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L-edge-coloring: proper edge-coloring where each edge gets a color
from its assigned list

X/(G): minimum k such that G has an L-edge-coloring whenever
|L(e)| > k for all e € E(G)



List Coloring Conjecture



List Coloring Conjecture

xXi(G) =X'(G)

Partial Results (List Coloring Conjecture)
» Planar, A(G) > 12 [Borodin, Kostochka, Woodall 1997]



List Coloring Conjecture

xXi(G) = x'(G)

Partial Results (List Coloring Conjecture)
» Planar, A(G) > 12 [Borodin, Kostochka, Woodall 1997]

Theorem [Cranston 2006]
If G is planar, G does not contain a kite as a subgraph, and
A(G) > 9, then x)(G) = X'(G) = A(G).
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Vizing's Theorem [1964]

X'(G) <A(G)+1
Vizing's Conjecture

Xi(G) < A(G) +1

Partial Results (Vizing's Conjecture)
» A(G) < 4 [Juvan, Mohar, Skrekovski 1999]
» Planar, A(G) > 9 [Borodin 1990]
» Planar, A(G) > 6, no intersecting triangles [Wang, Lih 2002]
» Planar, A(G) > 6, no 4-cycles [Zhang, Wu 2004]

Theorem [Cranston 2005]
If G is planar, G does not contain a kite as a subgraph, and
A(G) > 87, then x)(G) < A(G) + 1.



Lemma:

If G is planar, G does not contain a kite as a subgraph, and
A(G) > 7, then G contains an edge uv with

d(u) +d(v) < A(G) + 2.



Lemma:

If G is planar, G does not contain a kite as a subgraph, and
A(G) > 7, then G contains an edge uv with

d(u) +d(v) < A(G) + 2.

Observation:

If we can order the edges of G such that for each edge e at most k
edges adjacent to edge e precede it in the ordering, then

xX)(G) < k+1.



Lemma:

If G is planar, G does not contain a kite as a subgraph, and
A(G) > 7, then G contains an edge uv with

d(u) +d(v) < A(G) + 2.

Observation:

If we can order the edges of G such that for each edge e at most k
edges adjacent to edge e precede it in the ordering, then

xX)(G) < k+1.

Observation:
This lemma implies our theorem.
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Assume a counterexample G:

IF(G) = E(G)[+[V(G)] = 2

21E(G)[ - 4|V(G)| +2|E(G)[ - 4]F(G)] = -8

Charge p(x) = d(x) — 4 for all x € V(G) U F(G)
Redistribute charge, so that sum is unchanged but new charge
w*(x) >0 for all x € V(G)U F(G).

0< Y pw(x)= > ulx)=-8

xeVUF xeVUF

Contradiction! So no counterexample exists.
This is called the Discharging Method
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Lemma: If G is planar, G does not contain a kite as a subgraph,
and A(G) > 7, then G contains an edge uv with
d(u) +d(v) < A(G)+2

Proof: Consider a counterexample G. For each edge uv € E(G),
d(u) + d(v) > A(G) + 3 > 10. Note that 6(G) > 3.

Discharging with p(x) = d(x) — 4 for all x € V(G) U F(G).

Rules
R1) > 5-vertex gives 1/2 to each incident triangle

R2) A-vertex gives 1/3 to each adjacent 3-vertex

Fix a face f. Show that p*(f) > 0.

d(f) =3 pi(f) = -1+2(1/2) =
d(f) =4 p(f) = u(f) = 0
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Fix a vertex v. Show that p*(v) > 0.
div)=3 p*(v)=-143(1/3)=0
dv)=4  p'(v)=p(v)=0
dliv)=5 p*(v)>1-2(1/2)=0

6 <d(v)<A(G)—1 visincident to at most d(v)/2 triangles,
so u*(v) > d(v) —4—d(v)/2(1/2) =3d(v)/4—4>0

d(v) = A(G)  Say v is incident to t triangles.
p(v) > d(v)—4—-t/2—(d(v)—1t)/3
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>
> 0 whend(v)>7.



