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Edge-coloring Examples

Goal: Assign colors to the edges of a graph so that edges with a
common endpoint get distinct colors; use as few colors as possible.
For a graph G , minimum number of colors is �0(G ).

Ex 1:

Equivalent to coloring vertices of line graph L(G ) of G .

Ex 2: Simple graphs with �0(G ) � �(G ) + 1

Let G be k-regular on 2t vertices. Form bG from
G by subdividing one edge. bG has kt + 1 edges,
but each color class has size at most t. Thus,
�0(bG ) �

⌃
kt+1

t

⌥
= k + 1. bG is an overfull graph.



Edge-coloring Examples

Goal: Assign colors to the edges of a graph so that edges with a
common endpoint get distinct colors;

use as few colors as possible.
For a graph G , minimum number of colors is �0(G ).

Ex 1:

Equivalent to coloring vertices of line graph L(G ) of G .

Ex 2: Simple graphs with �0(G ) � �(G ) + 1

Let G be k-regular on 2t vertices. Form bG from
G by subdividing one edge. bG has kt + 1 edges,
but each color class has size at most t. Thus,
�0(bG ) �

⌃
kt+1

t

⌥
= k + 1. bG is an overfull graph.



Edge-coloring Examples

Goal: Assign colors to the edges of a graph so that edges with a
common endpoint get distinct colors; use as few colors as possible.

For a graph G , minimum number of colors is �0(G ).

Ex 1:

Equivalent to coloring vertices of line graph L(G ) of G .

Ex 2: Simple graphs with �0(G ) � �(G ) + 1

Let G be k-regular on 2t vertices. Form bG from
G by subdividing one edge. bG has kt + 1 edges,
but each color class has size at most t. Thus,
�0(bG ) �

⌃
kt+1

t

⌥
= k + 1. bG is an overfull graph.



Edge-coloring Examples

Goal: Assign colors to the edges of a graph so that edges with a
common endpoint get distinct colors; use as few colors as possible.
For a graph G , minimum number of colors is �0(G ).

Ex 1:

Equivalent to coloring vertices of line graph L(G ) of G .

Ex 2: Simple graphs with �0(G ) � �(G ) + 1

Let G be k-regular on 2t vertices. Form bG from
G by subdividing one edge. bG has kt + 1 edges,
but each color class has size at most t. Thus,
�0(bG ) �

⌃
kt+1

t

⌥
= k + 1. bG is an overfull graph.



Edge-coloring Examples

Goal: Assign colors to the edges of a graph so that edges with a
common endpoint get distinct colors; use as few colors as possible.
For a graph G , minimum number of colors is �0(G ).

Ex 1:

Equivalent to coloring vertices of line graph L(G ) of G .

Ex 2: Simple graphs with �0(G ) � �(G ) + 1

Let G be k-regular on 2t vertices. Form bG from
G by subdividing one edge. bG has kt + 1 edges,
but each color class has size at most t. Thus,
�0(bG ) �

⌃
kt+1

t

⌥
= k + 1. bG is an overfull graph.



Edge-coloring Examples

Goal: Assign colors to the edges of a graph so that edges with a
common endpoint get distinct colors; use as few colors as possible.
For a graph G , minimum number of colors is �0(G ).

Ex 1:

Equivalent to coloring vertices of line graph L(G ) of G .

Ex 2: Simple graphs with �0(G ) � �(G ) + 1

Let G be k-regular on 2t vertices. Form bG from
G by subdividing one edge. bG has kt + 1 edges,
but each color class has size at most t. Thus,
�0(bG ) �

⌃
kt+1

t

⌥
= k + 1. bG is an overfull graph.



Edge-coloring Examples

Goal: Assign colors to the edges of a graph so that edges with a
common endpoint get distinct colors; use as few colors as possible.
For a graph G , minimum number of colors is �0(G ).

Ex 1:

1

3

4

2

1

3

4

3

4

2

Equivalent to coloring vertices of line graph L(G ) of G .

Ex 2: Simple graphs with �0(G ) � �(G ) + 1

Let G be k-regular on 2t vertices. Form bG from
G by subdividing one edge. bG has kt + 1 edges,
but each color class has size at most t. Thus,
�0(bG ) �

⌃
kt+1

t

⌥
= k + 1. bG is an overfull graph.



Edge-coloring Examples

Goal: Assign colors to the edges of a graph so that edges with a
common endpoint get distinct colors; use as few colors as possible.
For a graph G , minimum number of colors is �0(G ).

Ex 1:

4

3

3

2

1

4

3

1

2

4

1

3

4

2

1

3

4

3

4

2

Equivalent to coloring vertices of line graph L(G ) of G .

Ex 2: Simple graphs with �0(G ) � �(G ) + 1

Let G be k-regular on 2t vertices. Form bG from
G by subdividing one edge. bG has kt + 1 edges,
but each color class has size at most t. Thus,
�0(bG ) �

⌃
kt+1

t

⌥
= k + 1. bG is an overfull graph.



Edge-coloring Examples

Goal: Assign colors to the edges of a graph so that edges with a
common endpoint get distinct colors; use as few colors as possible.
For a graph G , minimum number of colors is �0(G ).

Ex 1:

4

3

3

2

1

4

3

1

2

4

1

3

4

2

1

3

4

3

4

2

Equivalent to coloring vertices of line graph L(G ) of G .

Ex 2: Simple graphs with �0(G ) � �(G ) + 1

Let G be k-regular on 2t vertices. Form bG from
G by subdividing one edge. bG has kt + 1 edges,
but each color class has size at most t. Thus,
�0(bG ) �

⌃
kt+1

t

⌥
= k + 1. bG is an overfull graph.



Edge-coloring Examples

Goal: Assign colors to the edges of a graph so that edges with a
common endpoint get distinct colors; use as few colors as possible.
For a graph G , minimum number of colors is �0(G ).

Ex 1:

4

3

3

2

1

4

3

1

2

4

1

3

4

2

1

3

4

3

4

2

Equivalent to coloring vertices of line graph L(G ) of G .

Ex 2: Simple graphs with �0(G ) � �(G ) + 1

Let G be k-regular on 2t vertices.

Form bG from
G by subdividing one edge. bG has kt + 1 edges,
but each color class has size at most t. Thus,
�0(bG ) �

⌃
kt+1

t

⌥
= k + 1. bG is an overfull graph.



Edge-coloring Examples

Goal: Assign colors to the edges of a graph so that edges with a
common endpoint get distinct colors; use as few colors as possible.
For a graph G , minimum number of colors is �0(G ).

Ex 1:

4

3

3

2

1

4

3

1

2

4

1

3

4

2

1

3

4

3

4

2

Equivalent to coloring vertices of line graph L(G ) of G .

Ex 2: Simple graphs with �0(G ) � �(G ) + 1

Let G be k-regular on 2t vertices. Form bG from
G by subdividing one edge.

bG has kt + 1 edges,
but each color class has size at most t. Thus,
�0(bG ) �

⌃
kt+1

t

⌥
= k + 1. bG is an overfull graph.



Edge-coloring Examples

Goal: Assign colors to the edges of a graph so that edges with a
common endpoint get distinct colors; use as few colors as possible.
For a graph G , minimum number of colors is �0(G ).

Ex 1:

4

3

3

2

1

4

3

1

2

4

1

3

4

2

1

3

4

3

4

2

Equivalent to coloring vertices of line graph L(G ) of G .

Ex 2: Simple graphs with �0(G ) � �(G ) + 1

Let G be k-regular on 2t vertices. Form bG from
G by subdividing one edge. bG has kt + 1 edges,
but each color class has size at most t.

Thus,
�0(bG ) �

⌃
kt+1

t

⌥
= k + 1. bG is an overfull graph.



Edge-coloring Examples

Goal: Assign colors to the edges of a graph so that edges with a
common endpoint get distinct colors; use as few colors as possible.
For a graph G , minimum number of colors is �0(G ).

Ex 1:

4

3

3

2

1

4

3

1

2

4

1

3

4

2

1

3

4

3

4

2

Equivalent to coloring vertices of line graph L(G ) of G .

Ex 2: Simple graphs with �0(G ) � �(G ) + 1

Let G be k-regular on 2t vertices. Form bG from
G by subdividing one edge. bG has kt + 1 edges,
but each color class has size at most t. Thus,
�0(bG ) �

⌃
kt+1

t

⌥
= k + 1.

bG is an overfull graph.



Edge-coloring Examples

Goal: Assign colors to the edges of a graph so that edges with a
common endpoint get distinct colors; use as few colors as possible.
For a graph G , minimum number of colors is �0(G ).

Ex 1:

4

3

3

2

1

4

3

1

2

4

1

3

4

2

1

3

4

3

4

2

Equivalent to coloring vertices of line graph L(G ) of G .

Ex 2: Simple graphs with �0(G ) � �(G ) + 1

Let G be k-regular on 2t vertices. Form bG from
G by subdividing one edge. bG has kt + 1 edges,
but each color class has size at most t. Thus,
�0(bG ) �

⌃
kt+1

t

⌥
= k + 1. bG is an overfull graph.



Easy Theorems for Simple Graphs

I König: If G is bipartite, then �0(G ) = �(G ).

I Vizing: Always �(G )  �0(G )  �(G ) + 1.

I Holyer: NP-hard to decide if �0(G ) = �(G ).

I Erdős–Wilson: Almost always �0(G ) = �(G ).

Proof of König’s Theorem:

Rem: Kempe swaps are fundamental tool for edge-coloring.
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I Erdős–Wilson: Almost always �0(G ) = �(G ).

Proof of König’s Theorem:

Rem: Kempe swaps are fundamental tool for edge-coloring.



Easy Theorems for Simple Graphs

I König: If G is bipartite, then �0(G ) = �(G ).

I Vizing: Always �(G )  �0(G )  �(G ) + 1.

I Holyer: NP-hard to decide if �0(G ) = �(G ).
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I Erdős–Wilson: Almost always �0(G ) = �(G ).

Proof of König’s Theorem:

Rem: Kempe swaps are fundamental tool for edge-coloring.



Harder Theorems for Simple Graphs

Vizing’s Planar Graph Conjecture:
If G is planar and �(G ) � 6, then �0(G ) = �(G ).

True for �(G ) � 7 (Sanders–Zhao; Zhang). False for �(G )  5.
Ex 2, starting from 4-cycle, cube, octahedron, and icosahedron.

4 Color Theorem:
If G is 3-regular, has no overfull
subgraph, and is planar, then �0(G ) = 3.

Tutte’s Edge-coloring Conj (proved!):
If G is 3-regular, has no overfull
subgraph, and has no subdivision of the
Petersen graph, then �0(G ) = 3.
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Simple Graphs with �0(G ) = �

Def: Let G
�

be subgraph induced by �-vertices.

I

I Does �(G
�

)  2 imply �0(G ) = �?

I No. G could be overfull.

I Does �(G
�

)  2 imply �0(G ) = � if G is not overfull? No.

Hilton–Zhao Conjecture:
If �(G

�

)  2 and G 6= P⇤, then �0(G ) > � i↵ G is overfull.
Cariolaro–Cariolaro: True for � = 3.
C.–Rabern: True for � = 4.
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Multigraphs

Obs: Now �0(G )  �(G ) + 1 may not hold!

Ex 4:

Let

W(G ) = max
H ✓ G
|H| � 3

|E (H)|
b|V (H)|/2c .

Since �0(G ) � �0(H) for every subgraph H, �0(G ) � dW(G )e.
Goldberg–Seymour Conj: Every multigraph G satisfies

�0(G )  max{�(G ) + 1, dW(G )e}.

Thm: G–S Conj is true asymptotically, and for �(G )  23.
Always �0(G )  max{�+ 3

p
�/2, dW(G )e}.
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Strengthening Brooks’ Theorem for Line Graphs

I Brooks: �(G )  max{!(G ),�(G ), 3}
I Vizing: �(G )  !(G ) + 1 for line graph of simple graph

I Kierstead: �(G )  !(G ) + 1 for {K
1,3,K5

� e}-free
I C.–Rabern: �(G )  max{!(G ), 5�(G)+8

6

} for line graph of a
multigraph; this is best possible

Ex 5:

�(G ) = 3k � 1, �(G ) =
⌃
5k
2

⌥
, 5(3k�1)+8

6

= 5k+1

2

=
⌃
5k
2

⌥
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Kierstead Paths

Def: Fix G , u
0

u
1

2 E (G ), k � �(G ) + 1, and ' a k-edge-coloring
of G � u

0

u
1

. A Kierstead Path is a path u
0

, u
1

, . . . , u` where for
each i , '(uiui�1

) is missing at uj for some j < i .

u
0

u
1

u
2

u
3

u
4

1,2 3,4 5 6 22 3 5

Key Lemma: If a Kierstead Path has distinct ui and uj with color
↵ missing at both, then G has a k-coloring.

Vizing’s Theorem: If G is simple, then �0(G )  �(G ) + 1.
Pf (using Key Lemma): Induction on |E (G )|. Let k = �(G ) + 1.
Base case: at most �(G ) + 1 edges.
Induction: Given k-edge-coloring of G � e, get long Kierstead path.

u
0

u
1

u
2

u
3

vk

2 2 1 1 1 1

By Pigeonhole, two vertices miss the same color.
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Proof of Key Lemma

Key Lemma: If a Kierstead Path has distinct ui and uj with color
↵ missing at both, then G has a k-coloring.

Pf: Double induction, first on path length `; next on distance
between ui and uj .

Assume i < j . Three cases:

I Case 1: i = 0, j = 1

I Case 2: i = j � 1

I Case 3: i < j � 1
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Summary

Simple Graphs: �0(G ) = � or �0(G ) = �+ 1

I To get �0 = � must avoid overfull subgraphs
I Often this is enough; also watch out for Petersen

I 4 Color Theorem: 3-regular planar
I Tutte’s Edge-Coloring: 3-regular with no Petersen subdivision
I Vizing’s Planar Graph Conj: Planar with � � 7. Open for 6.
I Hilton–Zhao Conj: �(G

�

)  2, proved for �  4

Multigraphs: Now �0(G ) can be much bigger than �

I Goldberg–Seymour: If �0(G ) > �+ 1, then �0 determined by
most overfull subgraph; true for �  23 and asymptotically

I For line graph of multigraph, �(G )  max{!(G ), 5
6

�(G ) + 4

3

}

Tools:

I Kempe swaps, Kierstead paths, Tashkinov trees
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�

)  2, proved for �  4

Multigraphs: Now �0(G ) can be much bigger than �

I Goldberg–Seymour: If �0(G ) > �+ 1, then �0 determined by
most overfull subgraph; true for �  23 and asymptotically

I For line graph of multigraph, �(G )  max{!(G ), 5
6

�(G ) + 4

3

}

Tools:

I Kempe swaps

, Kierstead paths, Tashkinov trees
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