Optimally Reconfiguring List Colorings
Given Large Lists

Daniel W. Cranston
Virginia Commonwealth University
dcranston@vcu.edu

Joint with Stijn Cambie and Wouter Cames van Batenburg

Graph Theory and Combinatorics Seminar
Georgia Tech
7 March 2023

What is Reconfiguration?

https://en.wikipedia.org/wiki/Rubik%27s_Cube#/media/File:Rubik's_cube.svg

What is Reconfiguration?

1 a2 W3 ld

D b el a8

13|15 14

https://en.wikipedia.org/wiki/Rubik%27s_Cube#/media/File:Rubik's_cube.svg

What is Reconfiguration?

1 a2 W3 ld
D b el a8
9 |10 11|12

13|15 14 {

https://en.wikipedia.org/wiki/Rubik%27s_Cube#/media/File:Rubik's_cube.svg

What is Reconfiguration?

1 a2 W3 ld
D b el a8
9 |10 11|12

13|15 14 {

Image credit: Wikipedia

https://en.wikipedia.org/wiki/Rubik%27s_Cube#/media/File:Rubik's_cube.svg

What is Reconfiguration?

1 a2 W3 ld
D b el a8
9 |10 11|12

13|15 14 {

Move from one instance to another

Image credit: Wikipedia

https://en.wikipedia.org/wiki/Rubik%27s_Cube#/media/File:Rubik's_cube.svg

What is Reconfiguration?

1 a2 W3 ld
D b el a8
9 |10 11|12

13|15 14 {

Move from one instance to another by a sequence of small steps?

Image credit: Wikipedia

https://en.wikipedia.org/wiki/Rubik%27s_Cube#/media/File:Rubik's_cube.svg

What is Reconfiguration?

1 a2 W3 ld
D b el a8
9 |10 11|12

13|15 14 {

Move from one instance to another by a sequence of small steps?

Image credit: Wikipedia

> Is it always possible?

https://en.wikipedia.org/wiki/Rubik%27s_Cube#/media/File:Rubik's_cube.svg

What is Reconfiguration?

1 a2 W3 ld
D b el a8
9 |10 11|12

13|15 14 {

Move from one instance to another by a sequence of small steps?

Image credit: Wikipedia

> Is it always possible?

» If so, how many moves do you need?

https://en.wikipedia.org/wiki/Rubik%27s_Cube#/media/File:Rubik's_cube.svg

What is Reconfiguration?

1 a2 W3 ld
D b el a8
9 |10 11|12

13|15 14 {

Move from one instance to another by a sequence of small steps?

Image credit: Wikipedia

> Is it always possible?
» If so, how many moves do you need?

» Can you quickly find a short sequence from one to another?

https://en.wikipedia.org/wiki/Rubik%27s_Cube#/media/File:Rubik's_cube.svg

What is Reconfiguration?

1 a2 W3 ld
D b el a8
9 |10 11|12

13|15 14 {

Move from one instance to another by a sequence of small steps?

Image credit: Wikipedia

> Is it always possible?
» If so, how many moves do you need?
» Can you quickly find a short sequence from one to another?

» Can you quickly sample from all instances (nearly) uniformly?

https://en.wikipedia.org/wiki/Rubik%27s_Cube#/media/File:Rubik's_cube.svg

What is Coloring Reconfiguration?

What is Coloring Reconfiguration?

What is Coloring Reconfiguration?

What is Coloring Reconfiguration?

What is Coloring Reconfiguration?

What is Coloring Reconfiguration?

And another isomorphic component.

What is Coloring Reconfiguration?

And another isomorphic component.

()

@@@ P

&)

)
S

®®
&

e
&

What is Coloring Reconfiguration?

S8 H
SR,

@@@®@®®
And another isomorphic component. @

» "“Reconfiguration graphs” of 3-colorings of 5-cycle and 4-cycle.

.
G2 % G2
BIDNBID
{5
@®@®@®®
And another isomorphic component. @

» "“Reconfiguration graphs” of 3-colorings of 5-cycle and 4-cycle.

» Can ask all the same questions from the previous page.

Enlightening Examples

1 2 k
°© o o
o O o]
1 2 k

Enlightening Examples

1 2 k » Ci(Gy) is disconnected (frozen colorings)
o o °
6 6 o
1 2 k

Gk = Kk,k — kK2

Enlightening Examples
1 2 k » Ci(Gy) is disconnected (frozen colorings)

o o °
P : » Cy(Gy) is connected when 3 < (< k.
6 o)
1 2 k

Gk = Kk,k — kK2

Enlightening Examples

(1) (2) é » Ci(Gy) is disconnected (frozen colorings)

» Cy(Gy) is connected when 3 < / < k.

5 6 o Pf: Each part has color repeated, only used
1 2 k on that part.

Gk = Kk,k - kK2

Enlightening Examples

(1) (2) é » Ci(Gy) is disconnected (frozen colorings)

» Cy(Gy) is connected when 3 < / < k.

5 6 o Pf: Each part has color repeated, only used
1 2 k on that part. So can reach 2-coloring.

Gk = Kk,k — kK2

Enlightening Examples

(1) (2) é » Ci(Gy) is disconnected (frozen colorings)

» Cy(Gy) is connected when 3 < / < k.

5 6 o Pf: Each part has color repeated, only used
1 2 k on that part. So can reach 2-coloring.

Gk = Kk x — kK> » Cy(Gy) connected when ¢ > k (next page)

Enlightening Examples

(1) (2) é » Ci(Gy) is disconnected (frozen colorings)

» Cy(Gy) is connected when 3 < / < k.

5 6 o Pf: Each part has color repeated, only used
1 2 k on that part. So can reach 2-coloring.

Gk = Kk x — kK> » Cy(Gy) connected when ¢ > k (next page)

Bounds on diam(Cx(G))?

Enlightening Examples

(1) (2) é » Ci(Gy) is disconnected (frozen colorings)

» Cy(Gy) is connected when 3 < / < k.

5 6 o Pf: Each part has color repeated, only used
1 2 k on that part. So can reach 2-coloring.

Gk = Kk x — kK> » Cy(Gy) connected when ¢ > k (next page)

Bounds on diam(Cx(G))?
» Trivial upper bound: k!¢l

Enlightening Examples

(1) (2) é » Ci(Gy) is disconnected (frozen colorings)

» Cy(Gy) is connected when 3 < / < k.

5 6 o Pf: Each part has color repeated, only used
1 2 k on that part. So can reach 2-coloring.

Gy := Ky — kK~ » Cu(Gy) connected when ¢ > k (next page)

Bounds on diam(Cx(G))?
» Trivial upper bound: k!¢l

» Non-trivial lower bound: 26(v/I¢) (with 4 colors)

Enlightening Examples

(1) (2) é » Ci(Gy) is disconnected (frozen colorings)

» Cy(Gy) is connected when 3 < / < k.

5 6 o Pf: Each part has color repeated, only used
1 2 k on that part. So can reach 2-coloring.

Gy := Ky — kK~ » Cu(Gy) connected when ¢ > k (next page)

Bounds on diam(Cx(G))?
» Trivial upper bound: k!¢l

» Non-trivial lower bound: 2°(VI¢) (with 4 colors)
» Encode an n-bit counter with ©(n?) vertices

Enlightening Examples

(1) (2) é » Ci(Gy) is disconnected (frozen colorings)

» Cy(Gy) is connected when 3 < / < k.

5 6 o Pf: Each part has color repeated, only used
1 2 k on that part. So can reach 2-coloring.

Gy := Ky — kK~ » Cu(Gy) connected when ¢ > k (next page)

Bounds on diam(Cx(G))?
> Trivial upper bound: k

» Non-trivial lower bound: 2°(VI¢) (with 4 colors)
» Encode an n-bit counter with ©(n?) vertices

|Gl

How about “nice” graphs?

o

@ O @ @ ©

o

® O @ @ ©

Enlightening Examples

(1) (2) é » Ci(Gy) is disconnected (frozen colorings)

» Cy(Gy) is connected when 3 < / < k.

5 6 o Pf: Each part has color repeated, only used
1 2 k on that part. So can reach 2-coloring.

Gy := Ky — kK~ » Cu(Gy) connected when ¢ > k (next page)

Bounds on diam(Cx(G))?
» Trivial upper bound: k!¢l

» Non-trivial lower bound: 2°(VI¢) (with 4 colors)
» Encode an n-bit counter with ©(n?) vertices

How about “nice” graphs? ‘+': 0 0@ @ '—': 0 00 o-@
0—0—e—0—0—e—0—0—=@

1 2 3 4 4 3 2 1
e—0—0—e—0—0—e—0—0

Enlightening Examples

(1) (2) é » Ci(Gy) is disconnected (frozen colorings)

» Cy(Gy) is connected when 3 < / < k.

5 6 o Pf: Each part has color repeated, only used
1 2 k on that part. So can reach 2-coloring.

Gy := Ky — kK~ » Cu(Gy) connected when ¢ > k (next page)

Bounds on diam(Cx(G))?
» Trivial upper bound: k!¢l

» Non-trivial lower bound: 2°(VI¢) (with 4 colors)
» Encode an n-bit counter with ©(n?) vertices

How about “nice” graphs? ‘+': 0 0@ @ '—': 0 00 o-@
0—0—e—0—0—e—0—0—=@ o—o—=o
1 2 3 4 4 3 2 1 - 4
e—0—0—e—0—0—e—0—0 o—e——o

Enlightening Examples
1 2 k » Ci(Gy) is disconnected (frozen colorings)

© ©o o

P . » Cy(Gy) is connected when 3 < (< k.

5 6 o Pf: Each part has color repeated, only used
1 2 k on that part. So can reach 2-coloring.

Gy := Ky — kK~ » Cu(Gy) connected when ¢ > k (next page)

Bounds on diam(Cx(G))?
» Trivial upper bound: k!¢l

» Non-trivial lower bound: 2°(VI¢) (with 4 colors)
» Encode an n-bit counter with ©(n?) vertices

How about “nice” graphs? ‘+': 0 0@ @ '—': 0 00 o-@

e—o0—e—e—0—e—0—0—=@ oo —o
1 2 3 4 4 3 2 1 4
e—o0—e e 00— —e—0—=0 o—eo o

» So diam(C3(P,)) = ©(n?)

Enlightening Examples
1 2 k » Ci(Gy) is disconnected (frozen colorings)

© ©o o

P . » Cy(Gy) is connected when 3 < (< k.

5 6 o Pf: Each part has color repeated, only used
1 2 k on that part. So can reach 2-coloring.

Gy := Ky — kK~ » Cu(Gy) connected when ¢ > k (next page)

Bounds on diam(Cx(G))?
» Trivial upper bound: k!¢l

» Non-trivial lower bound: 2°(VI¢) (with 4 colors)
» Encode an n-bit counter with ©(n?) vertices

How about “nice” graphs? ‘+': 0 0@ @ '—': 0 00 o-@
e—0—e—0 0 —e—0—0—=0 oo —o

1 2 3 4 4 3 2 1 R
e—0—0—e —0—0—e—0—=0 o—e—o0

» So diam(C3(P,)) = ©(n?) and diam(Cx(P, V Kik_3)) = ©(n?)

What is List Coloring Reconfiguration?

120——013

» list-assignment L: each vertex v gets allowable colors L(v)

What is List Coloring Reconfiguration?

120—o0l13

» list-assignment L: each vertex v gets allowable colors L(v)

» [-coloring ¢: ¢ is proper and p(v) € L(v) for all v

What is List Coloring Reconfiguration?

120—o0l13

> list-assignment L: each vertex v gets allowable colors L(v)

» [-coloring ¢: ¢ is proper and p(v) € L(v) for all v

Main Questions:

» Given L-colorings o and 3, can we change « to [by
recoloring single vertices, keeping L-coloring at each step?

What is List Coloring Reconfiguration?

> list-assignment L: each vertex v gets allowable colors L(v)

» [-coloring ¢: ¢ is proper and p(v) € L(v) for all v

Main Questions:

» Given L-colorings o and 3, can we change « to [by
recoloring single vertices, keeping L-coloring at each step?

What is List Coloring Reconfiguration?

120— 013 34 45 34 45
)

120— o013 23 56 23 56
)

120— 013 12 61 12 61

> list-assignment L: each vertex v gets allowable colors L(v)

» [-coloring ¢: ¢ is proper and p(v) € L(v) for all v

Main Questions:

» Given L-colorings o and 3, can we change « to [by
recoloring single vertices, keeping L-coloring at each step?

What is List Coloring Reconfiguration?

120— 013 34 45 34 45
)

120——o013 23 56«23 56
)

120——o013 12 61 12 61

> list-assignment L: each vertex v gets allowable colors L(v)

» [-coloring ¢: ¢ is proper and p(v) € L(v) for all v

Main Questions:

» Given L-colorings o and 3, can we change « to [by
recoloring single vertices, keeping L-coloring at each step?

What is List Coloring Reconfiguration?

120— 013 34 45 34 45
)

120——o013 23 56«23 56
)

120——o013 12 61 12 61

> list-assignment L: each vertex v gets allowable colors L(v)

» [-coloring ¢: ¢ is proper and p(v) € L(v) for all v

Main Questions:

» Given L-colorings o and 3, can we change « to [by
recoloring single vertices, keeping L-coloring at each step?

» If so, how many steps are needed?

What is List Coloring Reconfiguration?

120— 013 34 45 34 45
)

120——o013 23 56«23 56
)

120——o013 12 61 12 61

> list-assignment L: each vertex v gets allowable colors L(v)

» [-coloring ¢: ¢ is proper and p(v) € L(v) for all v

Main Questions:

» Given L-colorings o and 3, can we change « to [by
recoloring single vertices, keeping L-coloring at each step?

» If so, how many steps are needed?

» Given list-assignment L, can we transform every L-coloring «
into every L-coloring 37

What is List Coloring Reconfiguration?

120— 013 34 45 34 45
)

120——o013 23 56«23 56
)

120——o013 12 61 12 61

> list-assignment L: each vertex v gets allowable colors L(v)

» [-coloring ¢: ¢ is proper and p(v) € L(v) for all v

Main Questions:

» Given L-colorings o and 3, can we change « to [by
recoloring single vertices, keeping L-coloring at each step?

» If so, how many steps are needed?

» Given list-assignment L, can we transform every L-coloring «
into every L-coloring 37

> If so, how many steps are needed in the worst case?

Degenerate Graphs: Conjectures and Tools

Cereceda’s Conj: For each d € Z", 3 constant C, s.t. if G is
d-degenerate and k > d + 2, then diam(Cx(G)) < Cy4|G|%.

Degenerate Graphs: Conjectures and Tools

Cereceda’s Conj: For each d € Z", 3 constant C, s.t. if G is
d-degenerate and k > d + 2, then diam(Cx(G)) < Cy4|G|%.
Strong Cereceda’s Conj: J constant C s.t., for each d € ZT, if
G is d-degenerate and k > d + 2, then diam(C,(G)) < C|G|°.

Degenerate Graphs: Conjectures and Tools

Cereceda’s Conj: For each d € Z", 3 constant C, s.t. if G is
d-degenerate and k > d + 2, then diam(Cx(G)) < Cy4|G|%.
Strong Cereceda’s Conj: J constant C s.t., for each d € ZT, if
G is d-degenerate and k > d + 2, then diam(C,(G)) < C|G|°.

Linear Cereceda’s Conj: For each d € Z", 3 constant Cy s.t. if
G is d-degenerate and k > d + 3, then diam(Cx(G)) < Cy4|G|.

Degenerate Graphs: Conjectures and Tools

Cereceda’s Conj: For each d € Z", 3 constant C, s.t. if G is
d-degenerate and k > d + 2, then diam(Cx(G)) < Cy4|G|%.
Strong Cereceda’s Conj: J constant C s.t., for each d € ZT, if
G is d-degenerate and k > d + 2, then diam(C,(G)) < C|G|°.
Linear Cereceda’s Conj: For each d € Z", J constant Cy s.t. if
G is d-degenerate and k > d + 3, then diam(Cx(G)) < Cy4|G|.

Obs: Fix G and L. If 3v s.t. |L(v)| > d(v) + 2, then C.(G) is
connected iff C; (G — v) is connected. So C;(G) is connected if G is
d-degenerate and L is (d + 2)-assignment. Pf: Induction on |G]|.

Degenerate Graphs: Conjectures and Tools

Cereceda’s Conj: For each d € Z", 3 constant C, s.t. if G is
d-degenerate and k > d + 2, then diam(Cx(G)) < C4|G|%.

Strong Cereceda’s Conj: J constant C s.t., for each d € ZT, if
G is d-degenerate and k > d + 2, then diam(C,(G)) < C|G|°.

Linear Cereceda’s Conj: For each d € Z", J constant Cy s.t. if
G is d-degenerate and k > d + 3, then diam(Cx(G)) < Cy4|G|.

Obs: Fix G and L. If 3v s.t. |L(v)| > d(v) + 2, then C.(G) is
connected iff C; (G — v) is connected. So C;(G) is connected if G is
d-degenerate and L is (d + 2)-assignment. Pf: Induction on |G]|.
Key Lem: Fix G, L, v, and L-colorings v and 3. Let G’ := G — v,
o :=ow¢, B = Pie . If we can transform o’ to 3" only recoloring
N(v) at most s times, then we can tranform « to /3 only recoloring
v at most [WW + 1 times. Pf: Above, more carefully.

Degenerate Graphs: Applications of Key Lemma
Key Lem: Fix G, L, v, and L-colorings ov and 3. Let G' := G — v,

o = ayg, ' = B¢ If we can transform o/ to [/’ only recoloring
N(v) at most s times, then we can tranform « to /3 only recoloring

v at most [W] + 1 times. Pf: Above, more carefully.

Degenerate Graphs: Applications of Key Lemma
Key Lem: Fix G, L, v, and L-colorings ov and 3. Let G' := G — v,

o = ayg, ' = B¢ If we can transform o/ to [/’ only recoloring
N(v) at most s times, then we can tranform « to /3 only recoloring

v at most [W] + 1 times. Pf: Above, more carefully.

Thm:[Cereceda] If G is d-degenerate and |L(v)| > 2d + 1 for all

v, then diam(C.(G)) < ("11).

Degenerate Graphs: Applications of Key Lemma
Key Lem: Fix G, L, v, and L-colorings ov and 3. Let G' := G — v,

o = ayg, ' = B¢ If we can transform o/ to [/’ only recoloring
N(v) at most s times, then we can tranform « to /3 only recoloring

v at most [W] + 1 times. Pf: Above, more carefully.

Thm:[Cereceda] If G is d-degenerate and |L(v)| > 2d + 1 for all
v, then diam(C.(G)) < ("11).
Pf: By induction, v; recolored < / times. By IH, true for G — v,.

Extend, recoloring v,, at most (26/‘1(1’7:61,)711 + 1 = n times.

Degenerate Graphs: Applications of Key Lemma
Key Lem: Fix G, L, v, and L-colorings ov and 3. Let G' := G — v,

o = ayg, ' = B¢ If we can transform o/ to [/’ only recoloring
N(v) at most s times, then we can tranform « to /3 only recoloring

v at most [W] + 1 times. Pf: Above, more carefully.

Thm:[Cereceda] If G is d-degenerate and |L(v)| > 2d + 1 for all
v, then diam(C.(G)) < ("11).
Pf: By induction, v; recolored < / times. By IH, true for G — v,.

Extend, recoloring v,, at most (26/‘1(1’7:61,)711 + 1 = n times.

Thm:[Bousquet-Perarnau] If G is d-degenerate and
|L(v)| > 2d + 2 for all v, then diam(C.(G)) < (d + 1)n.

Degenerate Graphs: Applications of Key Lemma
Key Lem: Fix G, L, v, and L-colorings ov and 3. Let G' := G — v,

o = ayg, ' = B¢ If we can transform o/ to [/’ only recoloring
N(v) at most s times, then we can tranform « to /3 only recoloring

v at most [W] + 1 times. Pf: Above, more carefully.

Thm:[Cereceda] If G is d-degenerate and |L(v)| > 2d + 1 for all
v, then diam(C.(G)) < ("11).

Pf: By induction, v; recolored < / times. By IH, true for G — v,.
Extend, recoloring v,, at most (26/‘1(1’7:61,)711 + 1 = n times.
Thm:[Bousquet-Perarnau] If G is d-degenerate and

|L(v)| > 2d + 2 for all v, then diam(C.(G)) < (d + 1)n.

Pf: By induction, v; recolored < d + 1 times. By IH, for G — v,.

Extend, recoloring v,, at most (#j)_l} +1=d+ 1 times.

Degenerate Graphs: Applications of Key Lemma
Key Lem: Fix G, L, v, and L-colorings ov and 3. Let G' := G — v,

o = ayg, ' = B¢ If we can transform o/ to [/’ only recoloring
N(v) at most s times, then we can tranform « to /3 only recoloring

v at most [W] + 1 times. Pf: Above, more carefully.

Thm:[Cereceda] If G is d-degenerate and |L(v)| > 2d + 1 for all
v, then diam(C.(G)) < ("11).
Pf: By induction, v; recolored < / times. By IH, true for G — v,.

Extend, recoloring v,, at most (26/‘1(1’7:61,)711 + 1 = n times.

Thm:[Bousquet-Perarnau] If G is d-degenerate and
|L(v)| > 2d + 2 for all v, then diam(C.(G)) < (d + 1)n.
Pf: By induction, v; recolored < d + 1 times. By IH, for G — v,.

Extend, recoloring v,, at most (%1 +1=d+ 1 times.

Thm:[B-P] Fix k > d. Forall e >0, 3 Cy s.t. if |[L(v)| > k for
all v and mad(G) < d — ¢, then diam(C.(G)) = O(n%e-).

Degenerate Graphs: Applications of Key Lemma
Key Lem: Fix G, L, v, and L-colorings ov and 3. Let G' := G — v,

o = ayg, ' = B¢ If we can transform o/ to [/’ only recoloring
N(v) at most s times, then we can tranform « to /3 only recoloring

v at most [W] + 1 times. Pf: Above, more carefully.

Thm:[Cereceda] If G is d-degenerate and |L(v)| > 2d + 1 for all
v, then diam(C.(G)) < ("11).
Pf: By induction, v; recolored < / times. By IH, true for G — v,.

Extend, recoloring v,, at most (26/‘1(1’7:61,)711 + 1 = n times.

Thm:[Bousquet-Perarnau] If G is d-degenerate and

|L(v)| > 2d + 2 for all v, then diam(C.(G)) < (d + 1)n.

Pf: By induction, v; recolored < d + 1 times. By IH, for G — v,.
Extend, recoloring v,, at most (#j)_l} +1=d+ 1 times.
Thm:[B-P] Fix k > d. Forall e >0, 3 Cy s.t. if |[L(v)| > k for
all v and mad(G) < d — ¢, then diam(C.(G)) = O(n%e-).

Pf: Like above, but delete many vertices at once.

Coloring Reconfig: Best Bounds for Degenerate Graphs

Thm:[Bousquet—Heinrich] Fix ¢ € (0,1). There exist C;, G, C.
s.t. forall d,k € Z", if G is d-degenerate, then:

Coloring Reconfig: Best Bounds for Degenerate Graphs

Thm:[Bousquet—Heinrich] Fix ¢ € (0,1). There exist C;, G, C.
s.t. forall d,k € Z", if G is d-degenerate, then:

1. If k > 3(d + 1), then diam(Cx(G)) < Cin?.

Coloring Reconfig: Best Bounds for Degenerate Graphs

Thm:[Bousquet—Heinrich] Fix ¢ € (0,1). There exist C;, G, C.
s.t. forall d,k € Z", if G is d-degenerate, then:

1. If k > 3(d + 1), then diam(Cx(G)) < Cin?.
2. If k > (1+ €)(d +2), then diam(Cy(G)) < Ccnlt/el,

Coloring Reconfig: Best Bounds for Degenerate Graphs

Thm:[Bousquet—Heinrich] Fix ¢ € (0,1). There exist C;, G, C.
s.t. forall d,k € Z", if G is d-degenerate, then:

1. If k > 3(d + 1), then diam(Cx(G)) < Cin?.
2. If k > (1+ €)(d +2), then diam(Cy(G)) < Ccnlt/el,
3. If k > d + 2, then diam(Cx(G)) < (Gon)d+?

Coloring Reconfig: Best Bounds for Degenerate Graphs

Thm:[Bousquet—Heinrich] Fix ¢ € (0,1). There exist C;, G, C.
s.t. forall d,k € Z", if G is d-degenerate, then:

1. If k > 3(d + 1), then diam(Cx(G)) < Cin?.
2. If k > (1+ €)(d +2), then diam(Cy(G)) < Ccnlt/el,
3. If k > d + 2, then diam(Cx(G)) < (Gon)d+?

Thm:[Feghali] Fix k > d. Fix e € (0,1). There exists Cy, s.t. if
mad(G) < d — ¢, then diam(Cx(G)) < Cyn(log n)9~1.

Coloring Reconfig: Best Bounds for Degenerate Graphs

Thm:[Bousquet—Heinrich] Fix ¢ € (0,1). There exist C;, G, C.
s.t. forall d,k € Z", if G is d-degenerate, then:

1. If k > 3(d + 1), then diam(Cx(G)) < Cin?.
2. If k > (1+ €)(d +2), then diam(Cy(G)) < Ccnlt/el,
3. If k > d + 2, then diam(Cx(G)) < (Gon)d+?

Thm:[Feghali] Fix k > d. Fix e € (0,1). There exists Cy, s.t. if
mad(G) < d — ¢, then diam(Cx(G)) < Cyn(log n)9~1.

Thm:[Bartier—Bousquet—Feghali—-Heinrich—Moore—Pierron]
If G is planar with girth 5, then C4(G) is connected.

Avoiding Frozen Colorings

Prop: Every graph G has list assignment L with [L(v)| = d(v) + 1
for all v and L-colorings o and [s.t. we cannot reach /3 from a.

Avoiding Frozen Colorings

Prop: Every graph G has list assignment L with [L(v)| = d(v) + 1
for all v and L-colorings o and [s.t. we cannot reach /3 from a.

Pf: Color G? arbitrarily; call it .

Avoiding Frozen Colorings

Prop: Every graph G has list assignment L with [L(v)| = d(v) + 1
for all v and L-colorings o and [s.t. we cannot reach /3 from a.
Pf: Color G? arbitrarily; call it . Let L(v) := {a(w): w e N[v]}.
Now let [be another L-coloring (color greedily in any order).

1235 1345 1345 2345 1234

3 4 2
[T Do [T [o
1 5 3

1234 1345 1345 1345 1235

Avoiding Frozen Colorings

Prop: Every graph G has list assignment L with [L(v)| = d(v) + 1
for all v and L-colorings o and [s.t. we cannot reach /3 from a.
Pf: Color G? arbitrarily; call it . Let L(v) := {a(w): w e N[v]}.
Now let 5 be another L-coloring (color greedily in any order). Note
that « is frozen (no recoloring is possible), so cannot reach /.

1235 1345 1345 2345 1234

3 4 2
[T Do [][o
1 5 3

1234 1345 1345 1345 1235

Avoiding Frozen Colorings

Prop: Every graph G has list assignment L with [L(v)| = d(v) + 1
for all v and L-colorings o and [s.t. we cannot reach /3 from a.
Pf: Color G? arbitrarily; call it . Let L(v) := {a(w): w e N[v]}.
Now let 5 be another L-coloring (color greedily in any order). Note
that « is frozen (no recoloring is possible), so cannot reach /.

1235 1345 1345 2345 1234

3 4 2
[T Do [][o
1 5 3

3 4 1234 1345 1345 1345 1235

Prop: Fix an acyclic orientation D of a graph G and a list
assignment L for G. If [L(v)| > dp(v) + 2 for all v € V(G), then
every two L-colorings o and [can reach each other by single
vertex recolorings.

Avoiding Frozen Colorings

Prop: Every graph G has list assignment L with [L(v)| = d(v) + 1
for all v and L-colorings o and [s.t. we cannot reach /3 from a.
Pf: Color G? arbitrarily; call it . Let L(v) := {a(w): w e N[v]}.
Now let 5 be another L-coloring (color greedily in any order). Note
that « is frozen (no recoloring is possible), so cannot reach /.

1 5 3 4 2 1235 1345 1345 2345 1234
[[[o< [T] o
3 4 1 5 3 1234 1345 1345 1345 1235

Prop: Fix an acyclic orientation D of a graph G and a list
assignment L for G. If [L(v)| > dp(v) + 2 for all v € V(G), then
every two L-colorings o and [can reach each other by single
vertex recolorings.

Pf sketch: Induction on |V(G)|.

How Many Moves are Needed?
Prop: For every G and every f, with f(v) > 2 for all v, there is
list assignment L with [L(v)| = f(v) for all v and L-colorings «
and 3 where changing o to [needs n(G) + 11(G) moves.

https://arxiv.org/abs/2204.07928

How Many Moves are Needed?
Prop: For every G and every f, with f(v) > 2 for all v, there is
list assignment L with [L(v)| = f(v) for all v and L-colorings «
and 3 where changing o to [needs n(G) + 11(G) moves.

Pf: Every vert needs recolored; every edge of M needs extra step.

1235 1345 2356 2345 1246

O O O

123 | | | 146

1234 3456 3456 1256 1456

https://arxiv.org/abs/2204.07928

How Many Moves are Needed?

Prop: For every G and every f, with f(v) > 2 for all v, there is
list assignment L with [L(v)| = f(v) for all v and L-colorings «
and 3 where changing o to [needs n(G) + 11(G) moves.

Pf: Every vert needs recolored; every edge of M needs extra step.

1235 1345 2356 2345 1246

O O O)

123 | | | 146

1234 3456 3456 1256 1456

Conj:[Cambie—Cames van Batenburg—C.] For list assignment L
with |L(v)| > d(v) + 2 for all v and L-colorings o and /3, can
always change o to /3 in at most n(G) + (G) steps.

https://arxiv.org/abs/2204.07928

How Many Moves are Needed?

Prop: For every G and every f, with f(v) > 2 for all v, there is
list assignment L with [L(v)| = f(v) for all v and L-colorings «
and 3 where changing o to [needs n(G) + 11(G) moves.

Pf: Every vert needs recolored; every edge of M needs extra step.

1235 1345 2356 2345 1246

O O O)

123 | | | 146

1234 3456 3456 1256 1456

Conj:[Cambie—Cames van Batenburg—C.] For list assignment L
with |L(v)| > d(v) + 2 for all v and L-colorings o and /3, can
always change o to /3 in at most n(G) + (G) steps.

Thm:[Cambie—Cames van Batenburg—C.] arXiv:2204.07928

https://arxiv.org/abs/2204.07928

How Many Moves are Needed?

Prop: For every G and every f, with f(v) > 2 for all v, there is
list assignment L with [L(v)| = f(v) for all v and L-colorings «
and 3 where changing o to [needs n(G) + 11(G) moves.

Pf: Every vert needs recolored; every edge of M needs extra step.

1235 1345 2356 2345 1246

O O O)

123 | | | 146

1234 3456 3456 1256 1456

Conj:[Cambie—Cames van Batenburg—C.] For list assignment L
with |L(v)| > d(v) + 2 for all v and L-colorings o and /3, can
always change o to /3 in at most n(G) + (G) steps.
Thm:[Cambie—Cames van Batenburg—C.] arXiv:2204.07928
(a) If |[L(v)| = 2d(v) + 1, then n(G) + p(G) steps suffice.

https://arxiv.org/abs/2204.07928

How Many Moves are Needed?
Prop: For every G and every f, with f(v) > 2 for all v, there is
list assignment L with [L(v)| = f(v) for all v and L-colorings «
and 3 where changing o to [needs n(G) + 11(G) moves.

Pf: Every vert needs recolored; every edge of M needs extra step.

1235 1345 2356 2345 1246

O O O

123 | | | 146

1234 3456 3456 1256 1456

Conj:[Cambie—Cames van Batenburg—C.] For list assignment L
with |L(v)| > d(v) + 2 for all v and L-colorings o and /3, can
always change o to /3 in at most n(G) + (G) steps.
Thm:[Cambie—Cames van Batenburg—C.] arXiv:2204.07928
(a) If |[L(v)| = 2d(v) + 1, then n(G) + p(G) steps suffice.

(b) If [L(v)| = d(v) + 2, then n(G) + 21(G) steps suffice.

https://arxiv.org/abs/2204.07928

How Many Moves are Needed?

Prop: For every G and every f, with f(v) > 2 for all v, there is
list assignment L with [L(v)| = f(v) for all v and L-colorings «
and /3 where changing « to 3 needs n(G) + p(G) moves.

Pf: Every vert needs recolored; every edge of M needs extra step.

1235 1345 2356 2345 1246

O O O)

123 | | | 146

1234 3456 3456 1256 1456

Conj:[Cambie—Cames van Batenburg—C.] For list assignment L
with |L(v)| > d(v) + 2 for all v and L-colorings o and /3, can
always change o to /3 in at most n(G) + (G) steps.
Thm:[Cambie—Cames van Batenburg—C.] arXiv:2204.07928
(a) If |[L(v)| = 2d(v) + 1, then n(G) + p(G) steps suffice.

(b) If |L(v)| > d(v)+ 2, then n(G) + 21(G) steps suffice.
Correspondence Coloring: 1(G) — 7(G).

https://arxiv.org/abs/2204.07928

How Many Moves are Needed?

Prop: For every G and every f, with f(v) > 2 for all v, there is
list assignment L with [L(v)| = f(v) for all v and L-colorings «
and /3 where changing « to 3 needs n(G) + p(G) moves.

Pf: Every vert needs recolored; every edge of M needs extra step.

1235 1345 2356 2345 1246

O O O)

123 | | | 146

1234 3456 3456 1256 1456

Conj:[Cambie—Cames van Batenburg—C.] For list assignment L
with |L(v)| > d(v) + 2 for all v and L-colorings o and /3, can
always change o to /3 in at most n(G) + (G) steps.
Thm:[Cambie—Cames van Batenburg—C.] arXiv:2204.07928
(a) If |[L(v)| = 2d(v) + 1, then n(G) + p(G) steps suffice.

(b) If |L(v)| > d(v)+ 2, then n(G) + 21(G) steps suffice.
Correspondence Coloring: ;1(G) — 7(G). Conj. and Theorems

https://arxiv.org/abs/2204.07928

Two Proof Sketches

Two Proof Sketches

Lem: Fix list-assignment L with |L(v)| > d(v) + 2 for all v. Given
L-colorings «v and 3, can recolor o to 3 in at most 2n(G) — 1 steps.

Two Proof Sketches

Lem: Fix list-assignment L with |L(v)| > d(v) + 2 for all v. Given
L-colorings «v and [3, can recolor v to 3 in at most 2n(G) — 1 steps.
Pf Sketch: Induction on number of colors k used by /3.

Two Proof Sketches

Lem: Fix list-assignment L with |L(v)| > d(v) + 2 for all v. Given
L-colorings «v and [3, can recolor v to 3 in at most 2n(G) — 1 steps.
Pf Sketch: Induction on number of colors k used by 3. Base case,
k =1, is easy.

Two Proof Sketches

Lem: Fix list-assignment L with |L(v)| > d(v) + 2 for all v. Given
L-colorings «v and [3, can recolor v to 3 in at most 2n(G) — 1 steps.
Pf Sketch: Induction on number of colors k used by 3. Base case,
k =1, is easy. By Pigeonhole, some color ¢ used at least as often

by 3 as by «.

Two Proof Sketches

Lem: Fix list-assignment L with |L(v)| > d(v) + 2 for all v. Given
L-colorings «v and [3, can recolor v to 3 in at most 2n(G) — 1 steps.
Pf Sketch: Induction on number of colors k used by 3. Base case,
k =1, is easy. By Pigeonhole, some color ¢ used at least as often

by § as by a. From «, recolor every vertex using c.

Two Proof Sketches

Lem: Fix list-assignment L with |L(v)| > d(v) + 2 for all v. Given
L-colorings «v and [3, can recolor v to 3 in at most 2n(G) — 1 steps.
Pf Sketch: Induction on number of colors k used by 3. Base case,
k =1, is easy. By Pigeonhole, some color ¢ used at least as often
by § as by a. From «, recolor every vertex using c. Now recolor
every vertex using c in [3.

Two Proof Sketches

Lem: Fix list-assignment L with |L(v)| > d(v) + 2 for all v. Given
L-colorings «v and [3, can recolor v to 3 in at most 2n(G) — 1 steps.
Pf Sketch: Induction on number of colors k used by 3. Base case,
k =1, is easy. By Pigeonhole, some color ¢ used at least as often
by § as by a. From «, recolor every vertex using c. Now recolor
every vertex using c in 3. Finish by induction.

Two Proof Sketches

Lem: Fix list-assignment L with |L(v)| > d(v) + 2 for all v. Given
L-colorings «v and [3, can recolor v to 3 in at most 2n(G) — 1 steps.
Pf Sketch: Induction on number of colors k used by 3. Base case,
k =1, is easy. By Pigeonhole, some color ¢ used at least as often
by § as by a. From «, recolor every vertex using c. Now recolor
every vertex using c in 3. Finish by induction.

Thm: Fix L with |L(v)| > d(v) + 2 for all v and L-colorings « and
. Can recolor o to /3 in at most n(G) + 2,(G) steps.

Two Proof Sketches

Lem: Fix list-assignment L with |L(v)| > d(v) + 2 for all v. Given
L-colorings «v and [3, can recolor v to 3 in at most 2n(G) — 1 steps.
Pf Sketch: Induction on number of colors k used by 3. Base case,
k =1, is easy. By Pigeonhole, some color ¢ used at least as often
by § as by a. From «, recolor every vertex using c. Now recolor
every vertex using c in 3. Finish by induction.

Thm: Fix L with |L(v)| > d(v) + 2 for all v and L-colorings « and
. Can recolor o to /3 in at most n(G) + 2,(G) steps.
Pf Sketch: Induction on n(G). Find v with (G — v) = p(G) — 1.

Two Proof Sketches

Lem: Fix list-assignment L with |L(v)| > d(v) + 2 for all v. Given
L-colorings «v and [3, can recolor v to 3 in at most 2n(G) — 1 steps.
Pf Sketch: Induction on number of colors k used by 3. Base case,
k =1, is easy. By Pigeonhole, some color ¢ used at least as often
by § as by a. From «, recolor every vertex using c. Now recolor
every vertex using c in 3. Finish by induction.

Thm: Fix L with |L(v)| > d(v) + 2 for all v and L-colorings « and
. Can recolor o to /3 in at most n(G) + 2,(G) steps.

Pf Sketch: Induction on n(G). Find v with (G — v) = p(G) — 1.
If no such v exists, finish by lemma.

Two Proof Sketches

Lem: Fix list-assignment L with |L(v)| > d(v) + 2 for all v. Given
L-colorings «v and [3, can recolor v to 3 in at most 2n(G) — 1 steps.
Pf Sketch: Induction on number of colors k used by 3. Base case,
k =1, is easy. By Pigeonhole, some color ¢ used at least as often
by § as by a. From «, recolor every vertex using c. Now recolor
every vertex using c in 3. Finish by induction.

Thm: Fix L with |L(v)| > d(v) + 2 for all v and L-colorings « and
. Can recolor o to /3 in at most n(G) + 2,(G) steps.

Pf Sketch: Induction on n(G). Find v with (G — v) = p(G) — 1.
If no such v exists, finish by lemma. By Pigeonhole, find ¢ in L(v)
used at most once on N(v) by @ and 3 (in total).

Two Proof Sketches

Lem: Fix list-assignment L with |L(v)| > d(v) + 2 for all v. Given
L-colorings «v and [3, can recolor v to 3 in at most 2n(G) — 1 steps.
Pf Sketch: Induction on number of colors k used by 3. Base case,
k =1, is easy. By Pigeonhole, some color ¢ used at least as often
by § as by a. From «, recolor every vertex using c. Now recolor
every vertex using c in 3. Finish by induction.

Thm: Fix L with |L(v)| > d(v) + 2 for all v and L-colorings « and
. Can recolor o to /3 in at most n(G) + 2,(G) steps.

Pf Sketch: Induction on n(G). Find v with (G — v) = p(G) — 1.
If no such v exists, finish by lemma. By Pigeonhole, find ¢ in L(v)
used at most once on N(v) by o and 3 (in total). Assume « uses
c once on w € N(v).

Two Proof Sketches

Lem: Fix list-assignment L with |L(v)| > d(v) + 2 for all v. Given
L-colorings «v and [3, can recolor v to 3 in at most 2n(G) — 1 steps.
Pf Sketch: Induction on number of colors k used by 3. Base case,
k =1, is easy. By Pigeonhole, some color ¢ used at least as often
by § as by a. From «, recolor every vertex using c. Now recolor
every vertex using c in 3. Finish by induction.

Thm: Fix L with |L(v)| > d(v) + 2 for all v and L-colorings « and
. Can recolor o to /3 in at most n(G) + 2,(G) steps.

Pf Sketch: Induction on n(G). Find v with (G — v) = p(G) — 1.
If no such v exists, finish by lemma. By Pigeonhole, find ¢ in L(v)
used at most once on N(v) by o and 3 (in total). Assume « uses
c once on w € N(v). From «: recolor w, recolor v with c.

Two Proof Sketches

Lem: Fix list-assignment L with |L(v)| > d(v) + 2 for all v. Given
L-colorings «v and [3, can recolor v to 3 in at most 2n(G) — 1 steps.
Pf Sketch: Induction on number of colors k used by 3. Base case,
k =1, is easy. By Pigeonhole, some color ¢ used at least as often
by § as by a. From «, recolor every vertex using c. Now recolor
every vertex using c in 3. Finish by induction.

Thm: Fix L with |L(v)| > d(v) + 2 for all v and L-colorings « and
. Can recolor o to /3 in at most n(G) + 2,(G) steps.

Pf Sketch: Induction on n(G). Find v with (G — v) = p(G) — 1.
If no such v exists, finish by lemma. By Pigeonhole, find ¢ in L(v)
used at most once on N(v) by o and 3 (in total). Assume « uses

c once on w € N(v). From «: recolor w, recolor v with c. Finish

on G — v by induction.

Two Proof Sketches

Lem: Fix list-assignment L with |L(v)| > d(v) + 2 for all v. Given
L-colorings «v and [3, can recolor v to 3 in at most 2n(G) — 1 steps.
Pf Sketch: Induction on number of colors k used by 3. Base case,
k =1, is easy. By Pigeonhole, some color ¢ used at least as often
by § as by a. From «, recolor every vertex using c. Now recolor
every vertex using c in 3. Finish by induction.

Thm: Fix L with |L(v)| > d(v) + 2 for all v and L-colorings « and
. Can recolor o to /3 in at most n(G) + 2,(G) steps.

Pf Sketch: Induction on n(G). Find v with (G — v) = p(G) — 1.
If no such v exists, finish by lemma. By Pigeonhole, find ¢ in L(v)
used at most once on N(v) by o and 3 (in total). Assume « uses

c once on w € N(v). From «: recolor w, recolor v with c. Finish

on G — v by induction. Recolor v to (v).

Two Proof Sketches

Lem: Fix list-assignment L with |L(v)| > d(v) + 2 for all v. Given
L-colorings «v and [3, can recolor v to 3 in at most 2n(G) — 1 steps.
Pf Sketch: Induction on number of colors k used by 3. Base case,
k =1, is easy. By Pigeonhole, some color ¢ used at least as often
by § as by a. From «, recolor every vertex using c. Now recolor
every vertex using c in 3. Finish by induction.

Thm: Fix L with |L(v)| > d(v) + 2 for all v and L-colorings « and
. Can recolor o to /3 in at most n(G) + 2,(G) steps.

Pf Sketch: Induction on n(G). Find v with (G — v) = p(G) — 1.
If no such v exists, finish by lemma. By Pigeonhole, find ¢ in L(v)
used at most once on N(v) by o and 3 (in total). Assume « uses
c once on w € N(v). From «: recolor w, recolor v with c. Finish
on G — v by induction. Recolor v to 3(v). Extra steps:
241=n(G)—n(G—v)+2(u(G) — u(G —v)).

How Many Moves are Needed?

Prop: For every G and every f, with f(v) > 2 for all v, there is
list assignment L with [L(v)| = f(v) for all v and L-colorings «
and /3 where changing « to 3 needs n(G) + p(G) moves.

Pf: Every vert needs recolored; every edge of M needs extra step.

1235 1345 2356 2345 1246

O O O)

123 | | | 146

1234 3456 3456 1256 1456

Conj:[Cambie—Cames van Batenburg—C.] For list assignment L
with |L(v)| > d(v) + 2 for all v and L-colorings o and /3, can
always change o to /3 in at most n(G) + (G) steps.
Thm:[Cambie—Cames van Batenburg—C.] arXiv:2204.07928
(a) If |[L(v)| = 2d(v) + 1, then n(G) + p(G) steps suffice.

(b) If |L(v)| > d(v)+ 2, then n(G) + 21(G) steps suffice.
Correspondence Coloring: ;1(G) — 7(G). Conj. and Theorems

https://arxiv.org/abs/2204.07928

	Title page

