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k=2 k=3 k=4...
Def: A Moore Graph is k-regular with k? + 1 vertices and diam 2.

Main Theorem: [Hoffman-Singleton 1960]
Moore graphs exist only when k = 2, 3, 7, and (possibly) 57.
When k € {2.3,7}, the Moore graph is unique.



Outline

Our Plan
» Assume there exists a k-regular Moore graph.



Outline

Our Plan
» Assume there exists a k-regular Moore graph.
» Write an equation in terms of the adjacency matrix A.



Outline

Our Plan
» Assume there exists a k-regular Moore graph.
» Write an equation in terms of the adjacency matrix A.

» Use linear algebra to simplify the equation to a polynomial.



Outline

Our Plan
» Assume there exists a k-regular Moore graph.
» Write an equation in terms of the adjacency matrix A.
» Use linear algebra to simplify the equation to a polynomial.
» Use rational root theorem to show k € {2,3,7,57}.



Outline

Our Plan
» Assume there exists a k-regular Moore graph.
» Write an equation in terms of the adjacency matrix A.
» Use linear algebra to simplify the equation to a polynomial.
» Use rational root theorem to show k € {2,3,7,57}.
Ex:

As

I
_ O O = O
OO = O =
O = O = O
_ O = OO
O O O -



Outline

Our Plan
» Assume there exists a k-regular Moore graph.
» Write an equation in terms of the adjacency matrix A.
» Use linear algebra to simplify the equation to a polynomial.
» Use rational root theorem to show k € {2,3,7,57}.

Ex:
01001 2 01 10
10100 02011
As=[10 1010 AA=]10201
00101 11020
10010 01102



Outline

Our Plan
» Assume there exists a k-regular Moore graph.
» Write an equation in terms of the adjacency matrix A.
» Use linear algebra to simplify the equation to a polynomial.
» Use rational root theorem to show k € {2,3,7,57}.

Ex:
01001 2 01 10
10100 02011
As=[10 1010 AA=]10201
00101 11020
10010 01102

In fact, A% + A5 — /5 = J5,



Outline

Our Plan
» Assume there exists a k-regular Moore graph.
» Write an equation in terms of the adjacency matrix A.
» Use linear algebra to simplify the equation to a polynomial.
» Use rational root theorem to show k € {2,3,7,57}.

Ex:
01001 2 01 10
10100 02011
As=[10 1010 AA=]10201
00101 11020
10010 01102

In fact, AZ + As — Is = J5, and more generally:

A4 A—(k=1)=J
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Linear Algebra

Recall that
A2 4 A—(k—1)=J.

Note that v = [1...1]" is an eigenvector of A and J.

Jv

nv

(A2 4+ A—(k—-1))V
K2V + kv — (k= 1))v
k?+1

Spectral Theorem
Every real symmetric n x n matrix has real eigenvalues and n
orthogonal eigenvectors.

Let i/ be another eigenvector of A with eigenvalue r.

(A2 4+ A—(k—1))d=Ji
(P+r—(k—1)i=0
rP+r—(k—1)=0
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Fact: Sum of the eigenvalues equals sum of the diagonal entries.
k+ rnmy + rnomy = 0.

Case 1: 1 and ry are irrational
2
O=k+(n+n)5 =k+(-1)5L =k+(-1)% = ke {0,2}

Case 2: r; and r» are rational, so let s = 4k — 3.

rn=2%tand n=-51,
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Main Theorem: There exists a Moore graph when k = 7.
Big idea: Partition the 50 vertices into ten 5-cycles:

such that all remaining edges are between an A; and a B;,
and such that Vi, j the subgraph G[A; U B;j] = Petersen.

To avoid 3-cycles and 4-cycles, we can complete these 25 copies of
the Petersen graph in exactly one way (up to isomorphism).

So our desired Moore graph exists and is unique.
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Let A be the neighbors of some 5-cycle, and let B = V/(G) \ A.

Lemma 1:

For all a € A and b € B we have

dA(a) = dB(b) =2 and dB(a) = dA(b) =b.
Pf: Note that da(a) < 2 and da(b) < 5 and
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Deducing Structure
Let A be the neighbors of some 5-cycle, and let B = V/(G) \ A.

Lemma 1: For all a € A and b € B we have
dA(a) = dB(b) =2 and dB(a) = dA(b) =b.
Pf: Note that da(a) < 2 and da(b) < 5 and
|A| = |B| = 25.

Lemma 2: G has

1260 5-cycles: 50(7)(6)(6)(1)/10

1000 type ABABx  25(5)(4)(4)(1)/2
250 type AABBx  25(2)(5)(2)(1)/2 W
10 types AAAAx 1260 — 1000 — 250

and BBBBx

Cor: G[A] and G|[B] each consist of 5 disjoint 5-cycles.
Pf: If not, we have too many AAAAx and BBBBx 5-cycles.
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