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What is Reconfiguration?

Image credit: Wikipedia

Move from one instance to another by a sequence of small steps?

I Is it always possible?

I If so, how many moves do you need?

I Can you quickly find a short sequence from one to another?

I Can you quickly sample from all instances (nearly) uniformly?

https://en.wikipedia.org/wiki/Rubik%27s_Cube#/media/File:Rubik's_cube.svg
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I “Reconfiguration graphs” of 3-colorings of 5-cycle and 4-cycle.

I Can ask all the same questions from the previous page.
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Enlightening Examples
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Gk := Kk,k − kK2

I Ck(Gk) is disconnected (frozen colorings)

I C`(Gk) is connected when 3 ≤ ` < k .
Pf: Each part has color repeated, only used
on that part. So can reach 2-coloring.

I C`(Gk) connected when ` > k (next page)

Bounds on diam(Ck(G ))?

I Trivial upper bound: k |G |

I Non-trivial lower bound: 2Θ(
√
|G |) (with 4 colors)

I Encode an n-bit counter with Θ(n2) vertices

How about “nice” graphs?

‘+’: ‘−’:

1 12 23 34 4

+ −
− +

I So diam(C3(Pn)) = Θ(n2)

and diam(Ck(Pn ∨Kk−3)) = Θ(n2)
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I list-assignment L: each vertex v gets allowable colors L(v)

I L-coloring ϕ: ϕ is proper and ϕ(v) ∈ L(v) for all v

Main Questions:

I Given L-colorings α and β, can we change α to β by
recoloring single vertices, keeping L-coloring at each step?

I If so, how many steps are needed?

I Given list-assignment L, can we transform every L-coloring α
into every L-coloring β?

I If so, how many steps are needed in the worst case?
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recoloring single vertices, keeping L-coloring at each step?
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I Given list-assignment L, can we transform every L-coloring α
into every L-coloring β?

I If so, how many steps are needed in the worst case?
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Degenerate Graphs: Conjectures and Tools

Cereceda’s Conj: For each d ∈ Z+, ∃ constant Cd s.t. if G is
d-degenerate and k ≥ d + 2, then diam(Ck(G )) ≤ Cd |G |2.

Strong Cereceda’s Conj: ∃ constant C s.t., for each d ∈ Z+, if
G is d-degenerate and k ≥ d + 2, then diam(Ck(G )) ≤ C |G |2.

Linear Cereceda’s Conj: For each d ∈ Z+, ∃ constant Cd s.t. if
G is d-degenerate and k ≥ d + 3, then diam(Ck(G )) ≤ Cd |G |.

Obs: Fix G and L. If ∃v s.t. |L(v)| ≥ d(v) + 2, then CL(G ) is
connected iff CL(G − v) is connected. So CL(G ) is connected if G is
d-degenerate and L is (d + 2)-assignment. Pf: Induction on |G |.
Key Lem: Fix G , L, v , and L-colorings α and β. Let G ′ := G − v ,
α′ := α�G ′ , β′ := β�G ′ . If we can transform α′ to β′ only recoloring
N(v) at most s times, then we can tranform α to β only recoloring
v at most d s

|L(v)|−d(v)−1e+ 1 times. Pf: Above, more carefully.
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Degenerate Graphs: Applications of Key Lemma
Key Lem: Fix G , L, v , and L-colorings α and β. Let G ′ := G − v ,
α′ := α�G ′ , β′ := β�G ′ . If we can transform α′ to β′ only recoloring
N(v) at most s times, then we can tranform α to β only recoloring
v at most d s

|L(v)|−d(v)−1e+ 1 times. Pf: Above, more carefully.

Thm:[Cereceda] If G is d-degenerate and |L(v)| ≥ 2d + 1 for all
v , then diam(CL(G )) ≤

(n+1
2

)
.

Pf: By induction, vi recolored ≤ i times. By IH, true for G − vn.
Extend, recoloring vn at most d d(n−1)

2d+1−d−1e+ 1 = n times.

Thm:[Bousquet-Perarnau] If G is d-degenerate and
|L(v)| ≥ 2d + 2 for all v , then diam(CL(G )) ≤ (d + 1)n.
Pf: By induction, vi recolored ≤ d + 1 times. By IH, for G − vn.
Extend, recoloring vn at most d d(d+1)

2d+2−d−1e+ 1 = d + 1 times.

Thm:[B-P] Fix k > d . For all ε > 0, ∃ Cd ,ε s.t. if |L(v)| ≥ k for
all v and mad(G ) ≤ d − ε, then diam(CL(G )) = O(nCd,ε).
Pf: Like above, but delete many vertices at once.
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Coloring Reconfig: Best Bounds for Degenerate Graphs

Thm:[Bousquet–Heinrich] Fix ε ∈ (0, 1). There exist C1, C2, Cε
s.t. for all d , k ∈ Z+, if G is d-degenerate, then:

1. If k ≥ 3
2 (d + 1), then diam(Ck(G )) ≤ C1n

2.

2. If k ≥ (1 + ε)(d + 2), then diam(Ck(G )) ≤ Cεn
d1/εe.

3. If k ≥ d + 2, then diam(Ck(G )) ≤ (C2n)d+1

Thm:[Feghali] Fix k > d . Fix ε ∈ (0, 1). There exists Cd ,ε s.t. if
mad(G ) ≤ d − ε, then diam(Ck(G )) ≤ Cd ,εn(log n)d−1.

Thm:[Bartier–Bousquet–Feghali–Heinrich–Moore–Pierron]
If G is planar with girth 5, then C4(G ) is connected.
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Avoiding Frozen Colorings

Prop: Every graph G has list assignment L with |L(v)| = d(v) + 1
for all v and L-colorings α and β s.t. we cannot reach β from α.

Pf: Color G 2 arbitrarily; call it α.

Let L(v) := {α(w) : w ∈ N[v ]}.
Now let β be another L-coloring (color greedily in any order). Note
that α is frozen (no recoloring is possible), so cannot reach β.

3 4 1 5 3

24351

12

1234 1345 1345 1345 1235

12342345134513451235

123123

Prop: Fix an acyclic orientation D of a graph G and a list
assignment L for G . If |L(v)| ≥ dD(v) + 2 for all v ∈ V (G ), then
every two L-colorings α and β can reach each other by single
vertex recolorings.

Pf sketch: Induction on |V (G )|.
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How Many Moves are Needed?
Prop: For every G and every f , with f (v) ≥ 2 for all v , there is
list assignment L with |L(v)| = f (v) for all v and L-colorings α
and β where changing α to β needs n(G ) + µ(G ) moves.

Pf: Every vert needs recolored; every edge of M needs extra step.
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Conj:[Cambie–Cames van Batenburg–C.] For list assignment L
with |L(v)| ≥ d(v) + 2 for all v and L-colorings α and β, can
always change α to β in at most n(G ) + µ(G ) steps.

Thm:[Cambie–Cames van Batenburg–C.] arXiv:2204.07928
(a) If |L(v)| ≥ 2d(v) + 1, then n(G ) + µ(G ) steps suffice.
(b) If |L(v)| ≥ d(v) + 2, then n(G ) + 2µ(G ) steps suffice.

Correspondence Coloring: µ(G )→ τ(G ). Conj. and Theorems
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Two Proof Sketches

Lem: Fix list-assignment L with |L(v)| ≥ d(v) + 2 for all v . Given
L-colorings α and β, can recolor α to β in at most 2n(G )− 1 steps.
Pf Sketch: Induction on number of colors k used by β. Base case,
k = 1, is easy. By Pigeonhole, some color c used at least as often
by β as by α. From α, recolor every vertex using c . Now recolor
every vertex using c in β. Finish by induction.

Thm: Fix L with |L(v)| ≥ d(v) + 2 for all v and L-colorings α and
β. Can recolor α to β in at most n(G ) + 2µ(G ) steps.
Pf Sketch: Induction on n(G ). Find v with µ(G − v) = µ(G )− 1.
If no such v exists, finish by lemma. By Pigeonhole, find c in L(v)
used at most once on N(v) by α and β (in total). Assume α uses
c once on w ∈ N(v). From α: recolor w , recolor v with c . Finish
on G − v by induction. Recolor v to β(v). Extra steps:
2 + 1 = n(G )− n(G − v) + 2(µ(G )− µ(G − v)).
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every vertex using c in β. Finish by induction.

Thm: Fix L with |L(v)| ≥ d(v) + 2 for all v and L-colorings α and
β. Can recolor α to β in at most n(G ) + 2µ(G ) steps.
Pf Sketch: Induction on n(G ). Find v with µ(G − v) = µ(G )− 1.
If no such v exists, finish by lemma. By Pigeonhole, find c in L(v)
used at most once on N(v) by α and β (in total). Assume α uses
c once on w ∈ N(v). From α: recolor w , recolor v with c .

Finish
on G − v by induction. Recolor v to β(v). Extra steps:
2 + 1 = n(G )− n(G − v) + 2(µ(G )− µ(G − v)).
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How Many Moves are Needed?
Prop: For every G and every f , with f (v) ≥ 2 for all v , there is
list assignment L with |L(v)| = f (v) for all v and L-colorings α
and β where changing α to β needs n(G ) + µ(G ) moves.

Pf: Every vert needs recolored; every edge of M needs extra step.
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146123

Conj:[Cambie–Cames van Batenburg–C.] For list assignment L
with |L(v)| ≥ d(v) + 2 for all v and L-colorings α and β, can
always change α to β in at most n(G ) + µ(G ) steps.

Thm:[Cambie–Cames van Batenburg–C.] arXiv:2204.07928
(a) If |L(v)| ≥ 2d(v) + 1, then n(G ) + µ(G ) steps suffice.
(b) If |L(v)| ≥ d(v) + 2, then n(G ) + 2µ(G ) steps suffice.

Correspondence Coloring: µ(G )→ τ(G ). Conj. and Theorems

https://arxiv.org/abs/2204.07928
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