Injective coloring of sparse graphs

Daniel W. Cranston

DIMACS, Rutgers and Bell Labs joint with Seog-Jin Kim and Gexin Yu dcransto@dimacs.rutgers.edu

AMS Meeting, University of Illinois March 28, 2009

Def. injective coloring: vertex coloring such that if u and v have a common neighbor, then $c(u) \neq c(v)$.

Def. injective coloring: vertex coloring such that if u and v have a common neighbor, then $c(u) \neq c(v)$. injective chromatic number: $\chi_i(G)$ is minimum k such that G has an injective coloring with k colors.

Def. injective coloring: vertex coloring such that if u and v have a common neighbor, then $c(u) \neq c(v)$. injective chromatic number: $\chi_i(G)$ is minimum k such that G has an injective coloring with k colors.

Def. injective coloring: vertex coloring such that if u and v have a common neighbor, then $c(u) \neq c(v)$. injective chromatic number: $\chi_i(G)$ is minimum k such that G has an injective coloring with k colors.

Easy bounds: $\Delta \leq \chi_i(G) \leq \Delta^2 - \Delta + 1$

Def. injective coloring: vertex coloring such that if u and v have a common neighbor, then $c(u) \neq c(v)$. injective chromatic number: $\chi_i(G)$ is minimum k such that G has an injective coloring with k colors.

Def. injective coloring: vertex coloring such that if u and v have a common neighbor, then $c(u) \neq c(v)$. injective chromatic number: $\chi_i(G)$ is minimum k such that G has an injective coloring with k colors.

Easy bounds: $\Delta \leq \chi_i(G) \leq \Delta^2 - \Delta + 1$ (greedy)

Def. injective coloring: vertex coloring such that if u and v have a common neighbor, then $c(u) \neq c(v)$. injective chromatic number: $\chi_i(G)$ is minimum k such that G has an injective coloring with k colors.

Easy bounds: $\Delta \leq \chi_i(G) \leq \Delta^2 - \Delta + 1$ (greedy)

Ques. When can we prove $\chi_i(G) \leq \Delta + c$ for $c \in \{0, 1, 2\}$?

Ques. When can we prove $\chi_i(G) \leq \Delta + c$ for $c \in \{0, 1, 2\}$?

We will study sparse graphs.

Ques. When can we prove $\chi_i(G) \leq \Delta + c$ for $c \in \{0, 1, 2\}$?

We will study sparse graphs.

Def. maximum average degree of $G \operatorname{Mad}(G) = \max_{H \subseteq G} \frac{2E(H)}{V(H)}$

Ques. When can we prove $\chi_i(G) \leq \Delta + c$ for $c \in \{0, 1, 2\}$?

We will study sparse graphs.

Def. maximum average degree of $G \operatorname{Mad}(G) = \max_{H \subseteq G} \frac{2E(H)}{V(H)}$ **Ex.**

planar graphs Mad(G) < 6

Ques. When can we prove $\chi_i(G) \leq \Delta + c$ for $c \in \{0, 1, 2\}$?

We will study sparse graphs.

Def. maximum average degree of $G \operatorname{Mad}(G) = \max_{H \subseteq G} \frac{2E(H)}{V(H)}$ **Ex.**

planar graphsMad(G) < 6forestsMad(G) < 2

Ques. When can we prove $\chi_i(G) \leq \Delta + c$ for $c \in \{0, 1, 2\}$?

We will study sparse graphs.

Def. maximum average degree of $G \operatorname{Mad}(G) = \max_{H \subseteq G} \frac{2E(H)}{V(H)}$ **Ex.**

 $\begin{array}{ll} \mbox{planar graphs} & \mbox{Mad}(G) < 6 \\ \mbox{forests} & \mbox{Mad}(G) < 2 \\ \mbox{planar, girth} \geq g & \mbox{Mad}(G) < \frac{2g}{g-2} \end{array}$

Thm. If $\Delta = 3$ and $Mad(G) < \frac{36}{13}$, then $\chi_i(G) \leq 5$.

Thm. If $\Delta = 3$ and $Mad(G) < \frac{36}{13}$, then $\chi_i(G) \le 5$. **Pf.** Assume *G* is min counterexample. Forbidden configs.

Thm. If $\Delta = 3$ and $Mad(G) < \frac{36}{13}$, then $\chi_i(G) \le 5$. **Pf.** Assume *G* is min counterexample. Forbidden configs.

Thm. If $\Delta = 3$ and $Mad(G) < \frac{36}{13}$, then $\chi_i(G) \le 5$. **Pf.** Assume *G* is min counterexample. Forbidden configs.

Thm. If $\Delta = 3$ and $Mad(G) < \frac{36}{13}$, then $\chi_i(G) \le 5$. **Pf.** Assume *G* is min counterexample. Forbidden configs.

Thm. If $\Delta = 3$ and $Mad(G) < \frac{36}{13}$, then $\chi_i(G) \le 5$. **Pf.** Assume *G* is min counterexample. Forbidden configs.

Discharging rules

R1) Each 3-vertex gives $\frac{3}{13}$ to each 2-vertex at distance 1. R2) Each 3-vertex gives $\frac{1}{13}$ to each 2-vertex at distance 2. $\mu(v) = d(v)$ and we check that $\mu^*(v) \ge \frac{36}{12}$ for all v.

Thm. If $\Delta = 3$ and $Mad(G) < \frac{36}{13}$, then $\chi_i(G) \le 5$. **Pf.** Assume *G* is min counterexample. Forbidden configs.

Discharging rules R1) Each 3-vertex gives $\frac{3}{13}$ to each 2-vertex at distance 1. R2) Each 3-vertex gives $\frac{1}{13}$ to each 2-vertex at distance 2. $\mu(v) = d(v)$ and we check that $\mu^*(v) \ge \frac{36}{13}$ for all v.

3-vertex not adjacent to 2-vertex:

3-vertex adjacent to 2-vertex:

2-vertex:

Thm. If $\Delta = 3$ and $Mad(G) < \frac{36}{13}$, then $\chi_i(G) \le 5$. **Pf.** Assume *G* is min counterexample. Forbidden configs.

Discharging rules

R1) Each 3-vertex gives $\frac{3}{13}$ to each 2-vertex at distance 1. R2) Each 3-vertex gives $\frac{1}{13}$ to each 2-vertex at distance 2.

 $\mu(v) = d(v)$ and we check that $\mu^*(v) \geq \frac{36}{13}$ for all v.

3-vertex not adjacent to 2-vertex: $\mu^*(\nu) \ge 3 - 3(\frac{1}{13}) = \frac{36}{13}$ 3-vertex adjacent to 2-vertex:

2-vertex:

Thm. If $\Delta = 3$ and $Mad(G) < \frac{36}{13}$, then $\chi_i(G) \le 5$. **Pf.** Assume *G* is min counterexample. Forbidden configs.

Discharging rules

R1) Each 3-vertex gives $\frac{3}{13}$ to each 2-vertex at distance 1. R2) Each 3-vertex gives $\frac{1}{13}$ to each 2-vertex at distance 2.

 $\mu(v) = d(v)$ and we check that $\mu^*(v) \geq \frac{36}{13}$ for all v.

3-vertex not adjacent to 2-vertex: $\mu^*(v) \ge 3 - 3(\frac{1}{13}) = \frac{36}{13}$ 3-vertex adjacent to 2-vertex: $\mu^*(v) = 3 - \frac{3}{13} = \frac{36}{13}$ 2-vertex:

Thm. If $\Delta = 3$ and $Mad(G) < \frac{36}{13}$, then $\chi_i(G) \le 5$. **Pf.** Assume *G* is min counterexample. Forbidden configs.

Discharging rules

R1) Each 3-vertex gives $\frac{3}{13}$ to each 2-vertex at distance 1. R2) Each 3-vertex gives $\frac{1}{13}$ to each 2-vertex at distance 2. $\mu(v) = d(v)$ and we check that $\mu^*(v) \ge \frac{36}{12}$ for all v.

3-vertex not adjacent to 2-vertex: $\mu^*(v) \ge 3 - 3(\frac{1}{13}) = \frac{36}{13}$ 3-vertex adjacent to 2-vertex: $\mu^*(v) = 3 - \frac{3}{13} = \frac{36}{13}$ 2-vertex: $2 + 2(\frac{3}{13}) + 4(\frac{1}{13}) = \frac{36}{13}$

Thm. If $\Delta = 3$ and $Mad(G) < \frac{36}{13}$, then $\chi_i(G) \le 5$. **Pf.** Assume *G* is min counterexample. Forbidden configs.

Discharging rules

R1) Each 3-vertex gives $\frac{3}{13}$ to each 2-vertex at distance 1. R2) Each 3-vertex gives $\frac{1}{13}$ to each 2-vertex at distance 2.

 $\mu(v) = d(v)$ and we check that $\mu^*(v) \geq \frac{36}{13}$ for all v.

3-vertex not adjacent to 2-vertex: $\mu^*(v) \ge 3 - 3(\frac{1}{13}) = \frac{36}{13}$ 3-vertex adjacent to 2-vertex: $\mu^*(v) = 3 - \frac{3}{13} = \frac{36}{13}$ 2-vertex: $2 + 2(\frac{3}{13}) + 4(\frac{1}{13}) = \frac{36}{13}$

And the theorem is best possible.

Thm. If $\Delta = 3$ and $Mad(G) < \frac{36}{13}$, then $\chi_i(G) \le 5$. **Pf.** Assume *G* is min counterexample. Forbidden configs.

Discharging rules

R1) Each 3-vertex gives $\frac{3}{13}$ to each 2-vertex at distance 1. R2) Each 3-vertex gives $\frac{1}{13}$ to each 2-vertex at distance 2. $\mu(v) = d(v)$ and we check that $\mu^*(v) \ge \frac{36}{12}$ for all v.

3-vertex not adjacent to 2-vertex: $\mu^*(v) \ge 3 - 3(\frac{1}{13}) = \frac{36}{13}$ 3-vertex adjacent to 2-vertex: $\mu^*(v) = 3 - \frac{3}{13} = \frac{36}{13}$ 2-vertex: $2 + 2(\frac{3}{13}) + 4(\frac{1}{13}) = \frac{36}{13}$

And the theorem is best possible.

Thm. If $\Delta = 3$ and $Mad(G) < \frac{36}{13}$, then $\chi_i(G) \le 5$. **Pf.** Assume *G* is min counterexample. Forbidden configs.

Discharging rules

R1) Each 3-vertex gives $\frac{3}{13}$ to each 2-vertex at distance 1. R2) Each 3-vertex gives $\frac{1}{13}$ to each 2-vertex at distance 2. $\mu(v) = d(v)$ and we check that $\mu^*(v) \ge \frac{36}{12}$ for all v.

3-vertex not adjacent to 2-vertex: $\mu^*(v) \ge 3 - 3(\frac{1}{13}) = \frac{36}{13}$ 3-vertex adjacent to 2-vertex: $\mu^*(v) = 3 - \frac{3}{13} = \frac{36}{13}$ 2-vertex: $2 + 2(\frac{3}{13}) + 4(\frac{1}{13}) = \frac{36}{13}$

And the theorem is **best possible**.

Thm. If $\Delta = 3$ and $Mad(G) < \frac{5}{2}$, then $\chi_i(G) \le 4$.

Thm. If $\Delta = 3$ and $Mad(G) < \frac{5}{2}$, then $\chi_i(G) \le 4$.

Pf. Assume *G* is min counterexample. Forbidden configs.

Thm. If $\Delta = 3$ and $Mad(G) < \frac{5}{2}$, then $\chi_i(G) \le 4$.

Pf. Assume *G* is min counterexample. Forbidden configs.

Thm. If $\Delta = 3$ and $Mad(G) < \frac{5}{2}$, then $\chi_i(G) \le 4$.

Pf. Assume *G* is min counterexample. Forbidden configs.

Discharging: $\mu(v) = d(v)$.

Thm. If $\Delta = 3$ and $Mad(G) < \frac{5}{2}$, then $\chi_i(G) \le 4$.

Pf. Assume *G* is min counterexample. Forbidden configs.

Discharging: $\mu(v) = d(v)$.

We want G to have no more 2-vertices than 3-vertices. Why?

Thm. If $\Delta = 3$ and $Mad(G) < \frac{5}{2}$, then $\chi_i(G) \le 4$.

Pf. Assume *G* is min counterexample. Forbidden configs.

Discharging: $\mu(v) = d(v)$.

We want G to have no more 2-vertices than 3-vertices. Why? Consider G_2 , subgraph of edges incident to 2-vertices.

Thm. If $\Delta = 3$ and $Mad(G) < \frac{5}{2}$, then $\chi_i(G) \le 4$.

Pf. Assume *G* is min counterexample. Forbidden configs.

Discharging: $\mu(v) = d(v)$.

We want G to have no more 2-vertices than 3-vertices. Why? Consider G_2 , subgraph of edges incident to 2-vertices. We win if each component of G_2 is a tree or cycle.

Thm. If $\Delta = 3$ and $Mad(G) < \frac{5}{2}$, then $\chi_i(G) \le 4$.

Pf. Assume *G* is min counterexample. Forbidden configs.

Discharging: $\mu(v) = d(v)$.

We want G to have no more 2-vertices than 3-vertices. Why? Consider G_2 , subgraph of edges incident to 2-vertices. We win if each component of G_2 is a tree or cycle.

