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Sparse graphs and Mad(G)
Ques. When can we prove y;(G) < A+ ¢ for c € {0,1,2}7

We will study sparse graphs.
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Def. maximum average degree of G Mad(G) = maxycg
Ex.

planar graphs Mad(G) < 6
forests Mad(G) < 2

. 2
planar, girth > g Mad(G) < g—_g2
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