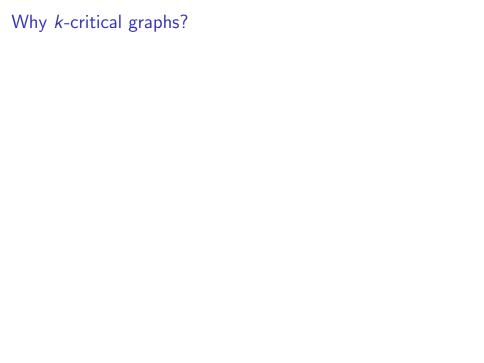
A Survey of k-critical Graphs

Daniel W. Cranston
Virginia Commonwealth University
dcranston@vcu.edu

Albertson's Conjecture and Related Problems (AIM) 14 October 2024



Idea: Want sufficient conditions for n-vertex G to be k-colorable.

Idea: Want sufficient conditions for n-vertex G to be k-colorable. Many possible criteria, but natural to consider number of edges.

Idea: Want sufficient conditions for n-vertex G to be k-colorable. Many possible criteria, but natural to consider number of edges. General graph G with $\chi(G) \geq k+1$ might have few edges as function of n,

Idea: Want sufficient conditions for n-vertex G to be k-colorable. Many possible criteria, but natural to consider number of edges.

General graph G with $\chi(G) \ge k+1$ might have few edges as function of n, e.g., $K_{k+1} + (n-k-1)K_1$

Idea: Want sufficient conditions for n-vertex G to be k-colorable. Many possible criteria, but natural to consider number of edges.

General graph G with $\chi(G) \ge k+1$ might have few edges as function of n, e.g., $K_{k+1} + (n-k-1)K_1$

$$\left(K_{k+1}\right)$$
 $\underbrace{\circ \circ \circ \circ \circ}_{n-k-1}$

Rem: This example feels like "cheating" because most vertices are not helping force $\chi \geq k+1$.

Idea: Want sufficient conditions for n-vertex G to be k-colorable. Many possible criteria, but natural to consider number of edges.

General graph G with $\chi(G) \ge k+1$ might have few edges as function of n, e.g., $K_{k+1} + (n-k-1)K_1$

$$\left(K_{k+1}\right)$$
 $\underbrace{\circ \circ \circ \circ \circ}_{n-k-1}$

Rem: This example feels like "cheating" because most vertices are not helping force $\chi \ge k+1$. How can we avoid this?

Idea: Want sufficient conditions for n-vertex G to be k-colorable. Many possible criteria, but natural to consider number of edges.

General graph G with $\chi(G) \ge k+1$ might have few edges as function of n, e.g., $K_{k+1} + (n-k-1)K_1$

$$K_{k+1}$$
 $\underbrace{\circ \circ \circ \circ \circ}_{n-k-1}$

Rem: This example feels like "cheating" because most vertices are not helping force $\chi \geq k+1$. How can we avoid this? **Defn:** G is k-critical if $\chi(G)=k$ and $\chi(H)< k \ \forall \ H\subsetneq G$.

Idea: Want sufficient conditions for n-vertex G to be k-colorable. Many possible criteria, but natural to consider number of edges.

General graph G with $\chi(G) \geq k+1$ might have few edges as function of n, e.g., $K_{k+1} + (n-k-1)K_1$

$$K_{k+1}$$
 $\underbrace{\circ \circ \circ \circ \circ}_{n-k-1}$

Rem: This example feels like "cheating" because most vertices are not helping force $\chi \geq k+1$. How can we avoid this? **Defn:** G is k-critical if $\chi(G)=k$ and $\chi(H)< k \ \forall \ H\subsetneq G$.

Examples:

Idea: Want sufficient conditions for n-vertex G to be k-colorable. Many possible criteria, but natural to consider number of edges.

General graph G with $\chi(G) \ge k+1$ might have few edges as function of n, e.g., $K_{k+1} + (n-k-1)K_1$

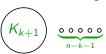
$$K_{k+1}$$
 $\underbrace{\circ \circ \circ \circ \circ}_{n-k-1}$

Rem: This example feels like "cheating" because most vertices are not helping force $\chi \geq k+1$. How can we avoid this? **Defn:** G is k-critical if $\chi(G)=k$ and $\chi(H)< k \ \forall \ H\subsetneq G$.

Examples:

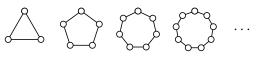
Idea: Want sufficient conditions for n-vertex G to be k-colorable. Many possible criteria, but natural to consider number of edges.

General graph G with $\chi(G) \ge k+1$ might have few edges as function of n, e.g., $K_{k+1} + (n-k-1)K_1$



Rem: This example feels like "cheating" because most vertices are not helping force $\chi \geq k+1$. How can we avoid this? **Defn:** G is k-critical if $\chi(G)=k$ and $\chi(H)< k \ \forall \ H\subsetneq G$.

Examples:

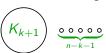


 (K_k)

Ques: Are these all the k-critical graphs?

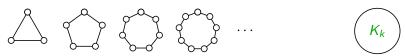
Idea: Want sufficient conditions for n-vertex G to be k-colorable. Many possible criteria, but natural to consider number of edges.

General graph G with $\chi(G) \ge k+1$ might have few edges as function of n, e.g., $K_{k+1} + (n-k-1)K_1$



Rem: This example feels like "cheating" because most vertices are not helping force $\chi \geq k+1$. How can we avoid this? **Defn:** G is k-critical if $\chi(G)=k$ and $\chi(H)< k \ \forall \ H\subsetneq G$.

Examples:



Ques: Are these all the k-critical graphs? How many are there?

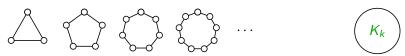
Idea: Want sufficient conditions for n-vertex G to be k-colorable. Many possible criteria, but natural to consider number of edges.

General graph G with $\chi(G) \ge k+1$ might have few edges as function of n, e.g., $K_{k+1} + (n-k-1)K_1$

$$\left(K_{k+1}\right)$$
 $\underbrace{\circ \circ \circ \circ \circ}_{n-k-1}$

Rem: This example feels like "cheating" because most vertices are not helping force $\chi \geq k+1$. How can we avoid this? **Defn:** G is k-critical if $\chi(G)=k$ and $\chi(H)< k \ \forall \ H\subsetneq G$.

Examples:



Ques: Are these all the k-critical graphs? How many are there? What do they look like?

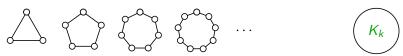
Idea: Want sufficient conditions for n-vertex G to be k-colorable. Many possible criteria, but natural to consider number of edges.

General graph G with $\chi(G) \ge k+1$ might have few edges as function of n, e.g., $K_{k+1} + (n-k-1)K_1$

$$\left(K_{k+1}\right)$$
 $\underbrace{\circ \circ \circ \circ \circ}_{n-k-1}$

Rem: This example feels like "cheating" because most vertices are not helping force $\chi \geq k+1$. How can we avoid this? **Defn:** G is k-critical if $\chi(G)=k$ and $\chi(H)< k \ \forall \ H\subsetneq G$.

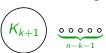
Examples:



Ques: Are these all the *k*-critical graphs? How many are there? What do they look like? Why study them?

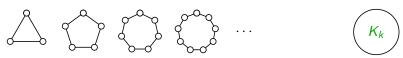
Idea: Want sufficient conditions for n-vertex G to be k-colorable. Many possible criteria, but natural to consider number of edges.

General graph G with $\chi(G) \ge k+1$ might have few edges as function of n, e.g., $K_{k+1} + (n-k-1)K_1$



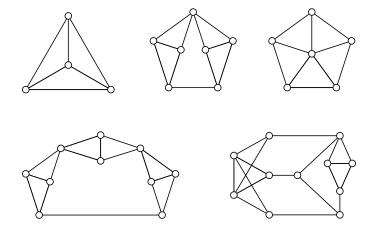
Rem: This example feels like "cheating" because most vertices are not helping force $\chi \geq k+1$. How can we avoid this? **Defn:** G is k-critical if $\chi(G)=k$ and $\chi(H)< k \ \forall \ H\subsetneq G$.

Examples:



Ques: Are these all the k-critical graphs? How many are there? What do they look like? Why study them? Open Questions?

A Gallery of 4-critical Graphs



Ques: For every k are there infinitely many k-critical graphs?

Ques: For every k are there infinitely many k-critical graphs? **Ans:** Yes.

Ques: For every k are there infinitely many k-critical graphs?

Ans: Yes. $C_{2t+1} \vee K_{k-3}$

Ques: For every k are there infinitely many k-critical graphs?

Ans: Yes. $C_{2t+1} \vee K_{k-3}$

Ques: For every k are there infinitely many k-critical graphs?

Ans: Yes. $C_{2t+1} \vee K_{k-3}$

Ques: What if we want bounded maximum degree?

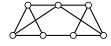
Ques: For every k are there infinitely many k-critical graphs?

Ans: Yes. $C_{2t+1} \vee K_{k-3}$

Ques: What if we want bounded maximum degree? Ans: Yes.

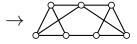
Ques: For every k are there infinitely many k-critical graphs? Ans: Yes. $C_{2t+1} \vee K_{k-3}$

Ques: What if we want bounded maximum degree? Ans: Yes. Defn: A Hajós join of graphs G_1 and G_2 with $vw \in E(G_1)$ and $xy \in E(G_2)$ is formed from $(G_1 - vw) + (G_2 - xy)$ by identifying v and x and adding edge yw.



Ques: For every k are there infinitely many k-critical graphs? **Ans:** Yes. $C_{2t+1} \vee K_{k-3}$

Ques: What if we want bounded maximum degree? **Ans:** Yes. **Defn:** A Hajós join of graphs G_1 and G_2 with $vw \in E(G_1)$ and $xy \in E(G_2)$ is formed from $(G_1 - vw) + (G_2 - xy)$ by identifying v and x and adding edge yw.



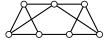
Prop: If G_1 and G_2 are k-critical, then so is their Hajós join.

Ques: For every k are there infinitely many k-critical graphs?

Ans: Yes. $C_{2t+1} \vee K_{k-3}$

Ques: What if we want bounded maximum degree? Ans: Yes. **Defn:** A Hajós join of graphs G_1 and G_2 with $vw \in E(G_1)$

and $xy \in E(G_2)$ is formed from $(G_1 - vw) + (G_2 - xy)$ by identifying v and x and adding edge yw.



Prop: If G_1 and G_2 are k-critical, then so is their Hajós join.

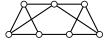
Cor: Get infinitely many k-critical graphs. Can bound max degree.

Ques: For every k are there infinitely many k-critical graphs?

Ans: Yes. $C_{2t+1} \vee K_{k-3}$

Ques: What if we want bounded maximum degree? Ans: Yes. Defn: A Hajós join of graphs G_1 and G_2 with $vw \in E(G_1)$

and $xy \in E(G_2)$ is formed from $(G_1 - vw) + (G_2 - xy)$ by identifying v and x and adding edge yw.



Prop: If G_1 and G_2 are k-critical, then so is their Hajós join.

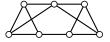
Cor: Get infinitely many k-critical graphs. Can bound max degree.

Cor: For each k, there exist n-vertex k-critical graphs for all sufficiently large n (with bounded max degree).

Ques: For every k are there infinitely many k-critical graphs?

Ans: Yes. $C_{2t+1} \vee K_{k-3}$

Ques: What if we want bounded maximum degree? **Ans:** Yes. **Defn:** A Hajós join of graphs G_1 and G_2 with $vw \in E(G_1)$ and $xy \in E(G_2)$ is formed from $(G_1 - vw) + (G_2 - xy)$ by identifying v and x and adding edge yw.



Prop: If G_1 and G_2 are k-critical, then so is their Hajós join.

Cor: Get infinitely many k-critical graphs. Can bound max degree.

Cor: For each k, there exist n-vertex k-critical graphs for all sufficiently large n (with bounded max degree).

Defn: k-Ore graphs are what we get from K_k 's with Hajós join.

Obs: No critical graph has clique cutset.

Obs: No critical graph has clique cutset. So must be 2-connected.

Obs: No critical graph has clique cutset. So must be 2-connected.

Lem: Every k-critical graph G is (k-1)-edge-connected.

Obs: No critical graph has clique cutset. So must be 2-connected.

Lem: Every k-critical graph G is (k-1)-edge-connected.

Pf: Suppose *G* has edge-cut *S* with $|S| \le k - 2$

Obs: No critical graph has clique cutset. So must be 2-connected.

Lem: Every k-critical graph G is (k-1)-edge-connected. **Pf:** Suppose G has edge-cut S with $|S| \le k-2$, and G-S has components G_1 and G_2 .

Obs: No critical graph has clique cutset. So must be 2-connected.

Lem: Every k-critical graph G is (k-1)-edge-connected. **Pf:** Suppose G has edge-cut S with $|S| \le k-2$, and G-S has components G_1 and G_2 . By criticality, (k-1)-color G_1 and G_2 .

Obs: No critical graph has clique cutset. So must be 2-connected.

Lem: Every k-critical graph G is (k-1)-edge-connected. **Pf:** Suppose G has edge-cut S with $|S| \le k-2$, and G-S has components G_1 and G_2 . By criticality, (k-1)-color G_1 and G_2 . Permute colors on G_2 to avoid conflicts with G_1

Obs: No critical graph has clique cutset. So must be 2-connected.

Lem: Every k-critical graph G is (k-1)-edge-connected. **Pf:** Suppose G has edge-cut S with $|S| \le k-2$, and G-S has components G_1 and G_2 . By criticality, (k-1)-color G_1 and G_2 . Permute colors on G_2 to avoid conflicts with G_1 , by Hall's Thm.

Obs: No critical graph has clique cutset. So must be 2-connected.

Lem: Every k-critical graph G is (k-1)-edge-connected. **Pf:** Suppose G has edge-cut S with $|S| \le k-2$, and G-S has components G_1 and G_2 . By criticality, (k-1)-color G_1 and G_2 . Permute colors on G_2 to avoid conflicts with G_1 , by Hall's Thm. **Exer:** The observation and lemma above are both sharp.

Obs: No critical graph has clique cutset. So must be 2-connected.

Lem: Every k-critical graph G is (k-1)-edge-connected. **Pf:** Suppose G has edge-cut S with $|S| \le k-2$, and G-S has components G_1 and G_2 . By criticality, (k-1)-color G_1 and G_2 . Permute colors on G_2 to avoid conflicts with G_1 , by Hall's Thm. **Exer:** The observation and lemma above are both sharp.

Lem: A graph H appears as induced subgraph of some k-critical if and only if $\chi(H/e) \le k-1$ for all $e \in E(H)$.

Obs: No critical graph has clique cutset. So must be 2-connected.

Lem: Every k-critical graph G is (k-1)-edge-connected. **Pf:** Suppose G has edge-cut S with $|S| \le k-2$, and G-S has components G_1 and G_2 . By criticality, (k-1)-color G_1 and G_2 . Permute colors on G_2 to avoid conflicts with G_1 , by Hall's Thm.

Exer: The observation and lemma above are both sharp.

Lem: A graph H appears as induced subgraph of some k-critical if and only if $\chi(H/e) \le k-1$ for all $e \in E(H)$.

Pf: If *H* appears in *k*-critical *G*, then $\chi(G - vw) \le k - 1$ for each $vw \in E(H)$.

Obs: No critical graph has clique cutset. So must be 2-connected.

Lem: Every k-critical graph G is (k-1)-edge-connected. **Pf:** Suppose G has edge-cut S with $|S| \le k-2$, and G-S has components G_1 and G_2 . By criticality, (k-1)-color G_1 and G_2 . Permute colors on G_2 to avoid conflicts with G_1 , by Hall's Thm.

Exer: The observation and lemma above are both sharp.

Lem: A graph H appears as induced subgraph of some k-critical if and only if $\chi(H/e) \le k-1$ for all $e \in E(H)$.

Pf: If H appears in k-critical G, then $\chi(G - vw) \le k - 1$ for each $vw \in E(H)$. If $\varphi(v) \ne \varphi(w)$, then $\chi(G) \le k - 1$, a contradiction.

Obs: No critical graph has clique cutset. So must be 2-connected.

Lem: Every k-critical graph G is (k-1)-edge-connected. **Pf:** Suppose G has edge-cut S with $|S| \le k-2$, and G-S has components G_1 and G_2 . By criticality, (k-1)-color G_1 and G_2 . Permute colors on G_2 to avoid conflicts with G_1 , by Hall's Thm.

Exer: The observation and lemma above are both sharp.

Lem: A graph H appears as induced subgraph of some k-critical if and only if $\chi(H/e) \leq k-1$ for all $e \in E(H)$.

Pf: If H appears in k-critical G, then $\chi(G - vw) \le k - 1$ for each $vw \in E(H)$. If $\varphi(v) \ne \varphi(w)$, then $\chi(G) \le k - 1$, a contradiction. So $\varphi(v) = \varphi(w)$.

Obs: No critical graph has clique cutset. So must be 2-connected.

Lem: Every k-critical graph G is (k-1)-edge-connected. **Pf:** Suppose G has edge-cut S with $|S| \le k-2$, and G-S has components G_1 and G_2 . By criticality, (k-1)-color G_1 and G_2 . Permute colors on G_2 to avoid conflicts with G_1 , by Hall's Thm. **Exer:** The observation and lemma above are both sharp.

Lem: A graph H appears as induced subgraph of some k-critical if and only if $\chi(H/e) \leq k-1$ for all $e \in E(H)$.

Pf: If H appears in k-critical G, then $\chi(G - vw) \le k - 1$ for each $vw \in E(H)$. If $\varphi(v) \ne \varphi(w)$, then $\chi(G) \le k - 1$, a contradiction. So $\varphi(v) = \varphi(w)$. Thus, $\chi(H/vw) \le \chi(G/vw) \le k - 1$.

Obs: No critical graph has clique cutset. So must be 2-connected.

Lem: Every k-critical graph G is (k-1)-edge-connected. **Pf:** Suppose G has edge-cut S with $|S| \le k-2$, and G-S has components G_1 and G_2 . By criticality, (k-1)-color G_1 and G_2 . Permute colors on G_2 to avoid conflicts with G_1 , by Hall's Thm. **Exer:** The observation and lemma above are both sharp.

Lem: A graph H appears as induced subgraph of some k-critical if and only if $\chi(H/e) \le k-1$ for all $e \in E(H)$.

Pf: If H appears in k-critical G, then $\chi(G-vw) \leq k-1$ for each $vw \in E(H)$. If $\varphi(v) \neq \varphi(w)$, then $\chi(G) \leq k-1$, a contradiction. So $\varphi(v) = \varphi(w)$. Thus, $\chi(H/vw) \leq \chi(G/vw) \leq k-1$. Other direction is a long paragraph.

Defn: f(n, k) is min |E(G)| of all *n*-vertex *k*-critical graphs *G*.

Defn: f(n,k) is min |E(G)| of all n-vertex k-critical graphs G. **Conj:** [Gallai] When $n \equiv 1(k-1)$, f(n,k) is achieved by k-Ore graphs.

Defn: f(n,k) is min |E(G)| of all n-vertex k-critical graphs G. **Conj:** [Gallai] When $n \equiv 1(k-1)$, f(n,k) is achieved by k-Ore graphs. So $\lim_{n\to\infty} 2f(n,k)/n = 2\binom{k}{2}-1/(k-1) = k-2/(k-1)$.

Defn: f(n,k) is min |E(G)| of all n-vertex k-critical graphs G. **Conj:** [Gallai] When $n \equiv 1(k-1)$, f(n,k) is achieved by k-Ore graphs. So $\lim_{n\to\infty} 2f(n,k)/n = 2\binom{k}{2}-1/(k-1) = k-2/(k-1)$. **Conj:** [Ore] f(n+k-1,k) = f(n,k) + (k-2)(k+1)/2,

Defn: f(n,k) is min |E(G)| of all n-vertex k-critical graphs G. **Conj:** [Gallai] When $n \equiv 1(k-1)$, f(n,k) is achieved by k-Ore graphs. So $\lim_{n\to\infty} 2f(n,k)/n = 2(\binom{k}{2}-1)/(k-1) = k-2/(k-1)$. **Conj:** [Ore] f(n+k-1,k) = f(n,k) + (k-2)(k+1)/2, $\forall n \ge k+2$.

Defn: f(n,k) is min |E(G)| of all n-vertex k-critical graphs G. **Conj:** [Gallai] When $n \equiv 1(k-1)$, f(n,k) is achieved by k-Ore graphs. So $\lim_{n\to\infty} 2f(n,k)/n = 2(\binom{k}{2}-1)/(k-1) = k-2/(k-1)$. **Conj:** [Ore] f(n+k-1,k) = f(n,k) + (k-2)(k+1)/2, $\forall n \ge k+2$.

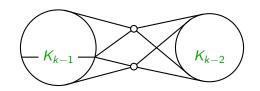
Lem: [Gallai] Fix $k \ge 4$ and $k + 2 \le n \le 2k - 2$. If G is n-vertex k-critical graph, then G is disconnected

Defn: f(n,k) is min |E(G)| of all n-vertex k-critical graphs G. **Conj:** [Gallai] When $n \equiv 1(k-1)$, f(n,k) is achieved by k-Ore graphs. So $\lim_{n\to\infty} 2f(n,k)/n = 2(\binom{k}{2}-1)/(k-1) = k-2/(k-1)$. **Conj:** [Ore] f(n+k-1,k) = f(n,k) + (k-2)(k+1)/2, $\forall n \ge k+2$.

Lem: [Gallai] Fix $k \ge 4$ and $k + 2 \le n \le 2k - 2$. If G is n-vertex k-critical graph, then G is disconnected (that is, G is a join).

Defn: f(n,k) is min |E(G)| of all n-vertex k-critical graphs G. **Conj:** [Gallai] When $n \equiv 1(k-1)$, f(n,k) is achieved by k-Ore graphs. So $\lim_{n\to\infty} 2f(n,k)/n = 2(\binom{k}{2}-1)/(k-1) = k-2/(k-1)$. **Conj:** [Ore] f(n+k-1,k) = f(n,k) + (k-2)(k+1)/2, $\forall n \ge k+2$.

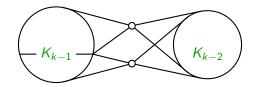
Lem: [Gallai] Fix $k \ge 4$ and $k + 2 \le n \le 2k - 2$. If G is n-vertex k-critical graph, then \overline{G} is disconnected (that is, G is a join). **Cor:** If $k \ge 4$ and $k + 2 \le n \le 2k - 1$, then 2f(n,k) = (k-1)n + (n-k)(2k-n) - 2.



Defn: f(n,k) is min |E(G)| of all n-vertex k-critical graphs G. **Conj:** [Gallai] When $n \equiv 1(k-1)$, f(n,k) is achieved by k-Ore graphs. So $\lim_{n\to\infty} 2f(n,k)/n = 2(\binom{k}{2}-1)/(k-1) = k-2/(k-1)$. **Conj:** [Ore] f(n+k-1,k) = f(n,k) + (k-2)(k+1)/2, $\forall n \ge k+2$.

Lem: [Gallai] Fix $k \ge 4$ and $k + 2 \le n \le 2k - 2$. If G is n-vertex k-critical graph, then G is disconnected (that is, G is a join).

Cor: If $k \ge 4$ and $k + 2 \le n \le 2k - 1$, then 2f(n,k) = (k-1)n + (n-k)(2k-n) - 2.



For smaller n, join clique to graph above.

Defn: f(n, k) is min |E(G)| of all *n*-vertex *k*-critical graphs *G*.

Defn: f(n, k) is min |E(G)| of all *n*-vertex *k*-critical graphs *G*.

Ques: How to lower bound f(n, k)?

Defn: f(n, k) is min |E(G)| of all *n*-vertex *k*-critical graphs *G*. **Ques:** How to lower bound f(n, k)? **Pf idea:** Discharging; each (k-1)-vert is near many k^+ -verts, so average degree is high.

Defn: f(n,k) is min |E(G)| of all *n*-vertex *k*-critical graphs *G*. **Ques:** How to lower bound f(n,k)? **Pf idea:** Discharging; each (k-1)-vert is near many k^+ -verts, so average degree is high.

Thm: [Gallai] Fix $k \ge 4$, and let G be k-critical.

Defn: f(n, k) is min |E(G)| of all *n*-vertex *k*-critical graphs *G*. **Ques:** How to lower bound f(n, k)? **Pf idea:** Discharging; each (k-1)-vert is near many k^+ -verts, so average degree is high.

Thm: [Gallai] Fix $k \ge 4$, and let G be k-critical. In subgraph H induced by (k-1)-verts, each block clique/odd cycle.

Defn: f(n, k) is min |E(G)| of all *n*-vertex *k*-critical graphs *G*. **Ques:** How to lower bound f(n, k)? **Pf idea:** Discharging; each (k-1)-vert is near many k^+ -verts, so average degree is high.

Thm: [Gallai] Fix $k \ge 4$, and let G be k-critical. In subgraph H induced by (k-1)-verts, each block clique/odd cycle. Gallai tree.

Defn: f(n, k) is min |E(G)| of all *n*-vertex *k*-critical graphs *G*. **Ques:** How to lower bound f(n, k)? **Pf idea:** Discharging; each (k-1)-vert is near many k^+ -verts, so average degree is high.

Thm: [Gallai] Fix $k \ge 4$, and let G be k-critical. In subgraph H induced by (k-1)-verts, each block clique/odd cycle. Gallai tree. **Pf idea:** Suppose H has other block B. Color G-H by criticality, extend to H-B greedily, finish wisely on B.

Defn: f(n, k) is min |E(G)| of all n-vertex k-critical graphs G. **Ques:** How to lower bound f(n, k)? **Pf idea:** Discharging; each (k-1)-vert is near many k^+ -verts, so average degree is high.

Thm: [Gallai] Fix $k \ge 4$, and let G be k-critical. In subgraph H induced by (k-1)-verts, each block clique/odd cycle. Gallai tree. **Pf idea:** Suppose H has other block B. Color G-H by criticality, extend to H-B greedily, finish wisely on B.

Cor: Fix $k \ge 4$ and let T be n-vert Gallai tree. If $\Delta(T) \le k-1$ and T has no K_k , then $2|E(T)| \le n(k-2+2/(k-1))$.

Defn: f(n, k) is min |E(G)| of all *n*-vertex *k*-critical graphs *G*. **Ques:** How to lower bound f(n, k)? **Pf idea:** Discharging; each (k-1)-vert is near many k^+ -verts, so average degree is high.

Thm: [Gallai] Fix $k \ge 4$, and let G be k-critical. In subgraph H induced by (k-1)-verts, each block clique/odd cycle. Gallai tree. **Pf idea:** Suppose H has other block B. Color G-H by criticality, extend to H-B greedily, finish wisely on B.

Cor: Fix $k \ge 4$ and let T be n-vert Gallai tree. If $\Delta(T) \le k-1$ and T has no K_k , then $2|E(T)| \le n(k-2+2/(k-1))$. (Induct.)

Defn: f(n, k) is min |E(G)| of all n-vertex k-critical graphs G. **Ques:** How to lower bound f(n, k)? **Pf idea:** Discharging; each (k-1)-vert is near many k^+ -verts, so average degree is high.

Thm: [Gallai] Fix $k \geq 4$, and let G be k-critical. In subgraph H induced by (k-1)-verts, each block clique/odd cycle. Gallai tree. **Pf idea:** Suppose H has other block B. Color G-H by criticality, extend to H-B greedily, finish wisely on B.

Cor: Fix $k \ge 4$ and let T be n-vert Gallai tree. If $\Delta(T) \le k-1$ and T has no K_k , then $2|E(T)| \le n(k-2+2/(k-1))$. (Induct.) Cor: [Gallai] If $k \ge 4$ and $n \ge k+2$, then by previous corollary $f(n,k)/n \ge (k-1)/2 + (k-3)/(2k^2-6)$.

Defn: f(n, k) is min |E(G)| of all *n*-vertex *k*-critical graphs *G*. **Ques:** How to lower bound f(n, k)? **Pf idea:** Discharging; each (k-1)-vert is near many k^+ -verts, so average degree is high.

Thm: [Gallai] Fix $k \geq 4$, and let G be k-critical. In subgraph H induced by (k-1)-verts, each block clique/odd cycle. Gallai tree. **Pf idea:** Suppose H has other block B. Color G-H by criticality, extend to H-B greedily, finish wisely on B.

Cor: Fix $k \ge 4$ and let T be n-vert Gallai tree. If $\Delta(T) \le k-1$ and T has no K_k , then $2|E(T)| \le n(k-2+2/(k-1))$. (Induct.) Cor: [Gallai] If $k \ge 4$ and $n \ge k+2$, then by previous corollary $f(n,k)/n \ge (k-1)/2 + (k-3)/(2k^2-6)$.

... Krivelevich, Kostochka–Stiebitz ...

Defn: f(n, k) is min |E(G)| of all n-vertex k-critical graphs G. **Ques:** How to lower bound f(n, k)? **Pf idea:** Discharging; each (k-1)-vert is near many k^+ -verts, so average degree is high.

Thm: [Gallai] Fix $k \ge 4$, and let G be k-critical. In subgraph H induced by (k-1)-verts, each block clique/odd cycle. Gallai tree. **Pf idea:** Suppose H has other block B. Color G-H by criticality, extend to H-B greedily, finish wisely on B.

Cor: Fix $k \ge 4$ and let T be n-vert Gallai tree. If $\Delta(T) \le k-1$ and T has no K_k , then $2|E(T)| \le n(k-2+2/(k-1))$. (Induct.) Cor: [Gallai] If $k \ge 4$ and $n \ge k+2$, then by previous corollary $f(n,k)/n \ge (k-1)/2 + (k-3)/(2k^2-6)$.

... Krivelevich, Kostochka–Stiebitz ...

Thm: [Kostochka–Yancey] If $k \ge 4$ and $n \ge k + 2$, then $f(n,k) \ge ((k+1)(k-2)n - k(k-3))/(2k-2)$.

Defn: f(n,k) is min |E(G)| of all n-vertex k-critical graphs G. **Ques:** How to lower bound f(n,k)? **Pf idea:** Discharging; each (k-1)-vert is near many k^+ -verts, so average degree is high.

Thm: [Gallai] Fix $k \ge 4$, and let G be k-critical. In subgraph H induced by (k-1)-verts, each block clique/odd cycle. Gallai tree. **Pf idea:** Suppose H has other block B. Color G-H by criticality, extend to H-B greedily, finish wisely on B.

Cor: Fix $k \ge 4$ and let T be n-vert Gallai tree. If $\Delta(T) \le k-1$ and T has no K_k , then $2|E(T)| \le n(k-2+2/(k-1))$. (Induct.) Cor: [Gallai] If $k \ge 4$ and $n \ge k+2$, then by previous corollary $f(n,k)/n \ge (k-1)/2 + (k-3)/(2k^2-6)$.

... Krivelevich, Kostochka–Stiebitz ...

Thm: [Kostochka–Yancey] If $k \ge 4$ and $n \ge k + 2$, then $f(n,k) \ge ((k+1)(k-2)n - k(k-3))/(2k-2)$. Equality only for k-Ore.

Defn: f(n,k) is min |E(G)| of all n-vertex k-critical graphs G. **Ques:** How to lower bound f(n,k)? **Pf idea:** Discharging; each (k-1)-vert is near many k^+ -verts, so average degree is high.

Thm: [Gallai] Fix $k \ge 4$, and let G be k-critical. In subgraph H induced by (k-1)-verts, each block clique/odd cycle. Gallai tree. **Pf idea:** Suppose H has other block B. Color G-H by criticality, extend to H-B greedily, finish wisely on B.

Cor: Fix $k \ge 4$ and let T be n-vert Gallai tree. If $\Delta(T) \le k-1$ and T has no K_k , then $2|E(T)| \le n(k-2+2/(k-1))$. (Induct.) Cor: [Gallai] If $k \ge 4$ and $n \ge k+2$, then by previous corollary $f(n,k)/n \ge (k-1)/2 + (k-3)/(2k^2-6)$.

... Krivelevich, Kostochka–Stiebitz ...

Thm: [Kostochka–Yancey] If $k \ge 4$ and $n \ge k + 2$, then $f(n,k) \ge ((k+1)(k-2)n - k(k-3))/(2k-2)$. Equality only for k-Ore. Proves Ore's Conj!

Defn: f(n, k) is min |E(G)| of all *n*-vertex *k*-critical graphs *G*. **Ques:** How to lower bound f(n, k)? **Pf idea:** Discharging; each (k-1)-vert is near many k^+ -verts, so average degree is high.

Thm: [Gallai] Fix $k \ge 4$, and let G be k-critical. In subgraph H induced by (k-1)-verts, each block clique/odd cycle. Gallai tree. **Pf idea:** Suppose H has other block B. Color G-H by criticality, extend to H-B greedily, finish wisely on B.

Cor: Fix $k \ge 4$ and let T be n-vert Gallai tree. If $\Delta(T) \le k-1$ and T has no K_k , then $2|E(T)| \le n(k-2+2/(k-1))$. (Induct.) Cor: [Gallai] If $k \ge 4$ and $n \ge k+2$, then by previous corollary $f(n,k)/n \ge (k-1)/2 + (k-3)/(2k^2-6)$.

... Krivelevich, Kostochka–Stiebitz ...

Thm: [Kostochka–Yancey] If $k \ge 4$ and $n \ge k + 2$, then $f(n,k) \ge ((k+1)(k-2)n - k(k-3))/(2k-2)$. Equality only for k-Ore. Proves Ore's Conj! Major progress on Gallai's Conj.

Defn: f(n, k) is min |E(G)| of all n-vertex k-critical graphs G. **Ques:** How to lower bound f(n, k)? **Pf idea:** Discharging; each (k-1)-vert is near many k^+ -verts, so average degree is high.

Thm: [Gallai] Fix $k \ge 4$, and let G be k-critical. In subgraph H induced by (k-1)-verts, each block clique/odd cycle. Gallai tree. **Pf idea:** Suppose H has other block B. Color G-H by criticality, extend to H-B greedily, finish wisely on B. **Cor:** Fix $k \ge 4$ and let T be n-vert Gallai tree. If $\Delta(T) \le k-1$

and T has no K_k , then $2|E(T)| \le n(k-2+2/(k-1))$. (Induct.) **Cor:** [Gallai] If $k \ge 4$ and $n \ge k+2$, then by previous corollary $f(n,k)/n \ge (k-1)/2 + (k-3)/(2k^2-6)$.

... Krivelevich, Kostochka–Stiebitz ...

Thm: [Kostochka–Yancey] If $k \ge 4$ and $n \ge k + 2$, then $f(n,k) \ge ((k+1)(k-2)n - k(k-3))/(2k-2)$. Equality only for k-Ore. Proves Ore's Conj! Major progress on Gallai's Conj. **Pf idea:** Like above; work harder to forbid low degree subgraphs.

Thm: [Heawood] If G embeds on orientable surface S_g of genus g,

$$\chi(G) \leq \left| \frac{7 + \sqrt{1 + 48g}}{2} \right|.$$

Thm: [Heawood] If G embeds on orientable surface S_g of genus g,

$$\chi(G) \leq \left| \frac{7 + \sqrt{1 + 48g}}{2} \right|.$$

Pf: Let *G* be *k*-critical. By Euler's, $|E(G)| \le 3|G| + 6g - 6$.

Thm: [Heawood] If G embeds on orientable surface S_g of genus g,

$$\chi(G) \leq \left| \frac{7 + \sqrt{1 + 48g}}{2} \right|.$$

Pf: Let *G* be *k*-critical. By Euler's, $|E(G)| \le 3|G| + 6g - 6$. So $k \le \min\{|G|, 7 + (12g - 12)/|G|\}$.

Thm: [Heawood] If G embeds on orientable surface S_g of genus g,

$$\chi(G) \leq \left| \frac{7 + \sqrt{1 + 48g}}{2} \right|.$$

Pf: Let G be k-critical. By Euler's, $|E(G)| \le 3|G| + 6g - 6$. So $k \le \min\{|G|, 7 + (12g - 12)/|G|\}$. Solve this quadratic.

Thm: [Heawood] If G embeds on orientable surface S_g of genus g,

$$\chi(G) \leq \left| \frac{7 + \sqrt{1 + 48g}}{2} \right|.$$

Pf: Let G be k-critical. By Euler's, $|E(G)| \le 3|G| + 6g - 6$. So $k \le \min\{|G|, 7 + (12g - 12)/|G|\}$. Solve this quadratic. [Dirac] Equality holds only when G has clique of this order.

Thm: [Heawood] If G embeds on orientable surface S_g of genus g,

$$\chi(G) \leq \left| \frac{7 + \sqrt{1 + 48g}}{2} \right|.$$

Pf: Let G be k-critical. By Euler's, $|E(G)| \le 3|G| + 6g - 6$. So $k \le \min\{|G|, 7 + (12g - 12)/|G|\}$. Solve this quadratic. [Dirac] Equality holds only when G has clique of this order.

Thm: [K–Y] If G is 4-critical, then $|E(G)| \ge \lceil (5|G|-2)/3 \rceil$.

Thm: [Heawood] If G embeds on orientable surface S_g of genus g,

$$\chi(G) \leq \left| \frac{7 + \sqrt{1 + 48g}}{2} \right|.$$

Pf: Let G be k-critical. By Euler's, $|E(G)| \le 3|G| + 6g - 6$. So $k \le \min\{|G|, 7 + (12g - 12)/|G|\}$. Solve this quadratic. [Dirac] Equality holds only when G has clique of this order.

Thm: [K–Y] If G is 4-critical, then $|E(G)| \ge \lceil (5|G|-2)/3 \rceil$. **Cor:** [Grötszch] If G is planar and triangle-free, then $\chi(G) \le 3$.

Thm: [Heawood] If G embeds on orientable surface S_g of genus g,

$$\chi(G) \leq \left| \frac{7 + \sqrt{1 + 48g}}{2} \right|.$$

Pf: Let G be k-critical. By Euler's, $|E(G)| \le 3|G| + 6g - 6$. So $k \le \min\{|G|, 7 + (12g - 12)/|G|\}$. Solve this quadratic. [Dirac] Equality holds only when G has clique of this order.

Thm: [K–Y] If G is 4-critical, then $|E(G)| \ge \lceil (5|G|-2)/3 \rceil$. **Cor:** [Grötszch] If G is planar and triangle-free, then $\chi(G) \le 3$. **Pf:** Induction on |G| + |E(G)|.

Thm: [Heawood] If G embeds on orientable surface S_g of genus g,

$$\chi(G) \leq \left\lfloor \frac{7 + \sqrt{1 + 48g}}{2} \right\rfloor.$$

Pf: Let G be k-critical. By Euler's, $|E(G)| \le 3|G| + 6g - 6$. So $k \le \min\{|G|, 7 + (12g - 12)/|G|\}$. Solve this quadratic. [Dirac] Equality holds only when G has clique of this order.

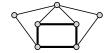
Thm: [K–Y] If G is 4-critical, then $|E(G)| \ge \lceil (5|G|-2)/3 \rceil$. **Cor:** [Grötszch] If G is planar and triangle-free, then $\chi(G) \le 3$. **Pf:** Induction on |G| + |E(G)|. If G has 4-face, then we "fold" it away without creating triangles.

Thm: [Heawood] If G embeds on orientable surface S_g of genus g,

$$\chi(G) \leq \left| \frac{7 + \sqrt{1 + 48g}}{2} \right|.$$

Pf: Let G be k-critical. By Euler's, $|E(G)| \le 3|G| + 6g - 6$. So $k \le \min\{|G|, 7 + (12g - 12)/|G|\}$. Solve this quadratic. [Dirac] Equality holds only when G has clique of this order.

Thm: [K–Y] If G is 4-critical, then $|E(G)| \ge \lceil (5|G|-2)/3 \rceil$. **Cor:** [Grötszch] If G is planar and triangle-free, then $\chi(G) \le 3$. **Pf:** Induction on |G| + |E(G)|. If G has 4-face, then we "fold" it away without creating triangles.

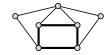


Thm: [Heawood] If G embeds on orientable surface S_g of genus g,

$$\chi(G) \leq \left| \frac{7 + \sqrt{1 + 48g}}{2} \right|.$$

Pf: Let G be k-critical. By Euler's, $|E(G)| \le 3|G| + 6g - 6$. So $k \le \min\{|G|, 7 + (12g - 12)/|G|\}$. Solve this quadratic. [Dirac] Equality holds only when G has clique of this order.

Thm: [K–Y] If G is 4-critical, then $|E(G)| \ge \lceil (5|G|-2)/3 \rceil$. **Cor:** [Grötszch] If G is planar and triangle-free, then $\chi(G) \le 3$. **Pf:** Induction on |G| + |E(G)|. If G has 4-face, then we "fold" it away without creating triangles. Assume no 3-face and no 4-face.

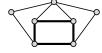


Thm: [Heawood] If G embeds on orientable surface S_g of genus g,

$$\chi(G) \leq \left\lfloor \frac{7 + \sqrt{1 + 48g}}{2} \right\rfloor.$$

Pf: Let G be k-critical. By Euler's, $|E(G)| \le 3|G| + 6g - 6$. So $k \le \min\{|G|, 7 + (12g - 12)/|G|\}$. Solve this quadratic. [Dirac] Equality holds only when G has clique of this order.

Thm: [K–Y] If G is 4-critical, then $|E(G)| \ge \lceil (5|G|-2)/3 \rceil$. **Cor:** [Grötszch] If G is planar and triangle-free, then $\chi(G) \le 3$. **Pf:** Induction on |G| + |E(G)|. If G has 4-face, then we "fold" it away without creating triangles. Assume no 3-face and no 4-face.



By Euler's formula, $|E(G)| \le 5(|G|-2)/3$,

Thm: [Heawood] If G embeds on orientable surface S_g of genus g,

$$\chi(G) \leq \left\lfloor \frac{7 + \sqrt{1 + 48g}}{2} \right\rfloor.$$

Pf: Let G be k-critical. By Euler's, $|E(G)| \le 3|G| + 6g - 6$. So $k \le \min\{|G|, 7 + (12g - 12)/|G|\}$. Solve this quadratic. [Dirac] Equality holds only when G has clique of this order.

Thm: [K–Y] If G is 4-critical, then $|E(G)| \ge \lceil (5|G|-2)/3 \rceil$. **Cor:** [Grötszch] If G is planar and triangle-free, then $\chi(G) \le 3$. **Pf:** Induction on |G| + |E(G)|. If G has 4-face, then we "fold" it away without creating triangles. Assume no 3-face and no 4-face.

By Euler's formula, $|E(G)| \le 5(|G|-2)/3$, so G is not 4-critical.

Thm: [Heawood] If G embeds on orientable surface S_g of genus g,

$$\chi(G) \leq \left\lfloor \frac{7 + \sqrt{1 + 48g}}{2} \right\rfloor.$$

Pf: Let G be k-critical. By Euler's, $|E(G)| \le 3|G| + 6g - 6$. So $k \le \min\{|G|, 7 + (12g - 12)/|G|\}$. Solve this quadratic. [Dirac] Equality holds only when G has clique of this order.

Thm: [K–Y] If G is 4-critical, then $|E(G)| \ge \lceil (5|G|-2)/3 \rceil$. **Cor:** [Grötszch] If G is planar and triangle-free, then $\chi(G) \le 3$. **Pf:** Induction on |G| + |E(G)|. If G has 4-face, then we "fold" it away without creating triangles. Assume no 3-face and no 4-face.

By Euler's formula, $|E(G)| \le 5(|G|-2)/3$, so G is not 4-critical. Obs: Proof has some "slack"; allows various strengthenings.

Conj: [Postle] For $k \ge 5$, $\exists \epsilon_k > 0$ s.t. if *G* is *k*-crit K_{k-2} -free, $|E(G)| \ge (k/2 - 1/(k-1) + \epsilon_k)|G| - k(k-3)/(2k-2)$.

```
Conj: [Postle] For k \ge 5, \exists \epsilon_k > 0 s.t. if G is k-crit K_{k-2}-free, |E(G)| \ge (k/2 - 1/(k-1) + \epsilon_k)|G| - k(k-3)/(2k-2). Known: k = 5 [P]
```

Conj: [Postle] For $k \ge 5$, $\exists \epsilon_k > 0$ s.t. if *G* is *k*-crit K_{k-2} -free, $|E(G)| \ge (k/2 - 1/(k-1) + \epsilon_k)|G| - k(k-3)/(2k-2)$. **Known:** k = 5 [P] k = 6 [Gao–P]

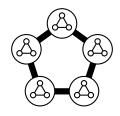
Conj: [Postle] For $k \ge 5$, $\exists \epsilon_k > 0$ s.t. if G is k-crit K_{k-2} -free, $|E(G)| \ge (k/2 - 1/(k-1) + \epsilon_k)|G| - k(k-3)/(2k-2)$. **Known:** k = 5 [P] k = 6 [Gao–P] $k \ge 33$ [Gould–Larsen–P]

Conj: [Postle] For $k \ge 5$, $\exists \epsilon_k > 0$ s.t. if *G* is *k*-crit K_{k-2} -free, $|E(G)| \ge (k/2 - 1/(k-1) + \epsilon_k)|G| - k(k-3)/(2k-2)$. **Known:** k = 5 [P] k = 6 [Gao–P] $k \ge 33$ [Gould–Larsen–P]

Conj: [Borodin–K] If $\Delta \geq 9$ and $\omega \leq \Delta - 1$, then $\chi \leq \Delta - 1$.

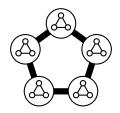
Conj: [Postle] For $k \ge 5$, $\exists \epsilon_k > 0$ s.t. if *G* is *k*-crit K_{k-2} -free, $|E(G)| \ge (k/2 - 1/(k-1) + \epsilon_k)|G| - k(k-3)/(2k-2)$. **Known:** k = 5 [P] k = 6 [Gao–P] $k \ge 33$ [Gould–Larsen–P]

Conj: [Borodin–K] If $\Delta \geq 9$ and $\omega \leq \Delta - 1$, then $\chi \leq \Delta - 1$.



Conj: [Postle] For $k \ge 5$, $\exists \epsilon_k > 0$ s.t. if *G* is *k*-crit K_{k-2} -free, $|E(G)| \ge (k/2 - 1/(k-1) + \epsilon_k)|G| - k(k-3)/(2k-2)$. **Known:** k = 5 [P] k = 6 [Gao–P] $k \ge 33$ [Gould–Larsen–P]

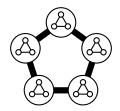
Conj: [Borodin–K] If $\Delta \geq 9$ and $\omega \leq \Delta - 1$, then $\chi \leq \Delta - 1$.



Known: For $\Delta \geq 10^{14}$. [Reed]

Conj: [Postle] For $k \ge 5$, $\exists \epsilon_k > 0$ s.t. if *G* is *k*-crit K_{k-2} -free, $|E(G)| \ge (k/2 - 1/(k-1) + \epsilon_k)|G| - k(k-3)/(2k-2)$. **Known:** k = 5 [P] k = 6 [Gao–P] $k \ge 33$ [Gould–Larsen–P]

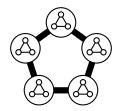
Conj: [Borodin–K] If $\Delta \geq 9$ and $\omega \leq \Delta - 1$, then $\chi \leq \Delta - 1$.



Known: For $\Delta \ge 10^{14}$. [Reed] Reduces to $\Delta = 9$. [Catlin, K]

Conj: [Postle] For $k \ge 5$, $\exists \epsilon_k > 0$ s.t. if *G* is *k*-crit K_{k-2} -free, $|E(G)| \ge (k/2 - 1/(k-1) + \epsilon_k)|G| - k(k-3)/(2k-2)$. **Known:** k = 5 [P] k = 6 [Gao–P] $k \ge 33$ [Gould–Larsen–P]

Conj: [Borodin–K] If $\Delta \geq 9$ and $\omega \leq \Delta - 1$, then $\chi \leq \Delta - 1$.



Known: For $\Delta \geq 10^{14}$. [Reed] Reduces to $\Delta = 9$. [Catlin, K] Hereditary families: $K_{1,3}$ -free, $\{P_5, \text{gem}\}$ -free, hammer-free, etc.