List colorings of K_5 -minor-free graphs with special list assignments

> Daniel W. Cranston Virginia Commonwealth University dcranston@vcu.edu

Joint with Anja Pruchnewski, Zsolt Tuza, and Margit Voigt

Cycles and Colourings September 5–10, 2010

Def: A list assignment *L* assigns to each $v \in V(G)$ a list L(v).

Def: A list assignment L assigns to each $v \in V(G)$ a list L(v). **Def:** A proper *L*-coloring is a proper vertex coloring such that each vertex gets a color from its list L(v).

Def: A list assignment L assigns to each $v \in V(G)$ a list L(v). **Def:** A proper *L*-coloring is a proper vertex coloring such that each vertex gets a color from its list L(v).

Def: The list-chromatic number $\chi_l(G)$ is the minimum k such that G has an L-coloring whenever $|L(v)| \ge k$ for all $v \in V(G)$.

Def: A list assignment L assigns to each $v \in V(G)$ a list L(v). **Def:** A proper *L*-coloring is a proper vertex coloring such that each vertex gets a color from its list L(v).

Def: The list-chromatic number $\chi_l(G)$ is the minimum k such that G has an L-coloring whenever $|L(v)| \ge k$ for all $v \in V(G)$.

We clearly have $\chi_I(G) \ge \chi(G)$

Def: A list assignment *L* assigns to each $v \in V(G)$ a list L(v). **Def:** A proper *L*-coloring is a proper vertex coloring such that each vertex gets a color from its list L(v).

Def: The list-chromatic number $\chi_l(G)$ is the minimum k such that G has an L-coloring whenever $|L(v)| \ge k$ for all $v \in V(G)$.

We clearly have $\chi_I(G) \ge \chi(G)$ and ...

Def: A list assignment *L* assigns to each $v \in V(G)$ a list L(v). **Def:** A proper *L*-coloring is a proper vertex coloring such that each vertex gets a color from its list L(v).

Def: The list-chromatic number $\chi_l(G)$ is the minimum k such that G has an L-coloring whenever $|L(v)| \ge k$ for all $v \in V(G)$.

We clearly have $\chi_I(G) \ge \chi(G)$ and ...

So, $\chi_I(K_{3,3}) > 2 = \chi(K_{3,3})$.

Ques: Is every planar graph 4-list-colorable?

Ques: Is every planar graph 4-list-colorable? No!

Ques: Is every planar graph 4-list-colorable? No! **Ques:** Does $\exists k$ s.t. every planar graph is k-list-colorable?

Ques: Is every planar graph 4-list-colorable? No!

Ques: Does $\exists k$ s.t. every planar graph is k-list-colorable? Yes

Ques: Is every planar graph 4-list-colorable? No!

Ques: Does $\exists k$ s.t. every planar graph is k-list-colorable? Yes

Thm 1: [Thomassen '93] Every planar graph is 5-list-colorable.

Ques: Is every planar graph 4-list-colorable? No! **Ques:** Does $\exists k$ s.t. every planar graph is k-list-colorable? Yes

Ques: Is every planar graph 4-list-colorable? No! **Ques:** Does $\exists k$ s.t. every planar graph is k-list-colorable? Yes

Ques: Is every planar graph 4-list-colorable? No! **Ques:** Does $\exists k$ s.t. every planar graph is k-list-colorable? Yes

Ques: Is every planar graph 4-list-colorable? No! **Ques:** Does $\exists k$ s.t. every planar graph is k-list-colorable? Yes

Ques: Is every planar graph 4-list-colorable? No! **Ques:** Does $\exists k$ s.t. every planar graph is k-list-colorable? Yes

Ques: Is every planar graph 4-list-colorable? No! **Ques:** Does $\exists k$ s.t. every planar graph is k-list-colorable? Yes

Ques: Is every planar graph 4-list-colorable? No! **Ques:** Does $\exists k$ s.t. every planar graph is k-list-colorable? Yes

Thm 1: [Thomassen '93] Every planar graph is 5-list-colorable. **Thm 2:** [Brooks '41] If $G \notin \{K_n, C_{2k+1}\}$, then $\chi_{\ell}(G) \leq \Delta(G)$.

Thm 3: [Vizing '76, Erdős-Rubin-Taylor '79] Let *G* be connected and let *L* be s.t. $|L(v)| \ge d(v)$ for all $v \in V(G)$. If *G* has no *L*-coloring, then:

Ques: Is every planar graph 4-list-colorable? No! **Ques:** Does $\exists k$ s.t. every planar graph is k-list-colorable? Yes

Thm 1: [Thomassen '93] Every planar graph is 5-list-colorable. **Thm 2:** [Brooks '41] If $G \notin \{K_n, C_{2k+1}\}$, then $\chi_{\ell}(G) \leq \Delta(G)$.

Thm 3: [Vizing '76, Erdős-Rubin-Taylor '79] Let *G* be connected and let *L* be s.t. $|L(v)| \ge d(v)$ for all $v \in V(G)$. If *G* has no *L*-coloring, then: 1. |L(v)| = d(v) for every vertex $v \in V(G)$.

Ques: Is every planar graph 4-list-colorable? No! **Ques:** Does $\exists k$ s.t. every planar graph is k-list-colorable? Yes

Thm 1: [Thomassen '93] Every planar graph is 5-list-colorable. **Thm 2:** [Brooks '41] If $G \notin \{K_n, C_{2k+1}\}$, then $\chi_{\ell}(G) \leq \Delta(G)$.

Thm 3: [Vizing '76, Erdős-Rubin-Taylor '79] Let G be connected and let L be s.t. $|L(v)| \ge d(v)$ for all $v \in V(G)$. If G has no L-coloring, then: 1. |L(v)| = d(v) for every vertex $v \in V(G)$. 2. G is a Gallai tree.

Ques: Is every planar graph 4-list-colorable? No! **Ques:** Does $\exists k$ s.t. every planar graph is k-list-colorable? Yes

Thm 1: [Thomassen '93] Every planar graph is 5-list-colorable. **Thm 2:** [Brooks '41] If $G \notin \{K_n, C_{2k+1}\}$, then $\chi_{\ell}(G) \leq \Delta(G)$.

Thm 3: [Vizing '76, Erdős-Rubin-Taylor '79] Let G be connected and let L be s.t. $|L(v)| \ge d(v)$ for all $v \in V(G)$. If G has no L-coloring, then: 1. |L(v)| = d(v) for every vertex $v \in V(G)$. 2. G is a Gallai tree.

Ques: Is every planar graph 4-list-colorable? No! **Ques:** Does $\exists k$ s.t. every planar graph is k-list-colorable? Yes

Thm 1: [Thomassen '93] Every planar graph is 5-list-colorable. **Thm 2:** [Brooks '41] If $G \notin \{K_n, C_{2k+1}\}$, then $\chi_{\ell}(G) \leq \Delta(G)$.

Thm 3: [Vizing '76, Erdős-Rubin-Taylor '79] Let *G* be connected and let *L* be s.t. $|L(v)| \ge d(v)$ for all $v \in V(G)$. If *G* has no *L*-coloring, then:

- 1. |L(v)| = d(v) for every vertex $v \in V(G)$.
- 2. G is a Gallai tree.
- 3. Each block B has a list L(B) and $L(v) = \bigcup_{v \in B} L(B)$.

Ques: Is every planar graph 4-list-colorable? No! **Ques:** Does $\exists k$ s.t. every planar graph is k-list-colorable? Yes

Thm 1: [Thomassen '93] Every planar graph is 5-list-colorable. **Thm 2:** [Brooks '41] If $G \notin \{K_n, C_{2k+1}\}$, then $\chi_{\ell}(G) \leq \Delta(G)$.

Thm 3: [Vizing '76, Erdős-Rubin-Taylor '79] Let *G* be connected and let *L* be s.t. $|L(v)| \ge d(v)$ for all $v \in V(G)$. If *G* has no *L*-coloring, then:

- 1. |L(v)| = d(v) for every vertex $v \in V(G)$.
- 2. G is a Gallai tree.
- 3. Each block B has a list L(B) and $L(v) = \bigcup_{v \in B} L(B)$.

Big Question: Can we combine Theorems 1 and 3?

Ques: [Richter] Let G be planar, 3-connected, and not complete. Let $f(v) = \min\{d(v), 6\}$ for all $v \in V(G)$. Is G f-list-colorable?

Ques: [Richter] Let G be planar, 3-connected, and not complete. Let $f(v) = \min\{d(v), 6\}$ for all $v \in V(G)$. Is G f-list-colorable?

Why "not complete"?

Ques: [Richter] Let G be planar, 3-connected, and not complete. Let $f(v) = \min\{d(v), 6\}$ for all $v \in V(G)$. Is G f-list-colorable?

Why "not complete"?

Ques: [Richter] Let G be planar, 3-connected, and not complete. Let $f(v) = \min\{d(v), 6\}$ for all $v \in V(G)$. Is G f-list-colorable?

Why "not complete"?

Why 3-connected?

Ques: [Richter] Let G be planar, 3-connected, and not complete. Let $f(v) = \min\{d(v), 6\}$ for all $v \in V(G)$. Is G f-list-colorable?

Why "not complete"?

Need 2-connected to avoid Gallai Trees

Ques: [Richter] Let G be planar, 3-connected, and not complete. Let $f(v) = \min\{d(v), 6\}$ for all $v \in V(G)$. Is G f-list-colorable?

Why "not complete"?

Why 3-connected?

- Need 2-connected to avoid Gallai Trees
- ▶ Need 3-connected to avoid...

Ques: [Richter] Let G be planar, 3-connected, and not complete. Let $f(v) = \min\{d(v), 6\}$ for all $v \in V(G)$. Is G f-list-colorable?

Why "not complete"?

Why 3-connected?

- Need 2-connected to avoid Gallai Trees
- ▶ Need 3-connected to avoid...

Ques: [Richter] Let G be planar, 3-connected, and not complete. Let $f(v) = \min\{d(v), 6\}$ for all $v \in V(G)$. Is G f-list-colorable?

Why "not complete"?

Why 3-connected?

- Need 2-connected to avoid Gallai Trees
- ▶ Need 3-connected to avoid...

Why 6? (And not 5?)

Ques: [Richter] Let G be planar, 3-connected, and not complete. Let $f(v) = \min\{d(v), 6\}$ for all $v \in V(G)$. Is G f-list-colorable?

Why "not complete"?

Why 3-connected?

- Need 2-connected to avoid Gallai Trees
- ▶ Need 3-connected to avoid...

Why 6? (And not 5?)

We have a counterexample when k = 5.

Our Main Result

Def: Let $S_k = \{v \mid d(v) < k\}$ and $B_k = \{v \mid d(v) \ge k\}$.

Our Main Result

Def: Let $S_k = \{v \mid d(v) < k\}$ and $B_k = \{v \mid d(v) \ge k\}$. **Def:** Let $d(S_k)$ be min. distance between components of $G[S_k]$.

Our Main Result

Def: Let $S_k = \{v \mid d(v) < k\}$ and $B_k = \{v \mid d(v) \ge k\}$. **Def:** Let $d(S_k)$ be min. distance between components of $G[S_k]$.

Main Thm: Let G be K_5 -minor-free, 3-connected, and not complete. If $k \ge 7$ and $d(S_k) \ge 3$, then G is f-list-colorable when $f(v) = \min\{d(v), k\}$ for all $v \in V(G)$.
Def: Let $S_k = \{v \mid d(v) < k\}$ and $B_k = \{v \mid d(v) \ge k\}$. **Def:** Let $d(S_k)$ be min. distance between components of $G[S_k]$.

Main Thm: Let G be K_5 -minor-free, 3-connected, and not complete. If $k \ge 7$ and $d(S_k) \ge 3$, then G is f-list-colorable when $f(v) = \min\{d(v), k\}$ for all $v \in V(G)$.

Thm 1': [Škrekovski '98] Every K_5 -minor-free graph is 5-list-colorable.

Def: Let $S_k = \{v \mid d(v) < k\}$ and $B_k = \{v \mid d(v) \ge k\}$. **Def:** Let $d(S_k)$ be min. distance between components of $G[S_k]$.

Main Thm: Let G be K_5 -minor-free, 3-connected, and not complete. If $k \ge 7$ and $d(S_k) \ge 3$, then G is f-list-colorable when $f(v) = \min\{d(v), k\}$ for all $v \in V(G)$.

Thm 1': [Škrekovski '98] Every K_5 -minor-free graph is 5-list-colorable.

Proof Sketch of Main Thm:

Def: Let $S_k = \{v \mid d(v) < k\}$ and $B_k = \{v \mid d(v) \ge k\}$. **Def:** Let $d(S_k)$ be min. distance between components of $G[S_k]$.

Main Thm: Let G be K_5 -minor-free, 3-connected, and not complete. If $k \ge 7$ and $d(S_k) \ge 3$, then G is f-list-colorable when $f(v) = \min\{d(v), k\}$ for all $v \in V(G)$.

Thm 1': [Škrekovski '98] Every K_5 -minor-free graph is 5-list-colorable.

Proof Sketch of Main Thm: For each component H of $G[S_k]$, color at most 2 vertices (so that we can finish coloring H later).

Def: Let $S_k = \{v \mid d(v) < k\}$ and $B_k = \{v \mid d(v) \ge k\}$. **Def:** Let $d(S_k)$ be min. distance between components of $G[S_k]$.

Main Thm: Let G be K_5 -minor-free, 3-connected, and not complete. If $k \ge 7$ and $d(S_k) \ge 3$, then G is f-list-colorable when $f(v) = \min\{d(v), k\}$ for all $v \in V(G)$.

Thm 1': [Škrekovski '98] Every K_5 -minor-free graph is 5-list-colorable.

Proof Sketch of Main Thm:

For each component H of $G[S_k]$, color at most 2 vertices (so that we can finish coloring H later). Since $d(S_k) \ge 3$, each $v \in B_k$ loses at most 2 colors.

Def: Let $S_k = \{v \mid d(v) < k\}$ and $B_k = \{v \mid d(v) \ge k\}$. **Def:** Let $d(S_k)$ be min. distance between components of $G[S_k]$.

Main Thm: Let G be K_5 -minor-free, 3-connected, and not complete. If $k \ge 7$ and $d(S_k) \ge 3$, then G is f-list-colorable when $f(v) = \min\{d(v), k\}$ for all $v \in V(G)$.

Thm 1': [Škrekovski '98] Every K_5 -minor-free graph is 5-list-colorable.

Proof Sketch of Main Thm:

For each component H of $G[S_k]$, color at most 2 vertices (so that we can finish coloring H later). Since $d(S_k) \ge 3$, each $v \in B_k$ loses at most 2 colors. So $|L'(v)| \ge 5$ for all $v \in B_k$. Color $G[B_k]$ by Theorem 1'.

Def: Let $S_k = \{v \mid d(v) < k\}$ and $B_k = \{v \mid d(v) \ge k\}$. **Def:** Let $d(S_k)$ be min. distance between components of $G[S_k]$.

Main Thm: Let G be K_5 -minor-free, 3-connected, and not complete. If $k \ge 7$ and $d(S_k) \ge 3$, then G is f-list-colorable when $f(v) = \min\{d(v), k\}$ for all $v \in V(G)$.

Thm 1': [Škrekovski '98] Every K_5 -minor-free graph is 5-list-colorable.

Proof Sketch of Main Thm:

For each component H of $G[S_k]$, color at most 2 vertices (so that we can finish coloring H later). Since $d(S_k) \ge 3$, each $v \in B_k$ loses at most 2 colors. So $|L'(v)| \ge 5$ for all $v \in B_k$. Color $G[B_k]$ by Theorem 1'. Now finish the coloring of each H of $G[S_k]$ (by Theorem 3).

- 1. |L(v)| = d(v) for every vertex $v \in V(G)$.
- 2. G is a Gallai tree.
- 3. Each block B has a list L(B) and $L(v) = \bigcup_{v \in B} L(B)$.

Thm 3: Let *G* be connected and let *L* be s.t. $|L(v)| \ge d(v)$ for all $v \in V(G)$. If *G* has no *L*-coloring, then:

- 1. |L(v)| = d(v) for every vertex $v \in V(G)$.
- 2. G is a Gallai tree.
- 3. Each block B has a list L(B) and $L(v) = \bigcup_{v \in B} L(B)$.

- 1. |L(v)| = d(v) for every vertex $v \in V(G)$.
- 2. G is a Gallai tree.
- 3. Each block B has a list L(B) and $L(v) = \bigcup_{v \in B} L(B)$.

```
5 Cases for H(0) H is not a Gallai Tree.
```

- 1. |L(v)| = d(v) for every vertex $v \in V(G)$.
- 2. G is a Gallai tree.
- 3. Each block B has a list L(B) and $L(v) = \bigcup_{v \in B} L(B)$.

```
5 Cases for H
(0) H is not a Gallai Tree.
(1) H = K_1 or H = K_2.
```

- 1. |L(v)| = d(v) for every vertex $v \in V(G)$.
- 2. G is a Gallai tree.
- 3. Each block B has a list L(B) and $L(v) = \bigcup_{v \in B} L(B)$.

```
5 Cases for H

(0) H is not a Gallai Tree.

(1) H = K_1 or H = K_2.

(2) K_2 is an end block.
```

Thm 3: Let *G* be connected and let *L* be s.t. $|L(v)| \ge d(v)$ for all $v \in V(G)$. If *G* has no *L*-coloring, then:

- 1. |L(v)| = d(v) for every vertex $v \in V(G)$.
- 2. G is a Gallai tree.
- 3. Each block B has a list L(B) and $L(v) = \bigcup_{v \in B} L(B)$.

- (0) H is not a Gallai Tree.
- (1) $H = K_1$ or $H = K_2$.
- (2) K_2 is an end block.
- (3) K_3 is an end block.

Thm 3: Let *G* be connected and let *L* be s.t. $|L(v)| \ge d(v)$ for all $v \in V(G)$. If *G* has no *L*-coloring, then:

- 1. |L(v)| = d(v) for every vertex $v \in V(G)$.
- 2. G is a Gallai tree.
- 3. Each block B has a list L(B) and $L(v) = \bigcup_{v \in B} L(B)$.

- (0) H is not a Gallai Tree.
- (1) $H = K_1$ or $H = K_2$.
- (2) K_2 is an end block.
- (3) K_3 is an end block.
- (4) $H \in \{K_3, K_4\}$ or K_4 is an end block.

Thm 3: Let *G* be connected and let *L* be s.t. $|L(v)| \ge d(v)$ for all $v \in V(G)$. If *G* has no *L*-coloring, then:

- 1. |L(v)| = d(v) for every vertex $v \in V(G)$.
- 2. G is a Gallai tree.
- 3. Each block B has a list L(B) and $L(v) = \bigcup_{v \in B} L(B)$.

- (0) H is not a Gallai Tree.
- (1) $H = K_1$ or $H = K_2$.
- (2) K_2 is an end block.
- (3) K_3 is an end block.
- (4) $H \in \{K_3, K_4\}$ or K_4 is an end block.
- (5) $H = C_{2l+1}$ or C_{2l+1} is an end block.

Thm 3: Let *G* be connected and let *L* be s.t. $|L(v)| \ge d(v)$ for all $v \in V(G)$. If *G* has no *L*-coloring, then:

- 1. |L(v)| = d(v) for every vertex $v \in V(G)$.
- 2. G is a Gallai tree.
- 3. Each block B has a list L(B) and $L(v) = \bigcup_{v \in B} L(B)$.

- \checkmark (0) *H* is not a Gallai Tree.
 - (1) $H = K_1$ or $H = K_2$.
 - (2) K_2 is an end block.
 - (3) K_3 is an end block.
 - (4) $H \in \{K_3, K_4\}$ or K_4 is an end block.
 - (5) $H = C_{2l+1}$ or C_{2l+1} is an end block.

Thm 3: Let *G* be connected and let *L* be s.t. $|L(v)| \ge d(v)$ for all $v \in V(G)$. If *G* has no *L*-coloring, then:

- 1. |L(v)| = d(v) for every vertex $v \in V(G)$.
- 2. G is a Gallai tree.
- 3. Each block B has a list L(B) and $L(v) = \bigcup_{v \in B} L(B)$.

- \checkmark (0) *H* is not a Gallai Tree.
- $\checkmark (1) \quad H = K_1 \text{ or } H = K_2.$
 - (2) K_2 is an end block.
 - (3) K_3 is an end block.
 - (4) $H \in \{K_3, K_4\}$ or K_4 is an end block.
 - (5) $H = C_{2l+1}$ or C_{2l+1} is an end block.

Thm 3: Let *G* be connected and let *L* be s.t. $|L(v)| \ge d(v)$ for all $v \in V(G)$. If *G* has no *L*-coloring, then:

- 1. |L(v)| = d(v) for every vertex $v \in V(G)$.
- 2. G is a Gallai tree.
- 3. Each block B has a list L(B) and $L(v) = \bigcup_{v \in B} L(B)$.

- \checkmark (0) *H* is not a Gallai Tree.
- $\checkmark (1) \quad H = K_1 \text{ or } H = K_2.$
 - (2) K_2 is an end block.
 - (3) K_3 is an end block.
 - (4) $H \in \{K_3, K_4\}$ or K_4 is an end block.
 - (5) $H = C_{2l+1}$ or C_{2l+1} is an end block.

Thm 3: Let *G* be connected and let *L* be s.t. $|L(v)| \ge d(v)$ for all $v \in V(G)$. If *G* has no *L*-coloring, then:

- 1. |L(v)| = d(v) for every vertex $v \in V(G)$.
- 2. G is a Gallai tree.
- 3. Each block B has a list L(B) and $L(v) = \bigcup_{v \in B} L(B)$.

5 Cases for *H*

- \checkmark (0) *H* is not a Gallai Tree.
- $\checkmark (1) \quad H = K_1 \text{ or } H = K_2.$
 - (2) K_2 is an end block.
 - (3) K_3 is an end block.

(4) $H \in \{K_3, K_4\}$ or K_4 is an end block.

Thm 3: Let *G* be connected and let *L* be s.t. $|L(v)| \ge d(v)$ for all $v \in V(G)$. If *G* has no *L*-coloring, then:

- 1. |L(v)| = d(v) for every vertex $v \in V(G)$.
- 2. G is a Gallai tree.
- 3. Each block B has a list L(B) and $L(v) = \bigcup_{v \in B} L(B)$.

- (2) K_2 is an end block.
- (3) K_3 is an end block.

(4) $H \in \{K_3, K_4\}$ or K_4 is an end block.

- 1. |L(v)| = d(v) for every vertex $v \in V(G)$.
- 2. G is a Gallai tree.
- 3. Each block B has a list L(B) and $L(v) = \bigcup_{v \in B} L(B)$.

- **5** Cases for H \checkmark (0) H is not a Gallai Tree. \checkmark (1) $H = K_1$ or $H = K_2$.
- \checkmark (2) K_2 is an end block.
 - (3) K_3 is an end block.
 - (4) $H \in \{K_3, K_4\}$ or K_4 is an end block.
 - (5) $H = C_{2l+1}$ or C_{2l+1} is an end block.

- 1. |L(v)| = d(v) for every vertex $v \in V(G)$.
- 2. G is a Gallai tree.
- 3. Each block B has a list L(B) and $L(v) = \bigcup_{v \in B} L(B)$.

Thm 3: Let *G* be connected and let *L* be s.t. $|L(v)| \ge d(v)$ for all $v \in V(G)$. If *G* has no *L*-coloring, then:

U₄

- 1. |L(v)| = d(v) for every vertex $v \in V(G)$.
- 2. G is a Gallai tree.
- 3. Each block B has a list L(B) and $L(v) = \bigcup_{v \in B} L(B)$.

5 Cases for H $\checkmark(0)$ H is not a Gallai Tree. $\checkmark(1)$ $H = K_1$ or $H = K_2$. $\checkmark(2)$ K_2 is an end block. $\checkmark(3)$ K_3 is an end block. $\checkmark(4)$ $H \in \{K_3, K_4\}$ or K_4 is an end block. $\Rightarrow(5)$ $H = C_{2l+1}$ or C_{2l+1} is an end block. u_1 $a, b \in L(v)$ $L'(u_i) = L(u_i) \setminus \{a, b\}$

Thm 3: Let *G* be connected and let *L* be s.t. $|L(v)| \ge d(v)$ for all $v \in V(G)$. If *G* has no *L*-coloring, then:

- 1. |L(v)| = d(v) for every vertex $v \in V(G)$.
- 2. G is a Gallai tree.
- 3. Each block *B* has a list L(B) and $L(v) = \bigcup_{v \in B} L(B)$. (adjacent (non-cut)-vertices have the same list)

 $L'(u_i) = L(u_i) \setminus \{a, b\}$

5 Cases for H \checkmark (0) H is not a Gallai Tree.

 $\checkmark (1) \quad H = K_1 \text{ or } H = K_2.$

- \checkmark (2) K_2 is an end block.
- \checkmark (3) K_3 is an end block.

 \checkmark (4) $H \in \{K_3, K_4\}$ or K_4 is an end block.

 \Rightarrow (5) $H = C_{2l+1}$ or C_{2l+1} is an end block.

(5) $H = C_{2l+1}$ or C_{2l+1} is an end block. • If $\exists v_i$ s.t. $L(v_i) \neq L(v_{i+1})$, color v_i with $c \in L(v_i) \setminus L(v_{i+1})$.

▶ If $\exists v_i$ s.t. $L(v_i) \neq L(v_{i+1})$, color v_i with $c \in L(v_i) \setminus L(v_{i+1})$. So assume $L(v_1) = \ldots = L(v_4)$.

- ▶ If $\exists v_i$ s.t. $L(v_i) \neq L(v_{i+1})$, color v_i with $c \in L(v_i) \setminus L(v_{i+1})$. So assume $L(v_1) = \ldots = L(v_4)$.
- ▶ If $\exists v_i$ s.t. $N(v_i) \cap B_k \neq N(v_{i+1}) \cap B_k$

- ▶ If $\exists v_i$ s.t. $L(v_i) \neq L(v_{i+1})$, color v_i with $c \in L(v_i) \setminus L(v_{i+1})$. So assume $L(v_1) = \ldots = L(v_4)$.
- ▶ If $\exists v_i$ s.t. $N(v_i) \cap B_k \neq N(v_{i+1}) \cap B_k$

- ▶ If $\exists v_i$ s.t. $L(v_i) \neq L(v_{i+1})$, color v_i with $c \in L(v_i) \setminus L(v_{i+1})$. So assume $L(v_1) = \ldots = L(v_4)$.
- ▶ If $\exists v_i$ s.t. $N(v_i) \cap B_k \neq N(v_{i+1}) \cap B_k$

- ▶ If $\exists v_i$ s.t. $L(v_i) \neq L(v_{i+1})$, color v_i with $c \in L(v_i) \setminus L(v_{i+1})$. So assume $L(v_1) = \ldots = L(v_4)$.
- ▶ If $\exists v_i$ s.t. $N(v_i) \cap B_k \neq N(v_{i+1}) \cap B_k$

- ▶ If $\exists v_i$ s.t. $L(v_i) \neq L(v_{i+1})$, color v_i with $c \in L(v_i) \setminus L(v_{i+1})$. So assume $L(v_1) = \ldots = L(v_4)$.
- ▶ If $\exists v_i$ s.t. $N(v_i) \cap B_k \neq N(v_{i+1}) \cap B_k$
- Otherwise...

- ▶ If $\exists v_i$ s.t. $L(v_i) \neq L(v_{i+1})$, color v_i with $c \in L(v_i) \setminus L(v_{i+1})$. So assume $L(v_1) = \ldots = L(v_4)$.
- ▶ If $\exists v_i$ s.t. $N(v_i) \cap B_k \neq N(v_{i+1}) \cap B_k$

▶ Otherwise. . . find a K₅-minor.

- ▶ If $\exists v_i$ s.t. $L(v_i) \neq L(v_{i+1})$, color v_i with $c \in L(v_i) \setminus L(v_{i+1})$. So assume $L(v_1) = \ldots = L(v_4)$.
- ▶ If $\exists v_i$ s.t. $N(v_i) \cap B_k \neq N(v_{i+1}) \cap B_k$

▶ Otherwise. . . find a K₅-minor.

Summary

Ques: [Richter] Let G be planar, 3-connected, and not complete. Let $f(v) = \min\{d(v), 6\}$ for all $v \in V(G)$. Is G f-list-colorable?

Summary

Ques: [Richter] Let G be planar, 3-connected, and not complete. Let $f(v) = \min\{d(v), 6\}$ for all $v \in V(G)$. Is G f-list-colorable?

Main Thm: [CPTV '10+]

Let G be K_5 -minor-free, 3-connected, and not complete. If $k \ge 7$ and $d(S_k) \ge 3$, then G is f-list-colorable when $f(v) = \min\{d(v), k\}$ for all $v \in V(G)$.
Summary

Ques: [Richter] Let G be planar, 3-connected, and not complete. Let $f(v) = \min\{d(v), 6\}$ for all $v \in V(G)$. Is G f-list-colorable?

Main Thm: [CPTV '10+] Let G be K_5 -minor-free, 3-connected, and not complete. If $k \ge 7$ and $d(S_k) \ge 3$, then G is f-list-colorable when $f(v) = \min\{d(v), k\}$ for all $v \in V(G)$.

Tools

Thm 1': [Škrekovski '98] Every K_5 -minor-free graph is 5-list-colorable.

Thm 3: [Vizing '76, Erdős-Rubin-Taylor '79] Let *G* be connected and let *L* be s.t. $|L(v)| \ge d(v)$ for all $v \in V(G)$. If *G* has no *L*-coloring, then:

- 1. |L(v)| = d(v) for every vertex $v \in V(G)$.
- 2. G is a Gallai tree.

3. Each block B has a list L(B) and $L(v) = \bigcup_{v \in B} L(B)$.