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edge-assignment L: function on E (G ) that assigns each edge e a
list L(e) of colors available to use on e

L-edge-coloring: proper edge-coloring where each edge gets a color
from its assigned list

χ′
l(G ): minimum k such that G has an L-edge-coloring whenever
|L(e)| ≥ k for all e ∈ E (G )
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Lemma:
If G is planar, G does not contain a kite as a subgraph, and
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Assume a counterexample G :

|F (G )| − |E (G )|+ |V (G )| = 2

2|E (G )| − 4|V (G )|+ 2|E (G )| − 4|F (G )| = −8

∑
v∈V (G)

(d(v)− 4) +
∑

f ∈F (G)

(d(f )− 4) = −8

Charge µ(x) = d(x)− 4 for all x ∈ V (G ) ∪ F (G )

Redistribute charge, so that sum is unchanged but new charge
µ∗(x) ≥ 0 for all x ∈ V (G ) ∪ F (G ).

0 ≤
∑

x∈V∪F

µ∗(x) =
∑

x∈V∪F

µ(x) = −8

Contradiction! So no counterexample exists.
This is called the Discharging Method
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Lemma: If G is planar, G does not contain a kite as a subgraph,
and ∆(G ) ≥ 7, then G contains an edge uv with
d(u) + d(v) ≤ ∆(G ) + 2

Proof: Consider a counterexample G . For each edge uv ∈ E (G ),
d(u) + d(v) ≥ ∆(G ) + 3 ≥ 10. Note that δ(G ) ≥ 3.

Discharging with µ(x) = d(x)− 4 for all x ∈ V (G ) ∪ F (G ).

Rules
R1) ≥ 5-vertex gives 1/2 to each incident triangle

R2) ∆-vertex gives 1/3 to each adjacent 3-vertex

F

ix a face f . Show that µ∗(f ) ≥ 0.

d(f ) = 3

µ∗(f ) ≥ −1 + 2(1/2) = 0
d(f ) ≥ 4 µ∗(f ) = µ(f ) ≥ 0
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d(v) = ∆(G )

Say v is incident to t triangles.

µ∗(v) ≥ d(v)− 4− t/2− (d(v)− t)/3

≥ 7d(v)/12− 4

> 0 when d(v) ≥ 7.
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