# The Search for Moore Graphs: Beauty is Rare

Daniel W. Cranston Virginia Commonwealth University dcranston@vcu.edu

> LSU Student Colloquium 5 October 2011

Q: How many vertices can we have in a graph with low diameter?

**Q**: How many vertices can we have in a graph with low diameter and maximum degree k?

**Q**: How many vertices can we have in a graph with low diameter and maximum degree k? diam 1: 1 + k

**Q**: How many vertices can we have in a graph with low diameter and maximum degree k? diam 1: 1 + kdiam 2:

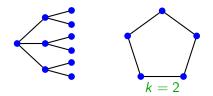
**Q**: How many vertices can we have in a graph with low diameter and maximum degree k? diam 1: 1 + kdiam 2:



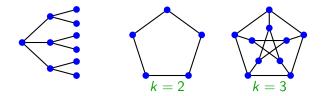
**Q**: How many vertices can we have in a graph with low diameter and maximum degree k?



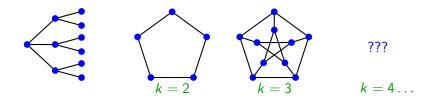
**Q**: How many vertices can we have in a graph with low diameter and maximum degree k?



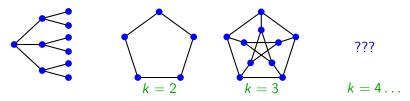
**Q**: How many vertices can we have in a graph with low diameter and maximum degree k?



**Q**: How many vertices can we have in a graph with low diameter and maximum degree k?



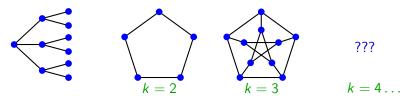
**Q**: How many vertices can we have in a graph with low diameter and maximum degree k?



**Def:** A Moore Graph is k-regular with  $k^2 + 1$  vertices and diam 2.

**Q**: How many vertices can we have in a graph with low diameter and maximum degree k?

diam 1: 1 + kdiam 2:  $1 + k + k(k - 1) = 1 + k^2$ 



**Def:** A Moore Graph is k-regular with  $k^2 + 1$  vertices and diam 2.

**Main Theorem:** [Hoffman-Singleton 1960] Moore graphs exist only when k = 2, 3, 7, and (possibly) 57. When  $k \in \{2, 3, 7\}$ , the Moore graph is unique.

### **Our Plan**

► Assume there exists a *k*-regular Moore graph.

### **Our Plan**

- ► Assume there exists a *k*-regular Moore graph.
- Write an equation in terms of the adjacency matrix A.

## **Our Plan**

- ► Assume there exists a *k*-regular Moore graph.
- Write an equation in terms of the adjacency matrix A.
- Use linear algebra to simplify the equation to a polynomial.

### **Our Plan**

- ► Assume there exists a *k*-regular Moore graph.
- Write an equation in terms of the adjacency matrix A.
- Use linear algebra to simplify the equation to a polynomial.
- Use rational root theorem to show  $k \in \{2, 3, 7, 57\}$ .

# **Our Plan**

- ► Assume there exists a *k*-regular Moore graph.
- Write an equation in terms of the adjacency matrix A.
- Use linear algebra to simplify the equation to a polynomial.
- Use rational root theorem to show  $k \in \{2, 3, 7, 57\}$ .

Ex:

$$A_5 = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

## **Our Plan**

- ► Assume there exists a *k*-regular Moore graph.
- Write an equation in terms of the adjacency matrix A.
- Use linear algebra to simplify the equation to a polynomial.
- Use rational root theorem to show  $k \in \{2, 3, 7, 57\}$ .

Ex:

$$A_5 = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix} \qquad A_5^2 = \begin{bmatrix} 2 & 0 & 1 & 1 & 0 \\ 0 & 2 & 0 & 1 & 1 \\ 1 & 0 & 2 & 0 & 1 \\ 1 & 1 & 0 & 2 & 0 \\ 0 & 1 & 1 & 0 & 2 \end{bmatrix}$$

## **Our Plan**

- ► Assume there exists a *k*-regular Moore graph.
- Write an equation in terms of the adjacency matrix A.
- Use linear algebra to simplify the equation to a polynomial.
- Use rational root theorem to show  $k \in \{2, 3, 7, 57\}$ .

Ex:

$$A_5 = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix} \qquad A_5^2 = \begin{bmatrix} 2 & 0 & 1 & 1 & 0 \\ 0 & 2 & 0 & 1 & 1 \\ 1 & 0 & 2 & 0 & 1 \\ 1 & 1 & 0 & 2 & 0 \\ 0 & 1 & 1 & 0 & 2 \end{bmatrix}$$

In fact,  $A_5^2 + A_5 - I_5 = J_5$ ,

## **Our Plan**

- ► Assume there exists a *k*-regular Moore graph.
- Write an equation in terms of the adjacency matrix A.
- Use linear algebra to simplify the equation to a polynomial.
- Use rational root theorem to show  $k \in \{2, 3, 7, 57\}$ .

Ex:

$$A_5 = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix} \qquad A_5^2 = \begin{bmatrix} 2 & 0 & 1 & 1 & 0 \\ 0 & 2 & 0 & 1 & 1 \\ 1 & 0 & 2 & 0 & 1 \\ 1 & 1 & 0 & 2 & 0 \\ 0 & 1 & 1 & 0 & 2 \end{bmatrix}$$

In fact,  $A_5^2 + A_5 - I_5 = J_5$ , and more generally:

 $A^2 + A - (k-1)I = J$ 

Recall that

 $A^{2} + A - (k - 1)I = J.$ 

Note that  $\vec{v} = [1 \dots 1]^T$  is an eigenvector of A and J.

Recall that

 $A^{2} + A - (k - 1)I = J.$ 

Note that  $\vec{v} = [1 \dots 1]^T$  is an eigenvector of A and J.

 $(A^2 + A - (k-1)I)\vec{v} = J\vec{v}$ 

Recall that

 $A^{2} + A - (k - 1)I = J.$ 

Note that  $\vec{v} = [1 \dots 1]^T$  is an eigenvector of A and J.

$$(A^{2} + A - (k - 1)I)\vec{v} = J\vec{v}$$
$$k^{2}\vec{v} + k\vec{v} - (k - 1))\vec{v} = n\vec{v}$$

Recall that

 $A^{2} + A - (k - 1)I = J.$ 

Note that  $\vec{v} = [1 \dots 1]^T$  is an eigenvector of A and J.

$$(A2 + A - (k - 1)I)\vec{v} = J\vec{v}$$
$$k2\vec{v} + k\vec{v} - (k - 1))\vec{v} = n\vec{v}$$
$$k2 + 1 = n$$

Recall that

 $A^{2} + A - (k - 1)I = J.$ 

Note that  $\vec{v} = [1 \dots 1]^T$  is an eigenvector of A and J.

$$(A2 + A - (k - 1)I)\vec{v} = J\vec{v}$$
$$k2\vec{v} + k\vec{v} - (k - 1))\vec{v} = n\vec{v}$$
$$k2 + 1 = n$$

### **Spectral Theorem**

Every real symmetric  $n \times n$  matrix has real eigenvalues and n orthogonal eigenvectors.

Recall that

 $A^{2} + A - (k - 1)I = J.$ 

Note that  $\vec{v} = [1 \dots 1]^T$  is an eigenvector of A and J.

$$(A2 + A - (k - 1)I)\vec{v} = J\vec{v}$$
$$k2\vec{v} + k\vec{v} - (k - 1))\vec{v} = n\vec{v}$$
$$k2 + 1 = n$$

### **Spectral Theorem**

Every real symmetric  $n \times n$  matrix has real eigenvalues and n orthogonal eigenvectors.

Let  $\vec{u}$  be another eigenvector of A with eigenvalue r.

$$(A^2 + A - (k-1)I)\vec{u} = J\vec{u}$$

Recall that

 $A^{2} + A - (k - 1)I = J.$ 

Note that  $\vec{v} = [1 \dots 1]^T$  is an eigenvector of A and J.

$$(A2 + A - (k - 1)I)\vec{v} = J\vec{v}$$
$$k2\vec{v} + k\vec{v} - (k - 1))\vec{v} = n\vec{v}$$
$$k2 + 1 = n$$

### **Spectral Theorem**

Every real symmetric  $n \times n$  matrix has real eigenvalues and n orthogonal eigenvectors.

Let  $\vec{u}$  be another eigenvector of A with eigenvalue r.

$$(A^{2} + A - (k - 1)I)\vec{u} = J\vec{u}$$
$$(r^{2} + r - (k - 1))\vec{u} = \vec{0}$$

Recall that

 $A^{2} + A - (k - 1)I = J.$ 

Note that  $\vec{v} = [1 \dots 1]^T$  is an eigenvector of A and J.

$$(A2 + A - (k - 1)I)\vec{v} = J\vec{v}$$
$$k2\vec{v} + k\vec{v} - (k - 1))\vec{v} = n\vec{v}$$
$$k2 + 1 = n$$

#### **Spectral Theorem**

Every real symmetric  $n \times n$  matrix has real eigenvalues and n orthogonal eigenvectors.

Let  $\vec{u}$  be another eigenvector of A with eigenvalue r.

$$(A^{2} + A - (k - 1)I)\vec{u} = J\vec{u}$$
$$(r^{2} + r - (k - 1))\vec{u} = \vec{0}$$
$$r^{2} + r - (k - 1) = 0$$

$$r_1 = \frac{-1 + \sqrt{4k-3}}{2}$$
 and  $r_2 = \frac{-1 - \sqrt{4k-3}}{2}$ 

$$r_1 = \frac{-1 + \sqrt{4k-3}}{2}$$
 and  $r_2 = \frac{-1 - \sqrt{4k-3}}{2}$ 

Fact: Sum of the eigenvalues equals sum of the diagonal entries.

$$r_1 = \frac{-1 + \sqrt{4k-3}}{2}$$
 and  $r_2 = \frac{-1 - \sqrt{4k-3}}{2}$ 

Fact: Sum of the eigenvalues equals sum of the diagonal entries.

 $k + r_1 m_1 + r_2 m_2 = 0.$ 

$$r_1 = \frac{-1 + \sqrt{4k-3}}{2}$$
 and  $r_2 = \frac{-1 - \sqrt{4k-3}}{2}$ 

Fact: Sum of the eigenvalues equals sum of the diagonal entries.

 $k + r_1 m_1 + r_2 m_2 = 0.$ 

**Case 1:**  $r_1$  and  $r_2$  are irrational

$$r_1 = \frac{-1 + \sqrt{4k-3}}{2}$$
 and  $r_2 = \frac{-1 - \sqrt{4k-3}}{2}$ 

Fact: Sum of the eigenvalues equals sum of the diagonal entries.

 $k + r_1 m_1 + r_2 m_2 = 0.$ 

**Case 1:**  $r_1$  and  $r_2$  are irrational  $0 = k + (r_1 + r_2)\frac{n-1}{2}$ 

$$r_1 = \frac{-1 + \sqrt{4k-3}}{2}$$
 and  $r_2 = \frac{-1 - \sqrt{4k-3}}{2}$ 

Fact: Sum of the eigenvalues equals sum of the diagonal entries.

 $k + r_1 m_1 + r_2 m_2 = 0.$ 

**Case 1:**  $r_1$  and  $r_2$  are irrational  $0 = k + (r_1 + r_2)\frac{n-1}{2} = k + (-1)\frac{n-1}{2}$ 

$$r_1 = \frac{-1 + \sqrt{4k-3}}{2}$$
 and  $r_2 = \frac{-1 - \sqrt{4k-3}}{2}$ 

Fact: Sum of the eigenvalues equals sum of the diagonal entries.

 $k + r_1 m_1 + r_2 m_2 = 0.$ 

**Case 1:**  $r_1$  and  $r_2$  are irrational  $0 = k + (r_1 + r_2)\frac{n-1}{2} = k + (-1)\frac{n-1}{2} = k + (-1)\frac{k^2}{2}$ 

$$r_1 = \frac{-1 + \sqrt{4k-3}}{2}$$
 and  $r_2 = \frac{-1 - \sqrt{4k-3}}{2}$ 

Fact: Sum of the eigenvalues equals sum of the diagonal entries.

 $k + r_1 m_1 + r_2 m_2 = 0.$ 

**Case 1:**  $r_1$  and  $r_2$  are irrational  $0 = k + (r_1 + r_2)\frac{n-1}{2} = k + (-1)\frac{n-1}{2} = k + (-1)\frac{k^2}{2} \Rightarrow k \in \{0, 2\}$ 

$$r_1 = \frac{-1 + \sqrt{4k-3}}{2}$$
 and  $r_2 = \frac{-1 - \sqrt{4k-3}}{2}$ 

Fact: Sum of the eigenvalues equals sum of the diagonal entries.

 $k + r_1 m_1 + r_2 m_2 = 0.$ 

**Case 1:**  $r_1$  and  $r_2$  are irrational  $0 = k + (r_1 + r_2)\frac{n-1}{2} = k + (-1)\frac{n-1}{2} = k + (-1)\frac{k^2}{2} \Rightarrow k \in \{0, 2\}$ 

**Case 2:**  $r_1$  and  $r_2$  are rational

$$r_1 = \frac{-1 + \sqrt{4k-3}}{2}$$
 and  $r_2 = \frac{-1 - \sqrt{4k-3}}{2}$ 

Fact: Sum of the eigenvalues equals sum of the diagonal entries.

 $k + r_1 m_1 + r_2 m_2 = 0.$ 

**Case 1:**  $r_1$  and  $r_2$  are irrational  $0 = k + (r_1 + r_2)\frac{n-1}{2} = k + (-1)\frac{n-1}{2} = k + (-1)\frac{k^2}{2} \Rightarrow k \in \{0, 2\}$ 

**Case 2:**  $r_1$  and  $r_2$  are rational, so let  $s^2 = 4k - 3$ .

$$r_1 = \frac{-1 + \sqrt{4k-3}}{2}$$
 and  $r_2 = \frac{-1 - \sqrt{4k-3}}{2}$ 

Fact: Sum of the eigenvalues equals sum of the diagonal entries.

 $k + r_1 m_1 + r_2 m_2 = 0.$ 

**Case 1:**  $r_1$  and  $r_2$  are irrational  $0 = k + (r_1 + r_2)\frac{n-1}{2} = k + (-1)\frac{n-1}{2} = k + (-1)\frac{k^2}{2} \Rightarrow k \in \{0, 2\}$  **Case 2:**  $r_1$  and  $r_2$  are rational, so let  $s^2 = 4k - 3$ .  $r_1 = \frac{s-1}{2}$  and  $r_2 = \frac{-s-1}{2}$ ,

$$r_1 = \frac{-1 + \sqrt{4k-3}}{2}$$
 and  $r_2 = \frac{-1 - \sqrt{4k-3}}{2}$ 

Fact: Sum of the eigenvalues equals sum of the diagonal entries.

 $k + r_1 m_1 + r_2 m_2 = 0.$ 

**Case 1:**  $r_1$  and  $r_2$  are irrational  $0 = k + (r_1 + r_2)\frac{n-1}{2} = k + (-1)\frac{n-1}{2} = k + (-1)\frac{k^2}{2} \Rightarrow k \in \{0, 2\}$  **Case 2:**  $r_1$  and  $r_2$  are rational, so let  $s^2 = 4k - 3$ .  $r_1 = \frac{s-1}{2}$  and  $r_2 = \frac{-s-1}{2}$ , so  $k + \frac{s-1}{2}m + \frac{-s-1}{2}(n-m-1) = 0$ 

$$r_1 = \frac{-1 + \sqrt{4k-3}}{2}$$
 and  $r_2 = \frac{-1 - \sqrt{4k-3}}{2}$ 

Fact: Sum of the eigenvalues equals sum of the diagonal entries.

 $k + r_1 m_1 + r_2 m_2 = 0.$ 

$$r_1 = \frac{-1 + \sqrt{4k-3}}{2}$$
 and  $r_2 = \frac{-1 - \sqrt{4k-3}}{2}$ 

Fact: Sum of the eigenvalues equals sum of the diagonal entries.

 $k + r_1 m_1 + r_2 m_2 = 0.$ 

$$r_1 = rac{-1 + \sqrt{4k - 3}}{2}$$
 and  $r_2 = rac{-1 - \sqrt{4k - 3}}{2}$ 

Fact: Sum of the eigenvalues equals sum of the diagonal entries.

 $k + r_1 m_1 + r_2 m_2 = 0.$ 

$$r_1 = rac{-1 + \sqrt{4k - 3}}{2}$$
 and  $r_2 = rac{-1 - \sqrt{4k - 3}}{2}$ 

Fact: Sum of the eigenvalues equals sum of the diagonal entries.

 $k + r_1 m_1 + r_2 m_2 = 0.$ 

$$r_1 = rac{-1 + \sqrt{4k - 3}}{2}$$
 and  $r_2 = rac{-1 - \sqrt{4k - 3}}{2}$ 

Fact: Sum of the eigenvalues equals sum of the diagonal entries.

 $k + r_1 m_1 + r_2 m_2 = 0.$ 

$$r_1 = rac{-1 + \sqrt{4k - 3}}{2}$$
 and  $r_2 = rac{-1 - \sqrt{4k - 3}}{2}$ 

Fact: Sum of the eigenvalues equals sum of the diagonal entries.

 $k + r_1 m_1 + r_2 m_2 = 0.$ 

$$r_1 = rac{-1 + \sqrt{4k - 3}}{2}$$
 and  $r_2 = rac{-1 - \sqrt{4k - 3}}{2}$ 

Fact: Sum of the eigenvalues equals sum of the diagonal entries.

 $k + r_1 m_1 + r_2 m_2 = 0.$ 

$$r_1 = rac{-1 + \sqrt{4k - 3}}{2}$$
 and  $r_2 = rac{-1 - \sqrt{4k - 3}}{2}$ 

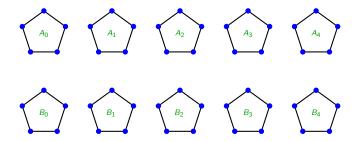
Fact: Sum of the eigenvalues equals sum of the diagonal entries.

 $k + r_1 m_1 + r_2 m_2 = 0.$ 

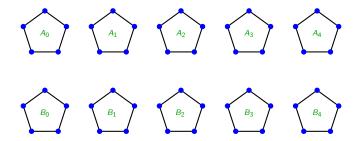
| S  | k  | n    |                       |
|----|----|------|-----------------------|
|    | 2  | 5    | ← 5-cycle             |
| 3  | 3  | 10   | $\leftarrow$ Petersen |
| 5  | 7  | 50   | ← ?                   |
| 15 | 57 | 3250 | ← ???                 |

**Main Theorem:** There exists a Moore graph when k = 7.

**Main Theorem:** There exists a Moore graph when k = 7. **Big idea:** Partition the 50 vertices into ten 5-cycles:

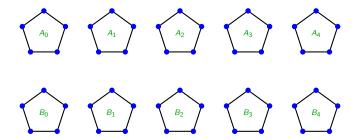


**Main Theorem:** There exists a Moore graph when k = 7. **Big idea:** Partition the 50 vertices into ten 5-cycles:



such that all remaining edges are between an  $A_i$  and a  $B_j$ , and such that  $\forall i, j$  the subgraph  $G[A_i \cup B_j] \cong$  Petersen.

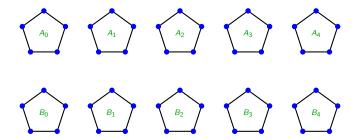
**Main Theorem:** There exists a Moore graph when k = 7. **Big idea:** Partition the 50 vertices into ten 5-cycles:



such that all remaining edges are between an  $A_i$  and a  $B_j$ , and such that  $\forall i, j$  the subgraph  $G[A_i \cup B_j] \cong$  Petersen.

To avoid 3-cycles and 4-cycles, we can complete these 25 copies of the Petersen graph in exactly one way (up to isomorphism).

**Main Theorem:** There exists a Moore graph when k = 7. **Big idea:** Partition the 50 vertices into ten 5-cycles:



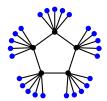
such that all remaining edges are between an  $A_i$  and a  $B_j$ , and such that  $\forall i, j$  the subgraph  $G[A_i \cup B_j] \cong$  Petersen.

To avoid 3-cycles and 4-cycles, we can complete these 25 copies of the Petersen graph in exactly one way (up to isomorphism).

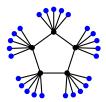
So our desired Moore graph exists and is unique.

Let A be the neighbors of some 5-cycle, and let  $B = V(G) \setminus A$ .

Let A be the neighbors of some 5-cycle, and let  $B = V(G) \setminus A$ .

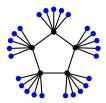


Let A be the neighbors of some 5-cycle, and let  $B = V(G) \setminus A$ .



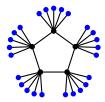
**Lemma 1:** For all  $a \in A$  and  $b \in B$  we have  $d_A(a) = d_B(b) = 2$  and  $d_B(a) = d_A(b) = 5$ .

Let A be the neighbors of some 5-cycle, and let  $B = V(G) \setminus A$ .



**Lemma 1:** For all  $a \in A$  and  $b \in B$  we have  $d_A(a) = d_B(b) = 2$  and  $d_B(a) = d_A(b) = 5$ . **Pf:** Note that  $d_A(a) \le 2$  and  $d_A(b) \le 5$  and |A| = |B| = 25.

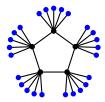
Let A be the neighbors of some 5-cycle, and let  $B = V(G) \setminus A$ .



**Lemma 1:** For all  $a \in A$  and  $b \in B$  we have  $d_A(a) = d_B(b) = 2$  and  $d_B(a) = d_A(b) = 5$ . **Pf:** Note that  $d_A(a) \le 2$  and  $d_A(b) \le 5$  and |A| = |B| = 25.

Lemma 2: *G* has 1260 5-cycles:

Let A be the neighbors of some 5-cycle, and let  $B = V(G) \setminus A$ .

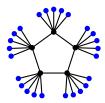


**Lemma 1:** For all  $a \in A$  and  $b \in B$  we have  $d_A(a) = d_B(b) = 2$  and  $d_B(a) = d_A(b) = 5$ . **Pf:** Note that  $d_A(a) \le 2$  and  $d_A(b) \le 5$  and |A| = |B| = 25.

Lemma 2: *G* has 1260 5-cycles: 50



Let A be the neighbors of some 5-cycle, and let  $B = V(G) \setminus A$ .

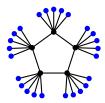


**Lemma 1:** For all  $a \in A$  and  $b \in B$  we have  $d_A(a) = d_B(b) = 2$  and  $d_B(a) = d_A(b) = 5$ . **Pf:** Note that  $d_A(a) \le 2$  and  $d_A(b) \le 5$  and |A| = |B| = 25.

Lemma 2: G has 1260 5-cycles: 50(7)



Let A be the neighbors of some 5-cycle, and let  $B = V(G) \setminus A$ .

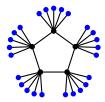


**Lemma 1:** For all  $a \in A$  and  $b \in B$  we have  $d_A(a) = d_B(b) = 2$  and  $d_B(a) = d_A(b) = 5$ . **Pf:** Note that  $d_A(a) \le 2$  and  $d_A(b) \le 5$  and |A| = |B| = 25.

Lemma 2: G has 1260 5-cycles: 50(7)(6)



Let A be the neighbors of some 5-cycle, and let  $B = V(G) \setminus A$ .



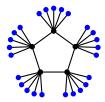
**Lemma 1:** For all  $a \in A$  and  $b \in B$  we have  $d_A(a) = d_B(b) = 2$  and  $d_B(a) = d_A(b) = 5$ . **Pf:** Note that  $d_A(a) \le 2$  and  $d_A(b) \le 5$  and |A| = |B| = 25.

Lemma 2: G has 1260 5-cycles:

50(7)(6)(6)



Let A be the neighbors of some 5-cycle, and let  $B = V(G) \setminus A$ .



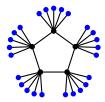
**Lemma 1:** For all  $a \in A$  and  $b \in B$  we have  $d_A(a) = d_B(b) = 2$  and  $d_B(a) = d_A(b) = 5$ . **Pf:** Note that  $d_A(a) \le 2$  and  $d_A(b) \le 5$  and |A| = |B| = 25.

Lemma 2: *G* has 1260 5-cycles:

50(7)(6)(6)(1)



Let A be the neighbors of some 5-cycle, and let  $B = V(G) \setminus A$ .



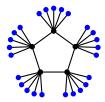
**Lemma 1:** For all  $a \in A$  and  $b \in B$  we have  $d_A(a) = d_B(b) = 2$  and  $d_B(a) = d_A(b) = 5$ . **Pf:** Note that  $d_A(a) \le 2$  and  $d_A(b) \le 5$  and |A| = |B| = 25.

Lemma 2: *G* has 1260 5-cycles:

50(7)(6)(6)(1)/10



Let A be the neighbors of some 5-cycle, and let  $B = V(G) \setminus A$ .

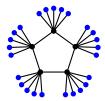


**Lemma 1:** For all  $a \in A$  and  $b \in B$  we have  $d_A(a) = d_B(b) = 2$  and  $d_B(a) = d_A(b) = 5$ . **Pf:** Note that  $d_A(a) \le 2$  and  $d_A(b) \le 5$  and |A| = |B| = 25.

Lemma 2: G has 1260 5-cycles: 50(7)(6)(6)(1)/10 1000 type ABABx



Let A be the neighbors of some 5-cycle, and let  $B = V(G) \setminus A$ .

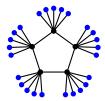


**Lemma 1:** For all  $a \in A$  and  $b \in B$  we have  $d_A(a) = d_B(b) = 2$  and  $d_B(a) = d_A(b) = 5$ . **Pf:** Note that  $d_A(a) \leq 2$  and  $d_A(b) \leq 5$  and |A| = |B| = 25.

Lemma 2: G has 1260 5-cycles: 50(7)(6)(6)(1)/101000 type ABABx = 25(5)(4)(4)(1)/2



Let A be the neighbors of some 5-cycle, and let  $B = V(G) \setminus A$ .



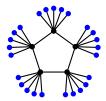
**Lemma 1:** For all  $a \in A$  and  $b \in B$  we have  $d_A(a) = d_B(b) = 2$  and  $d_B(a) = d_A(b) = 5$ . **Pf:** Note that  $d_A(a) \leq 2$  and  $d_A(b) \leq 5$  and |A| = |B| = 25.

Lemma 2: G has 1260 5-cycles: 50(7)(6)(6)(1)/101000 type ABABx 250 type AABBx

25(5)(4)(4)(1)/2



Let A be the neighbors of some 5-cycle, and let  $B = V(G) \setminus A$ .



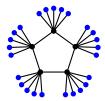
**Lemma 1:** For all  $a \in A$  and  $b \in B$  we have  $d_A(a) = d_B(b) = 2$  and  $d_B(a) = d_A(b) = 5$ . **Pf:** Note that  $d_A(a) \leq 2$  and  $d_A(b) \leq 5$  and |A| = |B| = 25.

Lemma 2: G has 1260 5-cycles: 1000 type ABABx = 25(5)(4)(4)(1)/2250 type AABBx

50(7)(6)(6)(1)/10 25(2)(5)(2)(1)/2



Let A be the neighbors of some 5-cycle, and let  $B = V(G) \setminus A$ .



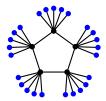
**Lemma 1:** For all  $a \in A$  and  $b \in B$  we have  $d_A(a) = d_B(b) = 2$  and  $d_B(a) = d_A(b) = 5$ . **Pf:** Note that  $d_A(a) \leq 2$  and  $d_A(b) \leq 5$  and |A| = |B| = 25.

Lemma 2: G has 1260 5-cycles: 50(7)(6)(6)(1)/101000 type ABABx = 25(5)(4)(4)(1)/2250 type AABBx 10 types AAAAx and BBBBx

25(2)(5)(2)(1)/2



Let A be the neighbors of some 5-cycle, and let  $B = V(G) \setminus A$ .



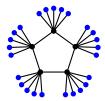
**Lemma 1:** For all  $a \in A$  and  $b \in B$  we have  $d_A(a) = d_B(b) = 2$  and  $d_B(a) = d_A(b) = 5$ . **Pf:** Note that  $d_A(a) \leq 2$  and  $d_A(b) \leq 5$  and |A| = |B| = 25.

Lemma 2: G has 1260 5-cycles: 50(7)(6)(6)(1)/101000 type ABABx = 25(5)(4)(4)(1)/2250 type AABBx 25(2)(5)(2)(1)/2 10 types AAAAx and BBBBx

1260 - 1000 - 250



Let A be the neighbors of some 5-cycle, and let  $B = V(G) \setminus A$ .



**Lemma 1:** For all  $a \in A$  and  $b \in B$  we have  $d_A(a) = d_B(b) = 2$  and  $d_B(a) = d_A(b) = 5$ . **Pf:** Note that  $d_A(a) \leq 2$  and  $d_A(b) \leq 5$  and |A| = |B| = 25.

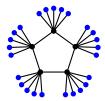
Lemma 2: G has 1260 5-cycles: 50(7)(6)(6)(1)/101000 type ABABx = 25(5)(4)(4)(1)/2250 type AABBx 25(2)(5)(2)(1)/2 10 types AAAAx and BBBBx

1260 - 1000 - 250



**Cor:** G[A] and G[B] each consist of 5 disjoint 5-cycles.

Let A be the neighbors of some 5-cycle, and let  $B = V(G) \setminus A$ .



**Lemma 1:** For all  $a \in A$  and  $b \in B$  we have  $d_A(a) = d_B(b) = 2$  and  $d_B(a) = d_A(b) = 5$ . **Pf:** Note that  $d_A(a) \leq 2$  and  $d_A(b) \leq 5$  and |A| = |B| = 25.

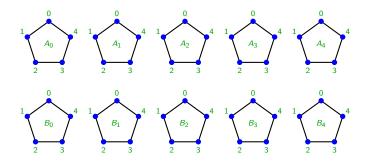
Lemma 2: G has 1260 5-cycles: 50(7)(6)(6)(1)/101000 type ABABx = 25(5)(4)(4)(1)/2250 type AABBx 25(2)(5)(2)(1)/2 10 types AAAAx and **RRRR**x

1260 - 1000 - 250

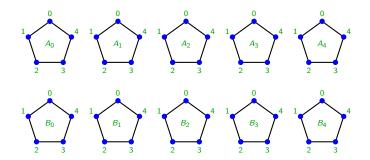


**Cor:** G[A] and G[B] each consist of 5 disjoint 5-cycles. **Pf:** If not, we have too many *AAAAx* and *BBBBx* 5-cycles.

Vertex sets A and B each induce 5 disjoint 5-cycles.

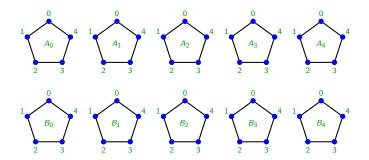


Vertex sets A and B each induce 5 disjoint 5-cycles.



So all remaining edges are between an  $A_i$  and a  $B_j$ , and  $\forall i, j$  the subgraph  $G[A_i \cup B_j] \cong$  Petersen.

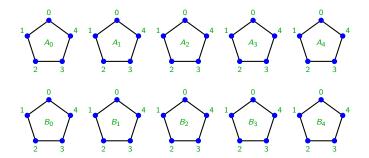
Vertex sets A and B each induce 5 disjoint 5-cycles.



So all remaining edges are between an  $A_i$  and a  $B_j$ , and  $\forall i, j$  the subgraph  $G[A_i \cup B_j] \cong$  Petersen.

To form Petersens:

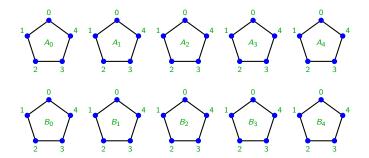
Vertex sets A and B each induce 5 disjoint 5-cycles.



So all remaining edges are between an  $A_i$  and a  $B_j$ , and  $\forall i, j$  the subgraph  $G[A_i \cup B_j] \cong$  Petersen.

To form Petersens: Connect vertex x in  $A_i$  to vertex  $2x + c_{ij}$  in  $B_j$ .

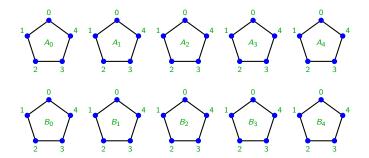
Vertex sets A and B each induce 5 disjoint 5-cycles.



So all remaining edges are between an  $A_i$  and a  $B_j$ , and  $\forall i, j$  the subgraph  $G[A_i \cup B_j] \cong$  Petersen.

To form Petersens: Connect vertex x in  $A_i$  to vertex  $2x + c_{ij}$  in  $B_j$ . To avoid 4-cycles:

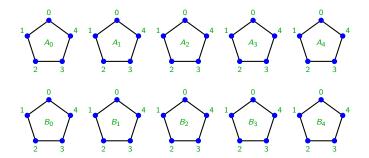
Vertex sets A and B each induce 5 disjoint 5-cycles.



So all remaining edges are between an  $A_i$  and a  $B_j$ , and  $\forall i, j$  the subgraph  $G[A_i \cup B_j] \cong$  Petersen.

To form Petersens: Connect vertex x in  $A_i$  to vertex  $2x + c_{ij}$  in  $B_j$ . To avoid 4-cycles: Need  $c_{ij} + c_{i'j'} \neq c_{ij'} + c_{i'j}$ .

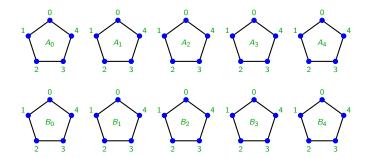
Vertex sets A and B each induce 5 disjoint 5-cycles.



So all remaining edges are between an  $A_i$  and a  $B_j$ , and  $\forall i, j$  the subgraph  $G[A_i \cup B_j] \cong$  Petersen.

To form Petersens: Connect vertex x in  $A_i$  to vertex  $2x + c_{ij}$  in  $B_j$ . To avoid 4-cycles: Need  $c_{ij} + c_{i'j'} \neq c_{ij'} + c_{i'j}$ . Let  $c_{ij} = ij$ .

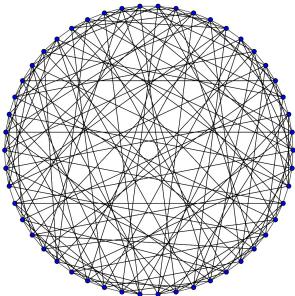
Vertex sets A and B each induce 5 disjoint 5-cycles.



So all remaining edges are between an  $A_i$  and a  $B_j$ , and  $\forall i, j$  the subgraph  $G[A_i \cup B_j] \cong$  Petersen.

To form Petersens: Connect vertex x in  $A_i$  to vertex  $2x + c_{ij}$  in  $B_j$ . To avoid 4-cycles: Need  $c_{ij} + c_{i'j'} \neq c_{ij'} + c_{i'j}$ . Let  $c_{ij} = ij$ .

So for k = 7 our desired Moore graph exists and is unique!



So for k = 7 our desired Moore graph exists and is unique!