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Ques. When can we prove χi(G ) ≤ ∆ + c for c ∈ {0, 1, 2}?

We will study sparse graphs.

Def. maximum average degree of G Mad(G ) = maxH⊆G
2E(H)
V (H)

Ex.

planar graphs Mad(G ) < 6
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planar, girth ≥ g Mad(G ) <
2g

g−2
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