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» Proved by Appel and Haken in 1976; used a computer.
» Reproved in 1996 by Robertson, Sanders, Seymour, Thomas.
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Reducibility and Discharging

Thm. Every planar graph has a coloring with at most 5 colors
1. Every planar graph has a vertex with degree at most 5

2. No minimal counterexample has a vertex with degree at most 5

Thm. Every planar graph has a coloring with at most 4 colors
1. Every planar graph contains at least one of a set of 633
specified subgraphs
2. No minimal counterexample contains any of the 633 specified
subgraphs
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Pf. Assume that G is a minimal counterexample. G must not
contain any of the following subgraphs:

v

—

Partition G — v.
Put v into F. ‘

u v w

0o——0—o— Partition G — H.

Partition G — {u, v, w}. Put w into / and others into F.
Put v into / and u, w into F. Or v into / and others into F.
Or put u, v, w into F. Or all into F.

“nearby” 2-vertices
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Discharging

Give charge 2/(f) — 28 to each face f and
charge 12d(v) — 28 to each vertex v.

Since girth > 14, each face has nonnegative charge.

D (12d(v) — 28)+ > (2/(f) — 28) = 28(|E| — |F| — |V[) = —
veV feF

negative nonnegative

Discharging rule: each 2-vert receives 2 from each nearby 3" -vert.

Show each vertex has nonnegative charge.

2-vert: 12(2) —28+2(2) =0

3-vert: 12(3) —28 —4(2) =0

4% -vert: 12d(v) — 28 —2d(v)2 =8d(v) —28 >0
Contradiction! So G contains a reducible configuration.
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An Efficient Coloring Algorithm

Many discharging proofs translate into linear-time algorithms.

Generalization
S°12d(v) — 28 < 0 = mad(G) < 2
Thm. If mad(G) < 25, then we can partition V/(G) into sets /
and F s.t. G[F] is a forest and / is a 2-independent set in G.

Open Questions
» What is the minimum girth g s.t. G planar and girth > g
implies an /, F-partition?
We know that 8 < g < 13

» What is the minimum girth g s.t. G planar and girth > g
implies xs(G) < 47

» For an arbitrary surface S, what is the minimum ~s s.t.
girth > 75 and G embedded in S implies an /, F-partition?



