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Intro

Q: How many vertices can we have in a graph with low diameter?

and maximum degree k?
diam 1: 1 + k
diam 2:

1 + k + k(k − 1) = 1 + k2

k = 2 k = 3 k = 4 . . .

???

Def: A Moore Graph is k-regular with k2 + 1 vertices and diam 2.

Main Theorem: [Hoffman-Singleton 1960]
Moore graphs exist only when k = 2, 3, 7, and (possibly) 57.
When k ∈ {2, 3, 7}, the Moore graph is unique.
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Outline

Our Plan

I Assume there exists a k-regular Moore graph.

I Write an equation in terms of the adjacency matrix A.

I Use linear algebra to simplify the equation to a polynomial.

I Use rational root theorem to show k ∈ {2, 3, 7, 57}.
Ex:

A5 =


0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

 A2
5 =


2 0 1 1 0
0 2 0 1 1
1 0 2 0 1
1 1 0 2 0
0 1 1 0 2


In fact, A2

5 + A5 − I5 = J5, and more generally:

A2 + A− (k − 1)I = J
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Linear Algebra

Recall that
A2 + A− (k − 1)I = J.

Note that ~v = [1 . . . 1]T is an eigenvector of A and J.

(A2 + A− (k − 1)I )~v = J~v

k2~v + k~v − (k − 1))~v = n~v

k2 + 1 = n

Spectral Theorem
Every real symmetric n × n matrix has real eigenvalues and n
orthogonal eigenvectors.

Let ~u be another eigenvector of A with eigenvalue r .

(A2 + A− (k − 1)I )~u = J~u

(r2 + r − (k − 1))~u = ~0

r2 + r − (k − 1) = 0
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Solving for k

r1 = −1+
√

4k−3
2 and r2 = −1−

√
4k−3

2

Fact: Sum of the eigenvalues equals sum of the diagonal entries.

k + r1m1 + r2m2 = 0.

Case 1: r1 and r2 are irrational
0 = k + (r1 + r2)n−1

2 = k + (−1)n−1
2 = k + (−1)k2

2 ⇒ k ∈ {0, 2}

Case 2: r1 and r2 are rational, so let s2 = 4k − 3.
r1 = s−1

2 and r2 = −s−1
2 , so k + s−1

2 m + −s−1
2 (n −m − 1) = 0

s5 + s4 + 6s3 − 2s2 + (9− 32m)s − 15 = 0

Rational Root Theorem ⇒ s ∈ {±1,±3,±5,±15}
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The Hoffman-Singleton Graph

Main Theorem: There exists a Moore graph when k = 7.

Big idea: Partition the 50 vertices into ten 5-cycles:

A0 A1 A2 A3 A4

B0 B1 B2 B3 B4

such that all remaining edges are between an Ai and a Bj ,
and such that ∀i , j the subgraph G [Ai ∪ Bj ] ∼= Petersen.

To avoid 3-cycles and 4-cycles, we can complete these 25 copies of
the Petersen graph in exactly one way (up to isomorphism).

So our desired Moore graph exists and is unique.



The Hoffman-Singleton Graph

Main Theorem: There exists a Moore graph when k = 7.
Big idea: Partition the 50 vertices into ten 5-cycles:

A0 A1 A2 A3 A4

B0 B1 B2 B3 B4

such that all remaining edges are between an Ai and a Bj ,
and such that ∀i , j the subgraph G [Ai ∪ Bj ] ∼= Petersen.

To avoid 3-cycles and 4-cycles, we can complete these 25 copies of
the Petersen graph in exactly one way (up to isomorphism).

So our desired Moore graph exists and is unique.



The Hoffman-Singleton Graph

Main Theorem: There exists a Moore graph when k = 7.
Big idea: Partition the 50 vertices into ten 5-cycles:

A0 A1 A2 A3 A4

B0 B1 B2 B3 B4

such that all remaining edges are between an Ai and a Bj ,
and such that ∀i , j the subgraph G [Ai ∪ Bj ] ∼= Petersen.

To avoid 3-cycles and 4-cycles, we can complete these 25 copies of
the Petersen graph in exactly one way (up to isomorphism).

So our desired Moore graph exists and is unique.



The Hoffman-Singleton Graph

Main Theorem: There exists a Moore graph when k = 7.
Big idea: Partition the 50 vertices into ten 5-cycles:

A0 A1 A2 A3 A4

B0 B1 B2 B3 B4

such that all remaining edges are between an Ai and a Bj ,
and such that ∀i , j the subgraph G [Ai ∪ Bj ] ∼= Petersen.

To avoid 3-cycles and 4-cycles, we can complete these 25 copies of
the Petersen graph in exactly one way (up to isomorphism).

So our desired Moore graph exists and is unique.



The Hoffman-Singleton Graph

Main Theorem: There exists a Moore graph when k = 7.
Big idea: Partition the 50 vertices into ten 5-cycles:

A0 A1 A2 A3 A4

B0 B1 B2 B3 B4

such that all remaining edges are between an Ai and a Bj ,
and such that ∀i , j the subgraph G [Ai ∪ Bj ] ∼= Petersen.

To avoid 3-cycles and 4-cycles, we can complete these 25 copies of
the Petersen graph in exactly one way (up to isomorphism).

So our desired Moore graph exists and is unique.



Deducing Structure

Let A be the neighbors of some 5-cycle, and let B = V (G ) \ A.

Lemma 1: For all a ∈ A and b ∈ B we have
dA(a) = dB(b) = 2 and dB(a) = dA(b) = 5.

Pf: Note that dA(a) ≤ 2 and dA(b) ≤ 5 and
|A| = |B| = 25.

. . .

. . . . . .

Lemma 2: G has
1260 5-cycles: 50(7)(6)(6)(1)/10
1000 type ABABx 25(5)(4)(4)(1)/2

250 type AABBx 25(2)(5)(2)(1)/2
10 types AAAAx

1260− 1000− 250

and BBBBx

Cor: G [A] and G [B] each consist of 5 disjoint 5-cycles.
Pf: If not, we have too many AAAAx and BBBBx 5-cycles.
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The Finale

Vertex sets A and B each induce 5 disjoint 5-cycles.
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So all remaining edges are between an Ai and a Bj ,
and ∀i , j the subgraph G [Ai ∪ Bj ] ∼= Petersen.

To form Petersens: Connect vertex x in Ai to vertex 2x + cij in Bj .
To avoid 4-cycles: Need cij + ci ′j ′ 6= cij ′ + ci ′j . Let cij = ij .

So for k = 7 our desired Moore graph exists and is unique!
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and ∀i , j the subgraph G [Ai ∪ Bj ] ∼= Petersen.

To form Petersens: Connect vertex x in Ai to vertex 2x + cij in Bj .
To avoid 4-cycles: Need cij + ci ′j ′ 6= cij ′ + ci ′j . Let cij = ij .

So for k = 7 our desired Moore graph exists and is unique!
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