Optimally Reconfiguring List Colorings Given Large Lists

Daniel W. Cranston Virginia Commonwealth University dcranston@vcu.edu

Joint with Stijn Cambie and Wouter Cames van Batenburg

Graph Theory and Combinatorics Seminar Georgia Tech 7 March 2023

1	2	3	4
5	6	7	8
9	10	11	12
13	15	14	

Image credit: Wikipedia

Image credit: Wikipedia

Move from one instance to another

Image credit: Wikipedia

Image credit: Wikipedia

Move from one instance to another by a sequence of small steps?

Is it always possible?

Image credit: Wikipedia

- Is it always possible?
- If so, how many moves do you need?

Image credit: Wikipedia

- Is it always possible?
- If so, how many moves do you need?
- Can you quickly find a short sequence from one to another?

Image credit: Wikipedia

- Is it always possible?
- If so, how many moves do you need?
- Can you quickly find a short sequence from one to another?
- Can you quickly sample from all instances (nearly) uniformly?

And another isomorphic component.

And another isomorphic component.

"Reconfiguration graphs" of 3-colorings of 5-cycle and 4-cycle.

- "Reconfiguration graphs" of 3-colorings of 5-cycle and 4-cycle.
- Can ask all the same questions from the previous page.

- $C_k(G_k)$ is disconnected (frozen colorings)
- $C_{\ell}(G_k)$ is connected when $3 \leq \ell < k$.

• $C_k(G_k)$ is disconnected (frozen colorings)

Cℓ(Gk) is connected when 3 ≤ ℓ < k.
 Pf: Each part has color repeated, only used on that part.

 $G_k := K_{k,k} - kK_2$

• $C_k(G_k)$ is disconnected (frozen colorings)

Cℓ(Gk) is connected when 3 ≤ ℓ < k.
 Pf: Each part has color repeated, only used on that part. So can reach 2-coloring.

- $C_k(G_k)$ is disconnected (frozen colorings)
- Cℓ(Gk) is connected when 3 ≤ ℓ < k.
 Pf: Each part has color repeated, only used on that part. So can reach 2-coloring.

 $G_k := K_{k,k} - kK_2 \rightarrow C_{\ell}(G_k)$ connected when $\ell > k$ (next page)

- $C_k(G_k)$ is disconnected (frozen colorings)
- Cℓ(Gk) is connected when 3 ≤ ℓ < k.
 Pf: Each part has color repeated, only used on that part. So can reach 2-coloring.

 $G_k := K_{k,k} - kK_2 \quad \blacktriangleright \ \mathcal{C}_{\ell}(G_k) \text{ connected when } \ell > k \text{ (next page)}$

Bounds on diam($C_k(G)$)?

- $C_k(G_k)$ is disconnected (frozen colorings)
- Cℓ(Gk) is connected when 3 ≤ ℓ < k.
 Pf: Each part has color repeated, only used on that part. So can reach 2-coloring.

 $G_k := K_{k,k} - kK_2 \quad \blacktriangleright \ \mathcal{C}_{\ell}(G_k) \text{ connected when } \ell > k \text{ (next page)}$

Bounds on diam(C_k(G))? ► Trivial upper bound: k^{|G|}

- • $C_k(G_k)$ is disconnected (frozen colorings)
 - $C_{\ell}(G_k)$ is connected when $3 \leq \ell < k$. Pf: Each part has color repeated, only used on that part. So can reach 2-coloring.

 $G_k := K_{k,k} - kK_2 \rightarrow C_{\ell}(G_k)$ connected when $\ell > k$ (next page)

Bounds on diam($C_k(G)$)?

- Trivial upper bound: k^{|G|}
- ▶ Non-trivial lower bound: $2^{\Theta(\sqrt{|G|})}$ (with 4 colors)

• $C_{\ell}(G_k)$ is connected when $3 \leq \ell < k$. Pf: Each part has color repeated, only used on that part. So can reach 2-coloring.

 $G_k := K_{k,k} - kK_2 \rightarrow C_{\ell}(G_k)$ connected when $\ell > k$ (next page)

Bounds on diam($C_k(G)$)?

- Trivial upper bound: k^{|G|}
- ► Non-trivial lower bound: $2^{\Theta(\sqrt{|G|})}$ (with 4 colors)
 - Encode an *n*-bit counter with $\Theta(n^2)$ vertices

- $C_k(G_k)$ is disconnected (frozen colorings)
- Cℓ(Gk) is connected when 3 ≤ ℓ < k.
 Pf: Each part has color repeated, only used on that part. So can reach 2-coloring.

 $G_k := K_{k,k} - kK_2 \quad \blacktriangleright \ \mathcal{C}_{\ell}(G_k) \text{ connected when } \ell > k \text{ (next page)}$

- Bounds on diam($C_k(G)$)?
 - Trivial upper bound: k^{|G|}
 - ▶ Non-trivial lower bound: $2^{\Theta(\sqrt{|G|})}$ (with 4 colors)
 - Encode an *n*-bit counter with $\Theta(n^2)$ vertices

How about "nice" graphs?

Cℓ(Gk) is connected when 3 ≤ ℓ < k.
 Pf: Each part has color repeated, only used on that part. So can reach 2-coloring.

 $G_k := K_{k,k} - kK_2 \rightarrow C_\ell(G_k)$ connected when $\ell > k$ (next page)

Bounds on diam $(\mathcal{C}_k(G))$?

Trivial upper bound: k^{|G|}

0 *k*

• Non-trivial lower bound: $2^{\Theta(\sqrt{|G|})}$ (with 4 colors)

• Encode an *n*-bit counter with $\Theta(n^2)$ vertices

0.....01

02

Cℓ(Gk) is connected when 3 ≤ ℓ < k.
 Pf: Each part has color repeated, only used on that part. So can reach 2-coloring.

 $G_k := K_{k,k} - kK_2 \rightarrow C_\ell(G_k)$ connected when $\ell > k$ (next page)

Bounds on diam $(\mathcal{C}_k(G))$?

- Trivial upper bound: k^{|G|}
- Non-trivial lower bound: $2^{\Theta(\sqrt{|G|})}$ (with 4 colors)

• Encode an *n*-bit counter with $\Theta(n^2)$ vertices

0.....0

: 0 2

Cℓ(Gk) is connected when 3 ≤ ℓ < k.
 Pf: Each part has color repeated, only used on that part. So can reach 2-coloring.

 $G_k := K_{k,k} - kK_2 \rightarrow C_\ell(G_k)$ connected when $\ell > k$ (next page)

Bounds on diam($C_k(G)$)?

- Trivial upper bound: k^{|G|}
- Non-trivial lower bound: $2^{\Theta(\sqrt{|G|})}$ (with 4 colors)

• Encode an *n*-bit counter with $\Theta(n^2)$ vertices

Cℓ(Gk) is connected when 3 ≤ ℓ < k.
 Pf: Each part has color repeated, only used on that part. So can reach 2-coloring.

 $G_k := K_{k,k} - kK_2 \rightarrow C_\ell(G_k)$ connected when $\ell > k$ (next page)

Bounds on diam($C_k(G)$)?

- Trivial upper bound: k^{|G|}
- ▶ Non-trivial lower bound: $2^{\Theta(\sqrt{|G|})}$ (with 4 colors)

• Encode an *n*-bit counter with $\Theta(n^2)$ vertices

1 20-01 3

▶ list-assignment L: each vertex v gets allowable colors L(v)
1 <u>2</u>0—01 <u>3</u>

<u>1</u> 20—01 <u>3</u>

- ▶ list-assignment L: each vertex v gets allowable colors L(v)
- L-coloring φ : φ is proper and $\varphi(v) \in L(v)$ for all v

<u>1</u> 20—01 <u>3</u>

- ▶ list-assignment L: each vertex v gets allowable colors L(v)
- L-coloring φ : φ is proper and $\varphi(v) \in L(v)$ for all v

Main Questions:

- ▶ list-assignment L: each vertex v gets allowable colors L(v)
- L-coloring φ : φ is proper and $\varphi(v) \in L(v)$ for all v

Main Questions:

▶ list-assignment L: each vertex v gets allowable colors L(v)

• L-coloring φ : φ is proper and $\varphi(v) \in L(v)$ for all v

Main Questions:

- ▶ list-assignment L: each vertex v gets allowable colors L(v)
- L-coloring φ : φ is proper and $\varphi(v) \in L(v)$ for all v

Main Questions:

- ▶ list-assignment L: each vertex v gets allowable colors L(v)
- L-coloring φ : φ is proper and $\varphi(v) \in L(v)$ for all v

Main Questions:

- Given L-colorings α and β, can we change α to β by recoloring single vertices, keeping L-coloring at each step?
- If so, how many steps are needed?

- ▶ list-assignment L: each vertex v gets allowable colors L(v)
- L-coloring φ : φ is proper and $\varphi(v) \in L(v)$ for all v

Main Questions:

- Given L-colorings α and β, can we change α to β by recoloring single vertices, keeping L-coloring at each step?
- If so, how many steps are needed?
- Given list-assignment L, can we transform every L-coloring α into every L-coloring β?

- ▶ list-assignment L: each vertex v gets allowable colors L(v)
- L-coloring φ : φ is proper and $\varphi(v) \in L(v)$ for all v

Main Questions:

- Given L-colorings α and β, can we change α to β by recoloring single vertices, keeping L-coloring at each step?
- If so, how many steps are needed?
- Given list-assignment L, can we transform every L-coloring α into every L-coloring β?
- If so, how many steps are needed in the worst case?

Cereceda's Conj: For each $d \in \mathbb{Z}^+$, \exists constant C_d s.t. if G is d-degenerate and $k \ge d+2$, then diam $(\mathcal{C}_k(G)) \le C_d |G|^2$.

Cereceda's Conj: For each $d \in \mathbb{Z}^+$, \exists constant C_d s.t. if G is d-degenerate and $k \ge d + 2$, then diam $(C_k(G)) \le C_d |G|^2$.

Strong Cereceda's Conj: \exists constant *C* s.t., for each $d \in \mathbb{Z}^+$, if *G* is *d*-degenerate and $k \ge d+2$, then diam $(\mathcal{C}_k(G)) \le C|G|^2$.

Cereceda's Conj: For each $d \in \mathbb{Z}^+$, \exists constant C_d s.t. if *G* is *d*-degenerate and $k \ge d + 2$, then diam $(\mathcal{C}_k(G)) \le C_d |G|^2$. **Strong Cereceda's Conj:** \exists constant *C* s.t., for each $d \in \mathbb{Z}^+$, if *G* is *d*-degenerate and $k \ge d + 2$, then diam $(\mathcal{C}_k(G)) \le C |G|^2$. **Linear Cereceda's Conj:** For each $d \in \mathbb{Z}^+$, \exists constant C_d s.t. if *G* is *d*-degenerate and $k \ge d + 3$, then diam $(\mathcal{C}_k(G)) \le C_d |G|$.

Cereceda's Conj: For each $d \in \mathbb{Z}^+$, \exists constant C_d s.t. if *G* is *d*-degenerate and $k \ge d + 2$, then diam $(\mathcal{C}_k(G)) \le C_d |G|^2$. **Strong Cereceda's Conj:** \exists constant *C* s.t., for each $d \in \mathbb{Z}^+$, if *G* is *d*-degenerate and $k \ge d + 2$, then diam $(\mathcal{C}_k(G)) \le C |G|^2$. **Linear Cereceda's Conj:** For each $d \in \mathbb{Z}^+$, \exists constant C_d s.t. if *G* is *d*-degenerate and $k \ge d + 3$, then diam $(\mathcal{C}_k(G)) \le C_d |G|$.

Obs: Fix G and L. If $\exists v \text{ s.t. } |L(v)| \geq d(v) + 2$, then $C_L(G)$ is connected iff $C_L(G-v)$ is connected. So $C_L(G)$ is connected if G is d-degenerate and L is (d+2)-assignment. **Pf:** Induction on |G|.

Cereceda's Conj: For each $d \in \mathbb{Z}^+$, \exists constant C_d s.t. if *G* is *d*-degenerate and $k \ge d + 2$, then diam $(\mathcal{C}_k(G)) \le C_d |G|^2$. **Strong Cereceda's Conj:** \exists constant *C* s.t., for each $d \in \mathbb{Z}^+$, if *G* is *d*-degenerate and $k \ge d + 2$, then diam $(\mathcal{C}_k(G)) \le C |G|^2$. **Linear Cereceda's Conj:** For each $d \in \mathbb{Z}^+$, \exists constant C_d s.t. if *G* is *d*-degenerate and $k \ge d + 3$, then diam $(\mathcal{C}_k(G)) \le C_d |G|$.

Obs: Fix *G* and *L*. If $\exists v \text{ s.t. } |L(v)| \geq d(v) + 2$, then $C_L(G)$ is connected iff $C_L(G - v)$ is connected. So $C_L(G)$ is connected if *G* is *d*-degenerate and *L* is (d + 2)-assignment. **Pf:** Induction on |G|. **Key Lem:** Fix *G*, *L*, *v*, and *L*-colorings α and β . Let G' := G - v, $\alpha' := \alpha_{\restriction G'}, \beta' := \beta_{\restriction G'}$. If we can transform α' to β' only recoloring N(v) at most *s* times, then we can transform α to β only recoloring *v* at most $\lceil \frac{s}{|L(v)| - d(v) - 1} \rceil + 1$ times. **Pf:** Above, more carefully.

Key Lem: Fix *G*, *L*, *v*, and *L*-colorings α and β . Let G' := G - v, $\alpha' := \alpha_{\restriction G'}, \beta' := \beta_{\restriction G'}$. If we can transform α' to β' only recoloring N(v) at most *s* times, then we can transform α to β only recoloring *v* at most $\lceil \frac{s}{|L(v)| - d(v) - 1} \rceil + 1$ times. **Pf:** Above, more carefully.

Key Lem: Fix *G*, *L*, *v*, and *L*-colorings α and β . Let G' := G - v, $\alpha' := \alpha_{\restriction G'}, \beta' := \beta_{\restriction G'}$. If we can transform α' to β' only recoloring N(v) at most *s* times, then we can transform α to β only recoloring *v* at most $\lceil \frac{s}{|L(v)| - d(v) - 1} \rceil + 1$ times. **Pf:** Above, more carefully.

Thm:[Cereceda] If G is d-degenerate and $|L(v)| \ge 2d + 1$ for all v, then diam $(\mathcal{C}_L(G)) \le {n+1 \choose 2}$.

Key Lem: Fix *G*, *L*, *v*, and *L*-colorings α and β . Let G' := G - v, $\alpha' := \alpha_{\restriction G'}, \beta' := \beta_{\restriction G'}$. If we can transform α' to β' only recoloring N(v) at most *s* times, then we can transform α to β only recoloring *v* at most $\lceil \frac{s}{|L(v)| - d(v) - 1} \rceil + 1$ times. **Pf:** Above, more carefully.

Thm:[Cereceda] If G is d-degenerate and $|L(v)| \ge 2d + 1$ for all v, then diam $(\mathcal{C}_L(G)) \le {n+1 \choose 2}$. **Pf:** By induction, v_i recolored $\le i$ times. By IH, true for $G - v_n$. Extend, recoloring v_n at most $\lceil \frac{d(n-1)}{2d+1-d-1} \rceil + 1 = n$ times.

Key Lem: Fix *G*, *L*, *v*, and *L*-colorings α and β . Let G' := G - v, $\alpha' := \alpha_{\restriction G'}, \beta' := \beta_{\restriction G'}$. If we can transform α' to β' only recoloring N(v) at most *s* times, then we can transform α to β only recoloring *v* at most $\lceil \frac{s}{|L(v)| - d(v) - 1} \rceil + 1$ times. **Pf:** Above, more carefully.

Thm:[Cereceda] If *G* is *d*-degenerate and $|L(v)| \ge 2d + 1$ for all *v*, then diam($C_L(G)$) $\le \binom{n+1}{2}$. **Pf:** By induction, v_i recolored $\le i$ times. By IH, true for $G - v_n$. Extend, recoloring v_n at most $\lceil \frac{d(n-1)}{2d+1-d-1} \rceil + 1 = n$ times.

Thm:[Bousquet-Perarnau] If G is d-degenerate and $|L(v)| \ge 2d + 2$ for all v, then diam $(\mathcal{C}_L(G)) \le (d+1)n$.

Key Lem: Fix *G*, *L*, *v*, and *L*-colorings α and β . Let G' := G - v, $\alpha' := \alpha_{\restriction G'}, \beta' := \beta_{\restriction G'}$. If we can transform α' to β' only recoloring N(v) at most *s* times, then we can transform α to β only recoloring *v* at most $\lceil \frac{s}{|L(v)| - d(v) - 1} \rceil + 1$ times. **Pf:** Above, more carefully.

Thm:[Cereceda] If *G* is *d*-degenerate and $|L(v)| \ge 2d + 1$ for all *v*, then diam($C_L(G)$) $\le \binom{n+1}{2}$. **Pf:** By induction, v_i recolored $\le i$ times. By IH, true for $G - v_n$. Extend, recoloring v_n at most $\lceil \frac{d(n-1)}{2d+1-d-1} \rceil + 1 = n$ times.

Thm:[Bousquet-Perarnau] If *G* is *d*-degenerate and $|L(v)| \ge 2d + 2$ for all *v*, then diam $(\mathcal{C}_L(G)) \le (d+1)n$. **Pf:** By induction, v_i recolored $\le d+1$ times. By IH, for $G - v_n$. Extend, recoloring v_n at most $\lceil \frac{d(d+1)}{2d+2-d-1} \rceil + 1 = d+1$ times.

Key Lem: Fix *G*, *L*, *v*, and *L*-colorings α and β . Let G' := G - v, $\alpha' := \alpha_{\restriction G'}, \beta' := \beta_{\restriction G'}$. If we can transform α' to β' only recoloring N(v) at most *s* times, then we can transform α to β only recoloring *v* at most $\lceil \frac{s}{|L(v)| - d(v) - 1} \rceil + 1$ times. **Pf:** Above, more carefully.

Thm:[Cereceda] If *G* is *d*-degenerate and $|L(v)| \ge 2d + 1$ for all *v*, then diam($C_L(G)$) $\le \binom{n+1}{2}$. **Pf:** By induction, v_i recolored $\le i$ times. By IH, true for $G - v_n$. Extend, recoloring v_n at most $\lceil \frac{d(n-1)}{2d+1-d-1} \rceil + 1 = n$ times.

Thm:[Bousquet-Perarnau] If *G* is *d*-degenerate and $|L(v)| \ge 2d + 2$ for all *v*, then diam $(C_L(G)) \le (d+1)n$. **Pf:** By induction, v_i recolored $\le d + 1$ times. By IH, for $G - v_n$. Extend, recoloring v_n at most $\lceil \frac{d(d+1)}{2d+2-d-1} \rceil + 1 = d + 1$ times.

Thm:[B-P] Fix k > d. For all $\epsilon > 0$, $\exists C_{d,\epsilon}$ s.t. if $|L(v)| \ge k$ for all v and mad $(G) \le d - \epsilon$, then diam $(\mathcal{C}_L(G)) = O(n^{C_{d,\epsilon}})$.

Key Lem: Fix *G*, *L*, *v*, and *L*-colorings α and β . Let G' := G - v, $\alpha' := \alpha_{\restriction G'}, \beta' := \beta_{\restriction G'}$. If we can transform α' to β' only recoloring N(v) at most *s* times, then we can transform α to β only recoloring *v* at most $\lceil \frac{s}{|L(v)| - d(v) - 1} \rceil + 1$ times. **Pf:** Above, more carefully.

Thm:[Cereceda] If *G* is *d*-degenerate and $|L(v)| \ge 2d + 1$ for all *v*, then diam($C_L(G)$) $\le \binom{n+1}{2}$. **Pf:** By induction, v_i recolored $\le i$ times. By IH, true for $G - v_n$. Extend, recoloring v_n at most $\lceil \frac{d(n-1)}{2d+1-d-1} \rceil + 1 = n$ times.

Thm:[Bousquet-Perarnau] If *G* is *d*-degenerate and $|L(v)| \ge 2d + 2$ for all *v*, then diam $(C_L(G)) \le (d+1)n$. **Pf:** By induction, v_i recolored $\le d + 1$ times. By IH, for $G - v_n$. Extend, recoloring v_n at most $\lceil \frac{d(d+1)}{2d+2-d-1} \rceil + 1 = d + 1$ times.

Thm:[**B-P**] Fix k > d. For all $\epsilon > 0$, $\exists C_{d,\epsilon}$ s.t. if $|L(v)| \ge k$ for all v and mad $(G) \le d - \epsilon$, then diam $(\mathcal{C}_L(G)) = O(n^{C_{d,\epsilon}})$. **Pf:** Like above, but delete many vertices at once.

Thm:[Bousquet–Heinrich] Fix $\epsilon \in (0, 1)$. There exist C_1 , C_2 , C_{ϵ} s.t. for all $d, k \in \mathbb{Z}^+$, if G is d-degenerate, then:

Thm:[Bousquet–Heinrich] Fix $\epsilon \in (0, 1)$. There exist C_1 , C_2 , C_{ϵ} s.t. for all $d, k \in \mathbb{Z}^+$, if G is d-degenerate, then:

1. If $k \geq \frac{3}{2}(d+1)$, then diam $(\mathcal{C}_k(G)) \leq C_1 n^2$.

Thm:[Bousquet–Heinrich] Fix $\epsilon \in (0, 1)$. There exist C_1 , C_2 , C_{ϵ} s.t. for all $d, k \in \mathbb{Z}^+$, if G is d-degenerate, then:

- 1. If $k \geq \frac{3}{2}(d+1)$, then diam $(\mathcal{C}_k(G)) \leq C_1 n^2$.
- 2. If $k \ge (1+\epsilon)(d+2)$, then diam $(\mathcal{C}_k(G)) \le C_{\epsilon} n^{\lceil 1/\epsilon \rceil}$.

Thm:[Bousquet–Heinrich] Fix $\epsilon \in (0, 1)$. There exist C_1 , C_2 , C_{ϵ} s.t. for all $d, k \in \mathbb{Z}^+$, if G is d-degenerate, then:

- 1. If $k \geq \frac{3}{2}(d+1)$, then diam $(\mathcal{C}_k(G)) \leq C_1 n^2$.
- 2. If $k \ge (1+\epsilon)(d+2)$, then diam $(\mathcal{C}_k(G)) \le C_{\epsilon} n^{\lceil 1/\epsilon \rceil}$.
- 3. If $k \ge d+2$, then diam $(\mathcal{C}_k(G)) \le (\mathcal{C}_2 n)^{d+1}$

Thm:[Bousquet–Heinrich] Fix $\epsilon \in (0, 1)$. There exist C_1 , C_2 , C_{ϵ} s.t. for all $d, k \in \mathbb{Z}^+$, if G is d-degenerate, then:

- 1. If $k \geq \frac{3}{2}(d+1)$, then diam $(\mathcal{C}_k(G)) \leq C_1 n^2$.
- 2. If $k \ge (1+\epsilon)(d+2)$, then diam $(\mathcal{C}_k(G)) \le C_{\epsilon} n^{\lceil 1/\epsilon \rceil}$.
- 3. If $k \ge d+2$, then diam $(\mathcal{C}_k(G)) \le (\mathcal{C}_2 n)^{d+1}$

Thm:[Feghali] Fix k > d. Fix $\epsilon \in (0, 1)$. There exists $C_{d,\epsilon}$ s.t. if $mad(G) \le d - \epsilon$, then $diam(\mathcal{C}_k(G)) \le C_{d,\epsilon} n(\log n)^{d-1}$.

Thm:[Bousquet–Heinrich] Fix $\epsilon \in (0, 1)$. There exist C_1 , C_2 , C_{ϵ} s.t. for all $d, k \in \mathbb{Z}^+$, if G is d-degenerate, then:

- 1. If $k \geq \frac{3}{2}(d+1)$, then diam $(\mathcal{C}_k(G)) \leq C_1 n^2$.
- 2. If $k \ge (1+\epsilon)(d+2)$, then diam $(\mathcal{C}_k(G)) \le C_{\epsilon} n^{\lceil 1/\epsilon \rceil}$.
- 3. If $k \ge d+2$, then diam $(\mathcal{C}_k(G)) \le (C_2 n)^{d+1}$

Thm:[Feghali] Fix k > d. Fix $\epsilon \in (0, 1)$. There exists $C_{d,\epsilon}$ s.t. if $mad(G) \le d - \epsilon$, then $diam(\mathcal{C}_k(G)) \le C_{d,\epsilon} n(\log n)^{d-1}$.

Thm:[Bartier–Bousquet–Feghali–Heinrich–Moore–Pierron] If *G* is planar with girth 5, then $C_4(G)$ is connected.

Prop: Every graph G has list assignment L with |L(v)| = d(v) + 1 for all v and L-colorings α and β s.t. we cannot reach β from α .

Prop: Every graph *G* has list assignment *L* with |L(v)| = d(v) + 1 for all *v* and *L*-colorings α and β s.t. we cannot reach β from α . **Pf:** Color *G*² arbitrarily; call it α .

Prop: Every graph *G* has list assignment *L* with |L(v)| = d(v) + 1 for all *v* and *L*-colorings α and β s.t. we cannot reach β from α . **Pf:** Color *G*² arbitrarily; call it α . Let $L(v) := {\alpha(w): w \in N[v]}$. Now let β be another *L*-coloring (color greedily in any order).

Prop: Every graph *G* has list assignment *L* with |L(v)| = d(v) + 1 for all *v* and *L*-colorings α and β s.t. we cannot reach β from α . **Pf:** Color *G*² arbitrarily; call it α . Let $L(v) := {\alpha(w): w \in N[v]}$. Now let β be another *L*-coloring (color greedily in any order). Note that α is frozen (no recoloring is possible), so cannot reach β .

Prop: Every graph *G* has list assignment *L* with |L(v)| = d(v) + 1 for all *v* and *L*-colorings α and β s.t. we cannot reach β from α . **Pf:** Color *G*² arbitrarily; call it α . Let $L(v) := {\alpha(w): w \in N[v]}$. Now let β be another *L*-coloring (color greedily in any order). Note that α is frozen (no recoloring is possible), so cannot reach β .

Prop: Fix an acyclic orientation D of a graph G and a list assignment L for G. If $|L(v)| \ge d_D(v) + 2$ for all $v \in V(G)$, then every two L-colorings α and β can reach each other by single vertex recolorings.

Prop: Every graph *G* has list assignment *L* with |L(v)| = d(v) + 1 for all *v* and *L*-colorings α and β s.t. we cannot reach β from α . **Pf:** Color *G*² arbitrarily; call it α . Let $L(v) := {\alpha(w): w \in N[v]}$. Now let β be another *L*-coloring (color greedily in any order). Note that α is frozen (no recoloring is possible), so cannot reach β .

Prop: Fix an acyclic orientation D of a graph G and a list assignment L for G. If $|L(v)| \ge d_D(v) + 2$ for all $v \in V(G)$, then every two L-colorings α and β can reach each other by single vertex recolorings.

Pf sketch: Induction on |V(G)|.

Prop: For every G and every f, with $f(v) \ge 2$ for all v, there is list assignment L with |L(v)| = f(v) for all v and L-colorings α and β where changing α to β needs $n(G) + \mu(G)$ moves.

Prop: For every G and every f, with $f(v) \ge 2$ for all v, there is list assignment L with |L(v)| = f(v) for all v and L-colorings α and β where changing α to β needs $n(G) + \mu(G)$ moves.

Pf: Every vert needs recolored; every edge of M needs extra step.

Prop: For every G and every f, with $f(v) \ge 2$ for all v, there is list assignment L with |L(v)| = f(v) for all v and L-colorings α and β where changing α to β needs $n(G) + \mu(G)$ moves.

Pf: Every vert needs recolored; every edge of M needs extra step.

Conj:[Cambie–Cames van Batenburg–C.] For list assignment *L* with $|L(v)| \ge d(v) + 2$ for all *v* and *L*-colorings α and β , can always change α to β in at most $n(G) + \mu(G)$ steps.

Prop: For every G and every f, with $f(v) \ge 2$ for all v, there is list assignment L with |L(v)| = f(v) for all v and L-colorings α and β where changing α to β needs $n(G) + \mu(G)$ moves.

Pf: Every vert needs recolored; every edge of M needs extra step.

Conj:[Cambie–Cames van Batenburg–C.] For list assignment L with $|L(v)| \ge d(v) + 2$ for all v and L-colorings α and β , can always change α to β in at most $n(G) + \mu(G)$ steps.

Thm:[Cambie-Cames van Batenburg-C.] arXiv:2204.07928
Prop: For every G and every f, with $f(v) \ge 2$ for all v, there is list assignment L with |L(v)| = f(v) for all v and L-colorings α and β where changing α to β needs $n(G) + \mu(G)$ moves.

Pf: Every vert needs recolored; every edge of M needs extra step.

Conj:[Cambie–Cames van Batenburg–C.] For list assignment *L* with $|L(v)| \ge d(v) + 2$ for all *v* and *L*-colorings α and β , can always change α to β in at most $n(G) + \mu(G)$ steps.

Thm:[Cambie-Cames van Batenburg-C.] arXiv:2204.07928 (a) If $|L(v)| \ge 2d(v) + 1$, then $n(G) + \mu(G)$ steps suffice.

Prop: For every G and every f, with $f(v) \ge 2$ for all v, there is list assignment L with |L(v)| = f(v) for all v and L-colorings α and β where changing α to β needs $n(G) + \mu(G)$ moves.

Pf: Every vert needs recolored; every edge of M needs extra step.

Conj:[Cambie–Cames van Batenburg–C.] For list assignment *L* with $|L(v)| \ge d(v) + 2$ for all *v* and *L*-colorings α and β , can always change α to β in at most $n(G) + \mu(G)$ steps.

Thm:[Cambie-Cames van Batenburg-C.] arXiv:2204.07928 (a) If $|L(v)| \ge 2d(v) + 1$, then $n(G) + \mu(G)$ steps suffice. (b) If $|L(v)| \ge d(v) + 2$, then $n(G) + 2\mu(G)$ steps suffice.

Prop: For every G and every f, with $f(v) \ge 2$ for all v, there is list assignment L with |L(v)| = f(v) for all v and L-colorings α and β where changing α to β needs $n(G) + \mu(G)$ moves.

Pf: Every vert needs recolored; every edge of M needs extra step.

Conj:[Cambie–Cames van Batenburg–C.] For list assignment *L* with $|L(v)| \ge d(v) + 2$ for all *v* and *L*-colorings α and β , can always change α to β in at most $n(G) + \mu(G)$ steps.

Thm:[Cambie-Cames van Batenburg-C.] arXiv:2204.07928 (a) If $|L(v)| \ge 2d(v) + 1$, then $n(G) + \mu(G)$ steps suffice. (b) If $|L(v)| \ge d(v) + 2$, then $n(G) + 2\mu(G)$ steps suffice. Correspondence Coloring: $\mu(G) \to \tau(G)$.

Prop: For every G and every f, with $f(v) \ge 2$ for all v, there is list assignment L with |L(v)| = f(v) for all v and L-colorings α and β where changing α to β needs $n(G) + \mu(G)$ moves.

Pf: Every vert needs recolored; every edge of M needs extra step.

Conj:[Cambie–Cames van Batenburg–C.] For list assignment *L* with $|L(v)| \ge d(v) + 2$ for all *v* and *L*-colorings α and β , can always change α to β in at most $n(G) + \mu(G)$ steps.

Thm:[Cambie-Cames van Batenburg-C.] arXiv:2204.07928 (a) If $|L(v)| \ge 2d(v) + 1$, then $n(G) + \mu(G)$ steps suffice. (b) If $|L(v)| \ge d(v) + 2$, then $n(G) + 2\mu(G)$ steps suffice. Correspondence Coloring: $\mu(G) \to \tau(G)$. Conj. and Theorems

Lem: Fix list-assignment *L* with $|L(v)| \ge d(v) + 2$ for all *v*. Given *L*-colorings α and β , can recolor α to β in at most 2n(G) - 1 steps.

Lem: Fix list-assignment *L* with $|L(v)| \ge d(v) + 2$ for all *v*. Given *L*-colorings α and β , can recolor α to β in at most 2n(G) - 1 steps. **Pf Sketch:** Induction on number of colors *k* used by β .

Lem: Fix list-assignment L with $|L(v)| \ge d(v) + 2$ for all v. Given L-colorings α and β , can recolor α to β in at most 2n(G) - 1 steps. **Pf Sketch:** Induction on number of colors k used by β . Base case, k = 1, is easy.

Lem: Fix list-assignment *L* with $|L(v)| \ge d(v) + 2$ for all *v*. Given *L*-colorings α and β , can recolor α to β in at most 2n(G) - 1 steps. **Pf Sketch:** Induction on number of colors *k* used by β . Base case, k = 1, is easy. By Pigeonhole, some color *c* used at least as often by β as by α .

Lem: Fix list-assignment L with $|L(v)| \ge d(v) + 2$ for all v. Given L-colorings α and β , can recolor α to β in at most 2n(G) - 1 steps. **Pf Sketch:** Induction on number of colors k used by β . Base case, k = 1, is easy. By Pigeonhole, some color c used at least as often by β as by α . From α , recolor every vertex using c.

Lem: Fix list-assignment L with $|L(v)| \ge d(v) + 2$ for all v. Given L-colorings α and β , can recolor α to β in at most 2n(G) - 1 steps. **Pf Sketch:** Induction on number of colors k used by β . Base case, k = 1, is easy. By Pigeonhole, some color c used at least as often by β as by α . From α , recolor every vertex using c. Now recolor every vertex using c in β .

Lem: Fix list-assignment L with $|L(v)| \ge d(v) + 2$ for all v. Given L-colorings α and β , can recolor α to β in at most 2n(G) - 1 steps. **Pf Sketch:** Induction on number of colors k used by β . Base case, k = 1, is easy. By Pigeonhole, some color c used at least as often by β as by α . From α , recolor every vertex using c. Now recolor every vertex using c in β . Finish by induction.

Lem: Fix list-assignment L with $|L(v)| \ge d(v) + 2$ for all v. Given L-colorings α and β , can recolor α to β in at most 2n(G) - 1 steps. **Pf Sketch:** Induction on number of colors k used by β . Base case, k = 1, is easy. By Pigeonhole, some color c used at least as often by β as by α . From α , recolor every vertex using c. Now recolor every vertex using c in β . Finish by induction.

Thm: Fix *L* with $|L(v)| \ge d(v) + 2$ for all *v* and *L*-colorings α and β . Can recolor α to β in at most $n(G) + 2\mu(G)$ steps.

Lem: Fix list-assignment L with $|L(v)| \ge d(v) + 2$ for all v. Given L-colorings α and β , can recolor α to β in at most 2n(G) - 1 steps. **Pf Sketch:** Induction on number of colors k used by β . Base case, k = 1, is easy. By Pigeonhole, some color c used at least as often by β as by α . From α , recolor every vertex using c. Now recolor every vertex using c in β . Finish by induction.

Thm: Fix *L* with $|L(v)| \ge d(v) + 2$ for all *v* and *L*-colorings α and β . Can recolor α to β in at most $n(G) + 2\mu(G)$ steps. **Pf Sketch:** Induction on n(G). Find *v* with $\mu(G - v) = \mu(G) - 1$.

Lem: Fix list-assignment L with $|L(v)| \ge d(v) + 2$ for all v. Given L-colorings α and β , can recolor α to β in at most 2n(G) - 1 steps. **Pf Sketch:** Induction on number of colors k used by β . Base case, k = 1, is easy. By Pigeonhole, some color c used at least as often by β as by α . From α , recolor every vertex using c. Now recolor every vertex using c in β . Finish by induction.

Thm: Fix *L* with $|L(v)| \ge d(v) + 2$ for all *v* and *L*-colorings α and β . Can recolor α to β in at most $n(G) + 2\mu(G)$ steps. **Pf Sketch:** Induction on n(G). Find *v* with $\mu(G - v) = \mu(G) - 1$. If no such *v* exists, finish by lemma.

Lem: Fix list-assignment L with $|L(v)| \ge d(v) + 2$ for all v. Given L-colorings α and β , can recolor α to β in at most 2n(G) - 1 steps. **Pf Sketch:** Induction on number of colors k used by β . Base case, k = 1, is easy. By Pigeonhole, some color c used at least as often by β as by α . From α , recolor every vertex using c. Now recolor every vertex using c in β . Finish by induction.

Thm: Fix *L* with $|L(v)| \ge d(v) + 2$ for all *v* and *L*-colorings α and β . Can recolor α to β in at most $n(G) + 2\mu(G)$ steps. **Pf Sketch:** Induction on n(G). Find *v* with $\mu(G - v) = \mu(G) - 1$. If no such *v* exists, finish by lemma. By Pigeonhole, find *c* in L(v) used at most once on N(v) by α and β (in total).

Lem: Fix list-assignment L with $|L(v)| \ge d(v) + 2$ for all v. Given L-colorings α and β , can recolor α to β in at most 2n(G) - 1 steps. **Pf Sketch:** Induction on number of colors k used by β . Base case, k = 1, is easy. By Pigeonhole, some color c used at least as often by β as by α . From α , recolor every vertex using c. Now recolor every vertex using c in β . Finish by induction.

Thm: Fix *L* with $|L(v)| \ge d(v) + 2$ for all *v* and *L*-colorings α and β . Can recolor α to β in at most $n(G) + 2\mu(G)$ steps. **Pf Sketch:** Induction on n(G). Find *v* with $\mu(G - v) = \mu(G) - 1$. If no such *v* exists, finish by lemma. By Pigeonhole, find *c* in L(v)used at most once on N(v) by α and β (in total). Assume α uses *c* once on $w \in N(v)$.

Lem: Fix list-assignment L with $|L(v)| \ge d(v) + 2$ for all v. Given L-colorings α and β , can recolor α to β in at most 2n(G) - 1 steps. **Pf Sketch:** Induction on number of colors k used by β . Base case, k = 1, is easy. By Pigeonhole, some color c used at least as often by β as by α . From α , recolor every vertex using c. Now recolor every vertex using c in β . Finish by induction.

Thm: Fix *L* with $|L(v)| \ge d(v) + 2$ for all *v* and *L*-colorings α and β . Can recolor α to β in at most $n(G) + 2\mu(G)$ steps. **Pf Sketch:** Induction on n(G). Find *v* with $\mu(G - v) = \mu(G) - 1$. If no such *v* exists, finish by lemma. By Pigeonhole, find *c* in L(v)used at most once on N(v) by α and β (in total). Assume α uses *c* once on $w \in N(v)$. From α : recolor *w*, recolor *v* with *c*.

Lem: Fix list-assignment L with $|L(v)| \ge d(v) + 2$ for all v. Given L-colorings α and β , can recolor α to β in at most 2n(G) - 1 steps. **Pf Sketch:** Induction on number of colors k used by β . Base case, k = 1, is easy. By Pigeonhole, some color c used at least as often by β as by α . From α , recolor every vertex using c. Now recolor every vertex using c in β . Finish by induction.

Thm: Fix *L* with $|L(v)| \ge d(v) + 2$ for all *v* and *L*-colorings α and β . Can recolor α to β in at most $n(G) + 2\mu(G)$ steps. **Pf Sketch:** Induction on n(G). Find *v* with $\mu(G - v) = \mu(G) - 1$. If no such *v* exists, finish by lemma. By Pigeonhole, find *c* in L(v)used at most once on N(v) by α and β (in total). Assume α uses *c* once on $w \in N(v)$. From α : recolor *w*, recolor *v* with *c*. Finish on G - v by induction.

Lem: Fix list-assignment L with $|L(v)| \ge d(v) + 2$ for all v. Given L-colorings α and β , can recolor α to β in at most 2n(G) - 1 steps. **Pf Sketch:** Induction on number of colors k used by β . Base case, k = 1, is easy. By Pigeonhole, some color c used at least as often by β as by α . From α , recolor every vertex using c. Now recolor every vertex using c in β . Finish by induction.

Thm: Fix *L* with $|L(v)| \ge d(v) + 2$ for all *v* and *L*-colorings α and β . Can recolor α to β in at most $n(G) + 2\mu(G)$ steps. **Pf Sketch:** Induction on n(G). Find *v* with $\mu(G - v) = \mu(G) - 1$. If no such *v* exists, finish by lemma. By Pigeonhole, find *c* in L(v)used at most once on N(v) by α and β (in total). Assume α uses *c* once on $w \in N(v)$. From α : recolor *w*, recolor *v* with *c*. Finish on G - v by induction. Recolor *v* to $\beta(v)$.

Lem: Fix list-assignment L with $|L(v)| \ge d(v) + 2$ for all v. Given L-colorings α and β , can recolor α to β in at most 2n(G) - 1 steps. **Pf Sketch:** Induction on number of colors k used by β . Base case, k = 1, is easy. By Pigeonhole, some color c used at least as often by β as by α . From α , recolor every vertex using c. Now recolor every vertex using c in β . Finish by induction.

Thm: Fix *L* with $|L(v)| \ge d(v) + 2$ for all *v* and *L*-colorings α and β . Can recolor α to β in at most $n(G) + 2\mu(G)$ steps. **Pf Sketch:** Induction on n(G). Find *v* with $\mu(G - v) = \mu(G) - 1$. If no such *v* exists, finish by lemma. By Pigeonhole, find *c* in L(v)used at most once on N(v) by α and β (in total). Assume α uses *c* once on $w \in N(v)$. From α : recolor *w*, recolor *v* with *c*. Finish on G - v by induction. Recolor *v* to $\beta(v)$. Extra steps: $2 + 1 = n(G) - n(G - v) + 2(\mu(G) - \mu(G - v))$.

Prop: For every G and every f, with $f(v) \ge 2$ for all v, there is list assignment L with |L(v)| = f(v) for all v and L-colorings α and β where changing α to β needs $n(G) + \mu(G)$ moves.

Pf: Every vert needs recolored; every edge of M needs extra step.

Conj:[Cambie–Cames van Batenburg–C.] For list assignment *L* with $|L(v)| \ge d(v) + 2$ for all *v* and *L*-colorings α and β , can always change α to β in at most $n(G) + \mu(G)$ steps.

Thm:[Cambie-Cames van Batenburg-C.] arXiv:2204.07928 (a) If $|L(v)| \ge 2d(v) + 1$, then $n(G) + \mu(G)$ steps suffice. (b) If $|L(v)| \ge d(v) + 2$, then $n(G) + 2\mu(G)$ steps suffice. Correspondence Coloring: $\mu(G) \to \tau(G)$. Conj. and Theorems