Edge Choosability of Planar Graphs with no Two Adjacent Triangles

Daniel Cranston dcransto@uiuc.edu University of Illinois, Urbana-Champaign

April 29, 2006

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

edge-assignment L: function on $E(G)$ that assigns each edge e a list $L(e)$ of colors available to use on e

edge-assignment L: function on $E(G)$ that assigns each edge e a list $L(e)$ of colors available to use on e

L-edge-coloring: proper edge-coloring where each edge gets a color from its assigned list

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

edge-assignment L: function on $E(G)$ that assigns each edge e a list $L(e)$ of colors available to use on e

L-edge-coloring: proper edge-coloring where each edge gets a color from its assigned list

 $\chi'_l(G)$: minimum k such that G has an L -edge-coloring whenever $|L(e)| > k$ for all $e \in E(G)$

KORK ERKER ADE YOUR

List Coloring Conjecture

$$
\chi_l'(G)=\chi'(G)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | 2000

List Coloring Conjecture

$$
\chi_l'(G)=\chi'(G)
$$

Partial Results (List Coloring Conjecture)

 \blacktriangleright Planar, $\Delta(G)$ ≥ 12 [Borodin, Kostochka, Woodall 1997]

List Coloring Conjecture

$$
\chi_l'(G)=\chi'(G)
$$

Partial Results (List Coloring Conjecture)

► Planar, $\Delta(G) \geq 12$ [Borodin, Kostochka, Woodall 1997]

Theorem [Cranston 2006] If G is planar, G does not contain a kite as a subgraph, and $\Delta(G) \geq 9$, then $\chi'_I(G) = \chi'(G) = \Delta(G)$.

KORK ERKER ADE YOUR

```
\chi'(\mathsf{G}) \leq \Delta(\mathsf{G}) + 1
```
K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | 2000

$$
\chi'(G)\leq \Delta(G)+1
$$

Vizing's Conjecture

 $\chi'_l(\mathsf{G}) \leq \Delta(\mathsf{G}) + 1$

$$
\chi'(G)\leq \Delta(G)+1
$$

Vizing's Conjecture

 $\chi'_l(\mathsf{G}) \leq \Delta(\mathsf{G}) + 1$

KORKA SERKER ORA

Partial Results (Vizing's Conjecture)

 \triangleright $\Delta(G) \leq 4$ [Juvan, Mohar, Skrekovski 1999]

$$
\chi'(G)\leq \Delta(G)+1
$$

Vizing's Conjecture

$$
\chi'_I(G)\leq \Delta(G)+1
$$

KORK ERKER ADE YOUR

Partial Results (Vizing's Conjecture)

- \triangleright $\Delta(G) \leq 4$ [Juvan, Mohar, Skrekovski 1999]
- \blacktriangleright Planar, $\Delta(G) \geq 9$ [Borodin 1990]

$$
\chi'(G)\leq \Delta(G)+1
$$

Vizing's Conjecture

$$
\chi'_I(G)\leq \Delta(G)+1
$$

Partial Results (Vizing's Conjecture)

- \triangleright $\Delta(G) \leq 4$ [Juvan, Mohar, Skrekovski 1999]
- \blacktriangleright Planar, $\Delta(G) \geq 9$ [Borodin 1990]

 \triangleright Planar, $\Delta(G) \geq 6$, no intersecting triangles [Wang, Lih 2002]

KORK ERKER ADE YOUR

$$
\chi'(G)\leq \Delta(G)+1
$$

Vizing's Conjecture

 $\chi'_l(\mathsf{G}) \leq \Delta(\mathsf{G}) + 1$

Partial Results (Vizing's Conjecture)

- \triangleright $\Delta(G) \leq 4$ [Juvan, Mohar, Skrekovski 1999]
- \blacktriangleright Planar, $\Delta(G)$ > 9 [Borodin 1990]
- \triangleright Planar, $\Delta(G) \geq 6$, no intersecting triangles [Wang, Lih 2002]

KORK ERKER ADE YOUR

 \triangleright Planar, $\Delta(G) \geq 6$, no 4-cycles [Zhang, Wu 2004]

$$
\chi'(G)\leq \Delta(G)+1
$$

Vizing's Conjecture

 $\chi'_l(\mathsf{G}) \leq \Delta(\mathsf{G}) + 1$

Partial Results (Vizing's Conjecture)

- \triangleright $\Delta(G)$ < 4 [Juvan, Mohar, Skrekovski 1999]
- \blacktriangleright Planar, $\Delta(G)$ > 9 [Borodin 1990]
- \triangleright Planar, $\Delta(G) \geq 6$, no intersecting triangles [Wang, Lih 2002]

KORKAR KERKER EL VOLO

 \triangleright Planar, $\Delta(G)$ > 6, no 4-cycles [Zhang, Wu 2004]

Theorem [Cranston 2005]

If G is planar, G does not contain a kite as a subgraph, and $\Delta(G)\geq 6$, then $\chi_I'(G)\leq \Delta(G)+1$.

$$
\chi'(G)\leq \Delta(G)+1
$$

Vizing's Conjecture

 $\chi'_l(\mathsf{G}) \leq \Delta(\mathsf{G}) + 1$

Partial Results (Vizing's Conjecture)

- \triangleright $\Delta(G)$ < 4 [Juvan, Mohar, Skrekovski 1999]
- \blacktriangleright Planar, $\Delta(G)$ > 9 [Borodin 1990]
- \triangleright Planar, $\Delta(G) \geq 6$, no intersecting triangles [Wang, Lih 2002]

KORKAR KERKER EL VOLO

 \triangleright Planar, $\Delta(G)$ > 6, no 4-cycles [Zhang, Wu 2004]

Theorem [Cranston 2005]

If G is planar, G does not contain a kite as a subgraph, and $\Delta(G) \geq \text{\# }7$, then $\chi'_l(G) \leq \Delta(G)+1$.

Lemma:

If G is planar, G does not contain a kite as a subgraph, and $\Delta(G) \geq 7$, then G contains an edge uv with $d(u) + d(v) \leq \Delta(G) + 2.$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Lemma:

If G is planar, G does not contain a kite as a subgraph, and $\Delta(G) \geq 7$, then G contains an edge uv with $d(u) + d(v) \leq \Delta(G) + 2.$

Observation:

If we can order the edges of G such that for each edge e at most k edges adjacent to edge e precede it in the ordering, then $\chi'_l(G) \leq k+1.$

KORK ERKER ADE YOUR

Lemma:

If G is planar, G does not contain a kite as a subgraph, and $\Delta(G) \geq 7$, then G contains an edge uv with $d(u) + d(v) \leq \Delta(G) + 2.$

Observation:

If we can order the edges of G such that for each edge e at most k edges adjacent to edge e precede it in the ordering, then $\chi'_l(G) \leq k+1.$

KORK ERKER ADE YOUR

Observation:

This lemma implies our theorem.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 9 Q Q*

$$
|F(G)| - |E(G)| + |V(G)| = 2
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 9 Q Q*

$$
|F(G)| - |E(G)| + |V(G)| = 2
$$

K □ ▶ K @ ▶ K 할 K X 할 K : 할 \ 10 Q Q Q

$$
2|E(G)|-4|V(G)|+2|E(G)|-4|F(G)| = -8
$$

$$
|F(G)| - |E(G)| + |V(G)| = 2
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 9 Q Q*

$$
2|E(G)|-4|V(G)|+2|E(G)|-4|F(G)| = -8
$$

$$
\sum_{v \in V(G)} (d(v) - 4) + \sum_{f \in F(G)} (d(f) - 4) = -8
$$

$$
|F(G)| - |E(G)| + |V(G)| = 2
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

$$
2|E(G)|-4|V(G)|+2|E(G)|-4|F(G)| = -8
$$

$$
\sum_{v \in V(G)} (d(v)-4) + \sum_{f \in F(G)} (d(f)-4) = -8
$$

Charge $\mu(x) = d(x) - 4$ for all $x \in V(G) \cup F(G)$

$$
|F(G)| - |E(G)| + |V(G)| = 2
$$

KORK ERKER ADE YOUR

$$
2|E(G)|-4|V(G)|+2|E(G)|-4|F(G)| = -8
$$

$$
\sum_{v \in V(G)} (d(v) - 4) + \sum_{f \in F(G)} (d(f) - 4) = -8
$$

Charge $\mu(x) = d(x) - 4$ for all $x \in V(G) \cup F(G)$

Redistribute charge, so that sum is unchanged but new charge $\mu^*(x) \geq 0$ for all $x \in V(G) \cup F(G)$.

$$
|F(G)| - |E(G)| + |V(G)| = 2
$$

KORK ERKER ADE YOUR

$$
2|E(G)|-4|V(G)|+2|E(G)|-4|F(G)| = -8
$$

$$
\sum_{v \in V(G)} (d(v) - 4) + \sum_{f \in F(G)} (d(f) - 4) = -8
$$

Charge $\mu(x) = d(x) - 4$ for all $x \in V(G) \cup F(G)$ Redistribute charge, so that sum is unchanged but new charge $\mu^*(x) \geq 0$ for all $x \in V(G) \cup F(G)$.

$$
0 \leq \sum_{x \in V \cup F} \mu^*(x) = \sum_{x \in V \cup F} \mu(x) = -8
$$

$$
|F(G)| - |E(G)| + |V(G)| = 2
$$

$$
2|E(G)|-4|V(G)|+2|E(G)|-4|F(G)| = -8
$$

$$
\sum_{v \in V(G)} (d(v) - 4) + \sum_{f \in F(G)} (d(f) - 4) = -8
$$

Charge $\mu(x) = d(x) - 4$ for all $x \in V(G) \cup F(G)$

Redistribute charge, so that sum is unchanged but new charge $\mu^*(x) \geq 0$ for all $x \in V(G) \cup F(G)$.

$$
0 \leq \sum_{x \in V \cup F} \mu^*(x) = \sum_{x \in V \cup F} \mu(x) = -8
$$

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Contradiction! So no counterexample exists.

$$
|F(G)| - |E(G)| + |V(G)| = 2
$$

$$
2|E(G)|-4|V(G)|+2|E(G)|-4|F(G)| = -8
$$

$$
\sum_{v \in V(G)} (d(v) - 4) + \sum_{f \in F(G)} (d(f) - 4) = -8
$$

Charge $\mu(x) = d(x) - 4$ for all $x \in V(G) \cup F(G)$

Redistribute charge, so that sum is unchanged but new charge $\mu^*(x) \geq 0$ for all $x \in V(G) \cup F(G)$.

$$
0 \leq \sum_{x \in V \cup F} \mu^*(x) = \sum_{x \in V \cup F} \mu(x) = -8
$$

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Contradiction! So no counterexample exists. This is called the Discharging Method

Proof: Consider a counterexample G. For each edge $uv \in E(G)$, $d(u) + d(v) \geq \Delta(G) + 3 \geq 10$. Note that $\delta(G) \geq 3$.

KORK ERKER ADE YOUR

Proof: Consider a counterexample G. For each edge $uv \in E(G)$, $d(u) + d(v) > \Delta(G) + 3 > 10$. Note that $\delta(G) > 3$.

KORKAR KERKER EL VOLO

Discharging with $\mu(x) = d(x) - 4$ for all $x \in V(G) \cup F(G)$.

Proof: Consider a counterexample G. For each edge $uv \in E(G)$, $d(u) + d(v) > \Delta(G) + 3 > 10$. Note that $\delta(G) > 3$.

KORKAR KERKER EL VOLO

Discharging with $\mu(x) = d(x) - 4$ for all $x \in V(G) \cup F(G)$.

Rules $R1$) \geq 5-vertex gives 1/2 to each incident triangle

Proof: Consider a counterexample G. For each edge $uv \in E(G)$, $d(u) + d(v) > \Delta(G) + 3 > 10$. Note that $\delta(G) > 3$.

Discharging with $\mu(x) = d(x) - 4$ for all $x \in V(G) \cup F(G)$.

Rules

 $R1$) \geq 5-vertex gives 1/2 to each incident triangle

R2) Δ -vertex gives 1/3 to each adjacent 3-vertex

Proof: Consider a counterexample G. For each edge $uv \in E(G)$, $d(u) + d(v) > \Delta(G) + 3 > 10$. Note that $\delta(G) > 3$.

Discharging with $\mu(x) = d(x) - 4$ for all $x \in V(G) \cup F(G)$.

Rules

 $R1$) \geq 5-vertex gives 1/2 to each incident triangle R2) Δ -vertex gives 1/3 to each adjacent 3-vertex

Fix a face f. Show that $\mu^*(f) \geq 0$. $d(f) = 3$ $d(f) > 4$

Proof: Consider a counterexample G. For each edge $uv \in E(G)$, $d(u) + d(v) > \Delta(G) + 3 > 10$. Note that $\delta(G) > 3$.

Discharging with $\mu(x) = d(x) - 4$ for all $x \in V(G) \cup F(G)$.

Rules

 $R1$) \geq 5-vertex gives 1/2 to each incident triangle R2) Δ -vertex gives 1/3 to each adjacent 3-vertex

Fix a face *f*. Show that
$$
\mu^*(f) \ge 0
$$
.
\n $\frac{d(f)}{g} = 3$ $\mu^*(f) \ge -1 + 2(1/2) = 0$
\n $d(f) \ge 4$

Proof: Consider a counterexample G. For each edge $uv \in E(G)$, $d(u) + d(v) > \Delta(G) + 3 > 10$. Note that $\delta(G) > 3$.

KORKAR KERKER EL VOLO

Discharging with $\mu(x) = d(x) - 4$ for all $x \in V(G) \cup F(G)$.

Rules

 $R1$) \geq 5-vertex gives 1/2 to each incident triangle R2) Δ -vertex gives 1/3 to each adjacent 3-vertex

Fix a face f. Show that $\mu^*(f) \geq 0$. $d(f) = 3$ $\mu^*(f) \ge -1 + 2(1/2) = 0$ $d(f) \ge 4$ $\mu^*(f) = \mu(f) \ge 0$

 $R1$) \geq 5-vertex gives 1/2 to each incident triangle

R2) ∆-vertex gives 1/3 to each incident 3-vertex

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O *

 $R1$) \geq 5-vertex gives 1/2 to each incident triangle R2) Δ -vertex gives 1/3 to each incident 3-vertex

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Fix a vertex v. Show that $\mu^*(v) \geq 0$.

 $R1$) \geq 5-vertex gives 1/2 to each incident triangle R2) Δ -vertex gives 1/3 to each incident 3-vertex

KORK ERKER ADE YOUR

Fix a vertex v. Show that $\mu^*(v) \geq 0$.

 $d(v) = 3$ $d(v) = 4$ $d(v) = 5$

 $6 < d(v) < \Delta(G) - 1$

 $R1$) \geq 5-vertex gives 1/2 to each incident triangle R2) Δ -vertex gives 1/3 to each incident 3-vertex

KORK ERKER ADE YOUR

Fix a vertex v. Show that $\mu^*(v) \geq 0$. $d(v) = 3$ $\mu^*(v) = -1 + 3(1/3) = 0$ $d(v) = 4$ $d(v) = 5$

$$
6\leq d(v)\leq \Delta(G)-1
$$

 $R1$) \geq 5-vertex gives 1/2 to each incident triangle R2) Δ -vertex gives 1/3 to each incident 3-vertex

KORK ERKER ADE YOUR

Fix a vertex v. Show that $\mu^*(v) \geq 0$. $d(v) = 3$ $\mu^*(v) = -1 + 3(1/3) = 0$ $d(v) = 4$ $\mu^*(v) = \mu(v) = 0$ $d(v) = 5$

$$
6\leq d(v)\leq \Delta(G)-1
$$

 $R1$) $>$ 5-vertex gives $1/2$ to each incident triangle R2) Δ -vertex gives 1/3 to each incident 3-vertex

KORK ERKER ADE YOUR

Fix a vertex v. Show that $\mu^*(v) \geq 0$. $d(v) = 3$ $\mu^*(v) = -1 + 3(1/3) = 0$ $d(v) = 4$ $\mu^*(v) = \mu(v) = 0$ $d(v) = 5$ $\mu^*(v) \ge 1 - 2(1/2) = 0$

 $6 < d(v) < \Delta(G) - 1$

 $R1$) $>$ 5-vertex gives $1/2$ to each incident triangle R2) Δ -vertex gives 1/3 to each incident 3-vertex

Fix a vertex v. Show that $\mu^*(v) \geq 0$. $d(v) = 3$ $\mu^*(v) = -1 + 3(1/3) = 0$ $d(v) = 4$ $\mu^*(v) = \mu(v) = 0$ $d(v) = 5$ $\mu^*(v) \ge 1 - 2(1/2) = 0$

 $6 < d(v) < \Delta(G) - 1$ v is incident to at most $d(v)/2$ triangles, so $\mu^*(v) \geq d(v) - 4 - d(v)/2(1/2) = 3d(v)/4 - 4 > 0$

KORK ERKER ADE YOUR

 $R1$) $>$ 5-vertex gives $1/2$ to each incident triangle R2) Δ -vertex gives 1/3 to each incident 3-vertex

Fix a vertex v. Show that $\mu^*(v) \geq 0$. $d(v) = 3$ $\mu^*(v) = -1 + 3(1/3) = 0$ $d(v) = 4$ $\mu^*(v) = \mu(v) = 0$ $d(v) = 5$ $\mu^*(v) \ge 1 - 2(1/2) = 0$

 $6 < d(v) < \Delta(G) - 1$ v is incident to at most $d(v)/2$ triangles, so $\mu^*(v) \geq d(v) - 4 - d(v)/2(1/2) = 3d(v)/4 - 4 > 0$

KORK ERKER ADE YOUR

 $d(v) = \Delta(G)$ Say v is incident to t triangles.

 $R1$) $>$ 5-vertex gives $1/2$ to each incident triangle R2) Δ -vertex gives 1/3 to each incident 3-vertex

Fix a vertex v. Show that $\mu^*(v) \geq 0$. $d(v) = 3$ $\mu^*(v) = -1 + 3(1/3) = 0$ $d(v) = 4$ $\mu^*(v) = \mu(v) = 0$ $d(v) = 5$ $\mu^*(v) \ge 1 - 2(1/2) = 0$

 $6 < d(v) < \Delta(G) - 1$ v is incident to at most $d(v)/2$ triangles, so $\mu^*(v) \geq d(v) - 4 - d(v)/2(1/2) = 3d(v)/4 - 4 > 0$

 $d(v) = \Delta(G)$ Say v is incident to t triangles.

$$
\mu^*(v) \geq d(v) - 4 - t/2 - (d(v) - t)/3
$$

KORKAR KERKER EL VOLO

 $R1$) $>$ 5-vertex gives $1/2$ to each incident triangle R2) Δ -vertex gives 1/3 to each incident 3-vertex

Fix a vertex v. Show that $\mu^*(v) \geq 0$. $d(v) = 3$ $\mu^*(v) = -1 + 3(1/3) = 0$ $d(v) = 4$ $\mu^*(v) = \mu(v) = 0$ $d(v) = 5$ $\mu^*(v) \ge 1 - 2(1/2) = 0$

 $6 < d(v) < \Delta(G) - 1$ v is incident to at most $d(v)/2$ triangles, so $\mu^*(v) \geq d(v) - 4 - d(v)/2(1/2) = 3d(v)/4 - 4 > 0$

 $d(v) = \Delta(G)$ Say v is incident to t triangles.

$$
\mu^*(v) \geq d(v) - 4 - t/2 - (d(v) - t)/3
$$

\n
$$
\geq 7d(v)/12 - 4
$$

KORK ERKER ADE YOUR

 $R1$) $>$ 5-vertex gives $1/2$ to each incident triangle R2) Δ -vertex gives 1/3 to each incident 3-vertex

Fix a vertex v. Show that $\mu^*(v) \geq 0$. $d(v) = 3$ $\mu^*(v) = -1 + 3(1/3) = 0$ $d(v) = 4$ $\mu^*(v) = \mu(v) = 0$ $d(v) = 5$ $\mu^*(v) \ge 1 - 2(1/2) = 0$

 $6 < d(v) < \Delta(G) - 1$ v is incident to at most $d(v)/2$ triangles, so $\mu^*(v) \geq d(v) - 4 - d(v)/2(1/2) = 3d(v)/4 - 4 > 0$

 $d(v) = \Delta(G)$ Say v is incident to t triangles.

$$
\mu^*(v) \geq d(v) - 4 - t/2 - (d(v) - t)/3
$$

\n
$$
\geq 7d(v)/12 - 4
$$

\n
$$
> 0 \text{ when } d(v) \geq 7.
$$

KORK ERKER ADE YOUR