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List-coloring (in General)

Def: A list assignment L assigns to each v ∈ V (G ) a list L(v).

Def: A proper L-coloring is a proper vertex coloring such that each
vertex gets a color from its list L(v).
Def: The list-chromatic number χl(G ) is the minimum k such
that G has an L-coloring whenever |L(v)| ≥ k for all v ∈ V (G ).

We clearly have χl(G ) ≥ χ(G ) and . . .
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So, χl(K3,3) > 2 = χ(K3,3).
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List-coloring vs. coloring

Ques: Is every planar graph 4-list-colorable?

No!
Ques: Does ∃k s.t. every planar graph is k-list-colorable? Yes

Thm 1: [Thomassen ’93] Every planar graph is 5-list-colorable.
Thm 2: [Brooks ’41] If G /∈ {Kn,C2k+1}, then χ(G ) ≤ ∆(G ).

1,2 3,4
1,2,5,6

Thm 3: [Vizing ’76, Erdős-Rubin-Taylor ’79]
Let G be connected and let L be s.t. |L(v)| ≥ d(v) for all
v ∈ V (G ). If G has no L-coloring, then:

1. |L(v)| = d(v) for every vertex v ∈ V (G ).

2. G is a Gallai tree.

3. Each block B has a list L(B) and L(v) = ∪v∈BL(B).

Big Question: Can we combine Theorems 1 and 3?
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The Big Question

Ques: [Richter] Let G be planar, 3-connected, and not complete.
Let f (v) = min{d(v), 6} for all v ∈ V (G ). Is G f -list-colorable?

Why “not complete”?

Why 3-connected?
I Need 2-connected to avoid Gallai Trees
I Need 3-connected to avoid. . .

0,1,2 0,1,3 0,k-2,k 0,k-1,k
1,2,. . . ,k

. . . . . .

Why 6? (And not 5?)
We have a counterexample when k = 5.
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Our Main Result

Def: Let Sk = {v | d(v) < k} and Bk = {v | d(v) ≥ k}.

Def: Let d(Sk) be min. distance between components of G [Sk ].

Main Thm: Let G be K5-minor-free, 3-connected, and not
complete. If k ≥ 7 and d(Sk) ≥ 3, then G is f -list-colorable when
f (v) = min{d(v), k} for all v ∈ V (G ).

Thm 1’: [Škrekovski ’98]
Every K5-minor-free graph is 5-list-colorable.

Proof Sketch of Main Thm:
For each component H of G [Sk ], color at most 2 vertices
(so that we can finish coloring H later).
Since d(Sk) ≥ 3, each v ∈ Bk loses at most 2 colors.
So |L′(v)| ≥ 5 for all v ∈ Bk . Color G [Bk ] by Theorem 1’.
Now finish the coloring of each H of G [Sk ] (by Theorem 3).
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Thm 1’: [Škrekovski ’98]
Every K5-minor-free graph is 5-list-colorable.

Proof Sketch of Main Thm:
For each component H of G [Sk ], color at most 2 vertices
(so that we can finish coloring H later).

Since d(Sk) ≥ 3, each v ∈ Bk loses at most 2 colors.
So |L′(v)| ≥ 5 for all v ∈ Bk . Color G [Bk ] by Theorem 1’.
Now finish the coloring of each H of G [Sk ] (by Theorem 3).



Our Main Result

Def: Let Sk = {v | d(v) < k} and Bk = {v | d(v) ≥ k}.
Def: Let d(Sk) be min. distance between components of G [Sk ].

Main Thm: Let G be K5-minor-free, 3-connected, and not
complete. If k ≥ 7 and d(Sk) ≥ 3, then G is f -list-colorable when
f (v) = min{d(v), k} for all v ∈ V (G ).
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Main Proof

Thm 3: Let G be connected and let L be s.t. |L(v)| ≥ d(v) for all
v ∈ V (G ). If G has no L-coloring, then:

1. |L(v)| = d(v) for every vertex v ∈ V (G ).

2. G is a Gallai tree.

3. Each block B has a list L(B) and L(v) = ∪v∈BL(B).

5 Cases for H

(0) H is not a Gallai Tree.

(1) H = K1 or H = K2.

(2) K2 is an end block.

(3) K3 is an end block.

(4) H ∈ {K3,K4} or K4 is an end block.

(5) H = C2l+1 or C2l+1 is an end block.

u4
u3

u2

u1

a, b ∈ L(v)

L′(ui ) = L(ui )\{a, b}
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(5) H = C2l+1 or C2l+1 is an end block.

I If ∃ vi s.t. L(vi ) 6= L(vi+1), color vi with c ∈ L(vi ) \ L(vi+1).

So assume L(v1) = . . . = L(v4).

I If ∃ vi s.t. N(vi ) ∩ Bk 6= N(vi+1) ∩ Bk

I Otherwise. . .

find a K5-minor.
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Summary

Ques: [Richter] Let G be planar, 3-connected, and not complete.
Let f (v) = min{d(v), 6} for all v ∈ V (G ). Is G f -list-colorable?

Main Thm: [CPTV ’10+]
Let G be K5-minor-free, 3-connected, and not complete.
If k ≥ 7 and d(Sk) ≥ 3, then G is f -list-colorable when
f (v) = min{d(v), k} for all v ∈ V (G ).

Tools

Thm 1’: [Škrekovski ’98]
Every K5-minor-free graph is 5-list-colorable.

Thm 3: [Vizing ’76, Erdős-Rubin-Taylor ’79]
Let G be connected and let L be s.t. |L(v)| ≥ d(v) for all
v ∈ V (G ). If G has no L-coloring, then:

1. |L(v)| = d(v) for every vertex v ∈ V (G ).
2. G is a Gallai tree.
3. Each block B has a list L(B) and L(v) = ∪v∈BL(B).
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