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> Is it always possible?
» If so, how many moves do you need?
» Can you quickly find a short sequence from one to another?
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» Can ask all the same questions from the previous page.
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)
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> list-assignment L: each vertex v gets allowable colors L(v)

» [-coloring ¢: ¢ is proper and p(v) € L(v) for all v

Main Questions:

» Given L-colorings o and 3, can we change « to [ by
recoloring single vertices, keeping L-coloring at each step?

» If so, how many steps are needed?

» Given list-assignment L, can we transform every L-coloring «
into every L-coloring 37

> If so, how many steps are needed in the worst case?
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Thm:[Bousquet—Heinrich] Fix ¢ € (0,1). There exist C;, G, C.
s.t. forall d,k € Z", if G is d-degenerate, then:
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2. If k > (1+ €)(d +2), then diam(Cy(G)) < Ccnlt/el,
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Thm:[Feghali] Fix k > d. Fix e € (0,1). There exists Cy, s.t. if
mad(G) < d — ¢, then diam(Cx(G)) < Cyn(log n)9~1.

Thm:[Bartier—Bousquet—Feghali—-Heinrich—Moore—Pierron]
If G is planar with girth 5, then C4(G) is connected.
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Pf: Color G? arbitrarily; call it . Let L(v) := {a(w): w e N[v]}.
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Prop: Fix an acyclic orientation D of a graph G and a list
assignment L for G. If [L(v)| > dp(v) + 2 for all v € V(G), then
every two L-colorings o and [ can reach each other by single
vertex recolorings.

Pf sketch: Induction on |V(G)|.
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