x_{k(t+1)}}
$$

then $x_{P(t+1)} \geq x_0$.

 $x_{40} = \max\{\frac{A_{*}^{*}}{x_{39}}, \frac{A_{*}^{*}}{x_{38}}, \frac{A_{*}^{*}}{x_{37}}\}$

[A Key Lemma](#page-24-0) [Illuminating Example](#page-38-0) [Some Handwaving](#page-53-0) [The Finale](#page-54-0)

Showing that $x_{P(t+1)} \geq x_0$

Lemma 2: Let the A's be nice, and let $P = P(A)$. If for all $i \in \{1, ..., t\}$ and all $k \in \{0, ..., P-1\}$ we have

$$
x_{k(t+1)+i} = \frac{A^i_{k(t+1)+i-1}}{x_{k(t+1)}}
$$

then $x_{P(t+1)} \geq x_0$.

$$
x_{40}=max\{\frac{A_{*}^{*}}{x_{39}},\frac{A_{*}^{*}}{x_{38}},\frac{A_{*}^{*}}{x_{37}}\}=x_{36} max\{\frac{A_{*}^{*}}{A_{*}^{*}},\cdots\}
$$

[A Key Lemma](#page-24-0) [Illuminating Example](#page-38-0) [Some Handwaving](#page-53-0) [The Finale](#page-54-0)

Showing that $x_{P(t+1)} \geq x_0$

Lemma 2: Let the A's be nice, and let $P = P(A)$. If for all $i \in \{1, ..., t\}$ and all $k \in \{0, ..., P - 1\}$ we have

$$
x_{k(t+1)+i} = \frac{A_{k(t+1)+i-1}^i}{x_{k(t+1)}}
$$

then $x_{P(t+1)} \geq x_0$. $x_{40} = \max\{\frac{A^*_{*}}{x_{39}}, \frac{A^*_{*}}{x_{37}}, \frac{A^*_{*}}{x_{37}}\} = x_{36} \max\{\frac{A^*_{*}}{A^*_{*}}, \cdots\} = x_{0} \max\{\frac{A^*_{*} \cdots A^*_{*}}{A^*_{*} \cdots A^*_{*}}, \cdots\}$

[A Key Lemma](#page-24-0) [Illuminating Example](#page-38-0) [Some Handwaving](#page-53-0) [The Finale](#page-54-0)

Showing that $x_{P(t+1)} \geq x_0$

Lemma 2: Let the A's be nice, and let $P = P(A)$. If for all $i \in \{1, ..., t\}$ and all $k \in \{0, ..., P - 1\}$ we have

$$
x_{k(t+1)+i} = \frac{A^i_{k(t+1)+i-1}}{x_{k(t+1)}}
$$

Dan Cranston [Boundedness of Max-type Reciprocal Difference Equations](#page-0-0)

[A Key Lemma](#page-24-0) [Illuminating Example](#page-38-0) [Some Handwaving](#page-48-0) [The Finale](#page-54-0)

Showing that $x_{P(t+1)} \geq x_0$

Lemma 2: Let the A's be nice, and let $P = P(A)$. If for all $i \in \{1, ..., t\}$ and all $k \in \{0, ..., P-1\}$ we have

$$
x_{k(t+1)+i} = \frac{A^i_{k(t+1)+i-1}}{x_{k(t+1)}}
$$

Dan Cranston [Boundedness of Max-type Reciprocal Difference Equations](#page-0-0)

[A Key Lemma](#page-24-0) [Illuminating Example](#page-38-0) [Some Handwaving](#page-48-0) [The Finale](#page-56-0)

Combining the Lemmas

Lemma 1: There is r s.t. given $P \in \mathbb{Z}^+$ there exists $\epsilon > 0$ s.t. if $x_{P(t+1)} < \epsilon$, then for all $i \in \{1, ..., t\}$ and all $k \in \{0, ..., P-1\}$ $x_{k(t+1)+i} =$ $A^i_{k(t+1)+i-1}$ $\frac{(t+1)+t-1}{x_{k(t+1)}}$.

[A Key Lemma](#page-24-0) [Illuminating Example](#page-38-0) [Some Handwaving](#page-48-0) [The Finale](#page-56-0)

Combining the Lemmas

Lemma 1: There is r s.t. given $P \in \mathbb{Z}^+$ there exists $\epsilon > 0$ s.t. if $x_{P(t+1)} < \epsilon$, then for all $i \in \{1, ..., t\}$ and all $k \in \{0, ..., P-1\}$

$$
x_{k(t+1)+i} = \frac{A_{k(t+1)+i-1}^i}{x_{k(t+1)}}.
$$

Lemma 2: Let the A's be nice, and let $P = P(A)$. If for all $i \in \{1, ..., t\}$ and all $k \in \{0, ..., P-1\}$ we have

$$
x_{k(t+1)+i} = \frac{A^i_{k(t+1)+i-1}}{x_{k(t+1)}}
$$

then $x_{P(t+1)} \geq x_0$.

[A Key Lemma](#page-24-0) [Illuminating Example](#page-38-0) [Some Handwaving](#page-48-0) [The Finale](#page-54-0)

Combining the Lemmas

Lemma 1: There is r s.t. given $P \in \mathbb{Z}^+$ there exists $\epsilon > 0$ s.t. if $x_{P(t+1)} < \epsilon$, then for all $i \in \{1, ..., t\}$ and all $k \in \{0, ..., P-1\}$

$$
x_{k(t+1)+i} = \frac{A_{k(t+1)+i-1}^i}{x_{k(t+1)}}.
$$

Lemma 2: Let the A's be nice, and let $P = P(A)$. If for all $i \in \{1, ..., t\}$ and all $k \in \{0, ..., P-1\}$ we have

$$
x_{k(t+1)+i} = \frac{A_{k(t+1)+i-1}^i}{x_{k(t+1)}}
$$

then $x_{P(t+1)} \geq x_0$.

Corollary: Let the A's be nice. There is $P \in \mathbb{Z}^+$ and $\epsilon > 0$ s.t. if there is $N \ge P(t+1)$ with $x_N < \epsilon$, then $x_N \ge x_{N-P(t+1)}$.

The Big Payoff

Main Theorem (Boundedness): If the periodic coefficient A's are "nice", then every positive solution $\{x_n\}$ of (1) is bounded.

The Big Payoff

Main Theorem (Boundedness): If the periodic coefficient A 's are "nice", then every positive solution $\{x_n\}$ of (1) is bounded. **Proof Sketch:** Assume $\{x_n\}$ doesn't persist; choose $\{x_{n_k}\}_{k=0}^{\infty}$ greedily to be a decreasing subsequence. (So $\lim_{k\to\infty}x_{n_k}=0.$)

The Big Payoff

Main Theorem (Boundedness): If the periodic coefficient A 's are "nice", then every positive solution $\{x_n\}$ of (1) is bounded. **Proof Sketch:** Assume $\{x_n\}$ doesn't persist; choose $\{x_{n_k}\}_{k=0}^{\infty}$ greedily to be a decreasing subsequence. (So $\lim_{k\to\infty}x_{n_k}=0.$)

 X_n : $X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8, X_9, X_{10}, X_{11}, \ldots, X_{43}, X_{44}, X_{45}, X_{46}, \ldots$

The Big Payoff

Main Theorem (Boundedness): If the periodic coefficient A 's are "nice", then every positive solution $\{x_n\}$ of (1) is bounded. **Proof Sketch:** Assume $\{x_n\}$ doesn't persist; choose $\{x_{n_k}\}_{k=0}^{\infty}$ greedily to be a decreasing subsequence. (So $\lim_{k\to\infty}x_{n_k}=0.$)

 x_n : $x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, \ldots, x_{43}, x_{44}, x_{45}, x_{46}, \ldots$ x_{n_k} :

The Big Payoff

Main Theorem (Boundedness): If the periodic coefficient A 's are "nice", then every positive solution $\{x_n\}$ of (1) is bounded. **Proof Sketch:** Assume $\{x_n\}$ doesn't persist; choose $\{x_{n_k}\}_{k=0}^{\infty}$ greedily to be a decreasing subsequence. (So $\lim_{k\to\infty} x_{n_k} = 0$.)

 x_n : $x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, \ldots, x_{43}, x_{44}, x_{45}, x_{46}, \ldots$ x_{n_k} : \uparrow

The Big Payoff

Main Theorem (Boundedness): If the periodic coefficient A 's are "nice", then every positive solution $\{x_n\}$ of (1) is bounded. **Proof Sketch:** Assume $\{x_n\}$ doesn't persist; choose $\{x_{n_k}\}_{k=0}^{\infty}$ greedily to be a decreasing subsequence. (So $\lim_{k\to\infty}x_{n_k}=0.$)

 x_n : $x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, \ldots, x_{43}, x_{44}, x_{45}, x_{46}, \ldots$ x_{n_k} : ↑ ↑

The Big Payoff

Main Theorem (Boundedness): If the periodic coefficient A 's are "nice", then every positive solution $\{x_n\}$ of (1) is bounded. **Proof Sketch:** Assume $\{x_n\}$ doesn't persist; choose $\{x_{n_k}\}_{k=0}^{\infty}$ greedily to be a decreasing subsequence. (So $\lim_{k\to\infty}x_{n_k}=0.$)

 x_n : $x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, \ldots, x_{43}, x_{44}, x_{45}, x_{46}, \ldots$ x_{n_k} : ↑ ↑ ↑

The Big Payoff

Main Theorem (Boundedness): If the periodic coefficient A 's are "nice", then every positive solution $\{x_n\}$ of (1) is bounded. **Proof Sketch:** Assume $\{x_n\}$ doesn't persist; choose $\{x_{n_k}\}_{k=0}^{\infty}$ greedily to be a decreasing subsequence. (So $\lim_{k\to\infty}x_{n_k}=0.$)

 x_n : $x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, \ldots, x_{43}, x_{44}, x_{45}, x_{46}, \ldots$ x_{n_k} : ↑ ↑ ↑ ↑

The Big Payoff

Main Theorem (Boundedness): If the periodic coefficient A 's are "nice", then every positive solution $\{x_n\}$ of (1) is bounded. **Proof Sketch:** Assume $\{x_n\}$ doesn't persist; choose $\{x_{n_k}\}_{k=0}^{\infty}$ greedily to be a decreasing subsequence. (So $\lim_{k\to\infty}x_{n_k}=0.$)

 x_n : $x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, \ldots, x_{43}, x_{44}, x_{45}, x_{46}, \ldots$ x_{n_k} : ↑ ↑ ↑ ↑ ↑ ↑

The Big Payoff

Main Theorem (Boundedness): If the periodic coefficient A 's are "nice", then every positive solution $\{x_n\}$ of (1) is bounded. **Proof Sketch:** Assume $\{x_n\}$ doesn't persist; choose $\{x_{n_k}\}_{k=0}^{\infty}$ greedily to be a decreasing subsequence. (So $\lim_{k\to\infty}x_{n_k}=0.$)

$$
x_n: x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, \ldots, x_{43}, x_{44}, x_{45}, x_{46}, \ldots
$$

\n
$$
x_{n_k}: \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow
$$

Say $t = 3$, and from Corollary 3, say $P = 10$, and say $x_{46} < \epsilon$.

The Big Payoff

Main Theorem (Boundedness): If the periodic coefficient A 's are "nice", then every positive solution $\{x_n\}$ of (1) is bounded. **Proof Sketch:** Assume $\{x_n\}$ doesn't persist; choose $\{x_{n_k}\}_{k=0}^{\infty}$ greedily to be a decreasing subsequence. (So $\lim_{k\to\infty}x_{n_k}=0.$)

$$
x_n: x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, \ldots, x_{43}, x_{44}, x_{45}, x_{46}, \ldots
$$

\n
$$
x_{n_k}: \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow
$$

Say $t = 3$, and from Corollary 3, say $P = 10$, and say $x_{46} < \epsilon$. Now $x_{46} \ge x_{46-10(3+1)} = x_6$ (by our corollary).

The Big Payoff

Main Theorem (Boundedness): If the periodic coefficient A 's are "nice", then every positive solution $\{x_n\}$ of (1) is bounded. **Proof Sketch:** Assume $\{x_n\}$ doesn't persist; choose $\{x_{n_k}\}_{k=0}^{\infty}$ greedily to be a decreasing subsequence. (So $\lim_{k\to\infty} x_{n_k} = 0$.)

$$
x_n: x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, \ldots, x_{43}, x_{44}, x_{45}, x_{46}, \ldots
$$

\n
$$
x_{n_k}: \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow
$$

Say $t = 3$, and from Corollary 3, say $P = 10$, and say $x_{46} < \epsilon$. Now $x_{46} \ge x_{46-10(3+1)} = x_6$ (by our corollary). Also, $x_6 \ge x_5$ (since x_6 was excluded from x_{n_k}).

The Big Payoff

Main Theorem (Boundedness): If the periodic coefficient A 's are "nice", then every positive solution $\{x_n\}$ of (1) is bounded. **Proof Sketch:** Assume $\{x_n\}$ doesn't persist; choose $\{x_{n_k}\}_{k=0}^{\infty}$ greedily to be a decreasing subsequence. (So $\lim_{k\to\infty} x_{n_k} = 0$.)

$$
x_n: x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, \ldots, x_{43}, x_{44}, x_{45}, x_{46}, \ldots
$$

\n
$$
x_{n_k}: \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow
$$

Say $t = 3$, and from Corollary 3, say $P = 10$, and say $x_{46} < \epsilon$. Now $x_{46} \ge x_{46-10(3+1)} = x_6$ (by our corollary). Also, $x_6 \ge x_5$ (since x_6 was excluded from x_{n_k}). So $x_{46} \ge x_5$, and also $x_{46} < x_5$.

The Big Payoff

Main Theorem (Boundedness): If the periodic coefficient A 's are "nice", then every positive solution $\{x_n\}$ of (1) is bounded. **Proof Sketch:** Assume $\{x_n\}$ doesn't persist; choose $\{x_{n_k}\}_{k=0}^{\infty}$ greedily to be a decreasing subsequence. (So $\lim_{k\to\infty}x_{n_k}=0.$)

$$
x_n
$$
: $x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11},..., x_{43}, x_{44}, x_{45}, x_{46},...$
\n x_{n_k} : $\uparrow \uparrow \uparrow \uparrow \uparrow$ \uparrow \uparrow \uparrow \uparrow

Say $t = 3$, and from Corollary 3, say $P = 10$, and say $x_{46} < \epsilon$. Now $x_{46} \ge x_{46-10(3+1)} = x_6$ (by our corollary). Also, $x_6 \ge x_5$ (since x_6 was excluded from x_{n_k}). So $x_{46} \ge x_5$, and also $x_{46} < x_5$. This contradiction implies that $\{x_n\}$ persists (and is bounded).

The Big Payoff

Main Theorem (Boundedness): If the periodic coefficient A 's are "nice", then every positive solution $\{x_n\}$ of (1) is bounded. **Proof Sketch:** Assume $\{x_n\}$ doesn't persist; choose $\{x_{n_k}\}_{k=0}^{\infty}$ greedily to be a decreasing subsequence. (So $\lim_{k\to\infty} x_{n_k} = 0$.)

$$
x_n
$$
: $x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11},..., x_{43}, x_{44}, x_{45}, x_{46},...$
\n x_{n_k} : $\uparrow \uparrow \uparrow \uparrow \uparrow$ \uparrow \uparrow \uparrow

Say $t = 3$, and from Corollary 3, say $P = 10$, and say $x_{46} < \epsilon$. Now $x_{46} \ge x_{46-10(3+1)} = x_6$ (by our corollary). Also, $x_6 \ge x_5$ (since x_6 was excluded from x_{n_k}). So $x_{46} \ge x_5$, and also $x_{46} < x_5$. This contradiction implies that $\{x_n\}$ persists (and is bounded).