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2. No minimal counterexample contains any of the 633 specified
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“nearby” 2-vertices
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charge 12d(v) − 28 to each vertex v .

Since girth ≥ 14, each face has nonnegative charge.

∑

v∈V
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+
∑

f ∈F

(2l(f ) − 28)

︸ ︷︷ ︸

nonnegative

= 28(|E | − |F | − |V |) = −56

Discharging rule: each 2-vert receives 2 from each nearby 3+-vert.
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2-vert: 12(2) − 28 + 2(2) = 0
3-vert: 12(3) − 28 − 4(2) = 0
4+-vert: 12d(v) − 28 − 2d(v)2 = 8d(v) − 28 > 0

Contradiction! So G contains a reducible configuration.
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Many discharging proofs translate into linear-time algorithms.

Generalization
∑

12d(v) − 28 < 0 ⇒ mad(G ) <
28
12

Thm. If mad(G ) <
28
12

, then we can partition V (G ) into sets I

and F s.t. G [F ] is a forest and I is a 2-independent set in G .

Open Questions
◮ What is the minimum girth g s.t. G planar and girth ≥ g

implies an I ,F -partition?
We know that 8 ≤ g ≤ 13

◮ What is the minimum girth g s.t. G planar and girth ≥ g

implies χs(G ) ≤ 4?

◮ For an arbitrary surface S , what is the minimum γS s.t.
girth ≥ γS and G embedded in S implies an I ,F -partition?


