The Search for Moore Graphs: Beauty is Rare

Daniel W. Cranston Virginia Commonwealth University dcranston@vcu.edu

LSU Student Colloquium 5 October 2011

Q: How many vertices can we have in a graph with low diameter?

Q: How many vertices can we have in a graph with low diameter and maximum degree k ?

Q: How many vertices can we have in a graph with low diameter and maximum degree k ? diam 1: $1 + k$

Q: How many vertices can we have in a graph with low diameter and maximum degree k ? diam 1: $1 + k$

diam 2:

Q: How many vertices can we have in a graph with low diameter and maximum degree k ? diam 1: $1 + k$ diam 2:

Q: How many vertices can we have in a graph with low diameter and maximum degree k ?

Q: How many vertices can we have in a graph with low diameter and maximum degree k ?

Q: How many vertices can we have in a graph with low diameter and maximum degree k ?

Q: How many vertices can we have in a graph with low diameter and maximum degree k ?

Q: How many vertices can we have in a graph with low diameter and maximum degree k ? diam 1: $1 + k$

diam 2: $1 + k + k(k-1) = 1 + k^2$

Def: A Moore Graph is *k*-regular with $k^2 + 1$ vertices and diam 2.

Q: How many vertices can we have in a graph with low diameter and maximum degree k ?

diam 1: $1 + k$ diam 2: $1 + k + k(k-1) = 1 + k^2$

Def: A Moore Graph is *k*-regular with $k^2 + 1$ vertices and diam 2.

Main Theorem: [Hoffman-Singleton 1960] Moore graphs exist only when $k = 2, 3, 7$, and (possibly) 57. When $k \in \{2, 3, 7\}$, the Moore graph is unique.

Our Plan

Assume there exists a k -regular Moore graph.

Our Plan

- Assume there exists a k -regular Moore graph.
- \triangleright Write an equation in terms of the adjacency matrix A.

Our Plan

- Assume there exists a k -regular Moore graph.
- \triangleright Write an equation in terms of the adjacency matrix A.
- \triangleright Use linear algebra to simplify the equation to a polynomial.

Our Plan

- Assume there exists a k -regular Moore graph.
- \triangleright Write an equation in terms of the adjacency matrix A.
- \triangleright Use linear algebra to simplify the equation to a polynomial.
- ► Use rational root theorem to show $k \in \{2, 3, 7, 57\}$.

Our Plan

- Assume there exists a k -regular Moore graph.
- \triangleright Write an equation in terms of the adjacency matrix A.
- \triangleright Use linear algebra to simplify the equation to a polynomial.
- ► Use rational root theorem to show $k \in \{2, 3, 7, 57\}$.

Ex:

$$
A_5=\left[\begin{array}{cccccc} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{array}\right]
$$

Our Plan

- Assume there exists a k -regular Moore graph.
- \triangleright Write an equation in terms of the adjacency matrix A.
- \triangleright Use linear algebra to simplify the equation to a polynomial.
- ► Use rational root theorem to show $k \in \{2, 3, 7, 57\}$.

Ex:

$$
A_5=\left[\begin{array}{cccc} 0&1&0&0&1\\ 1&0&1&0&0\\ 0&1&0&1&0\\ 0&0&1&0&1\\ 1&0&0&1&0\end{array}\right] \qquad A_5^2=\left[\begin{array}{cccc} 2&0&1&1&0\\ 0&2&0&1&1\\ 1&0&2&0&1\\ 1&1&0&2&0\\ 0&1&1&0&2\end{array}\right]
$$

Our Plan

- Assume there exists a k -regular Moore graph.
- \triangleright Write an equation in terms of the adjacency matrix A.
- \triangleright Use linear algebra to simplify the equation to a polynomial.
- ► Use rational root theorem to show $k \in \{2, 3, 7, 57\}$.

Ex:

$$
A_5=\left[\begin{array}{cccc} 0&1&0&0&1\\ 1&0&1&0&0\\ 0&1&0&1&0\\ 0&0&1&0&1\\ 1&0&0&1&0\end{array}\right] \qquad A_5^2=\left[\begin{array}{cccc} 2&0&1&1&0\\ 0&2&0&1&1\\ 1&0&2&0&1\\ 1&1&0&2&0\\ 0&1&1&0&2\end{array}\right]
$$

In fact, $A_5^2 + A_5 - I_5 = J_5$,

Our Plan

- Assume there exists a k -regular Moore graph.
- \triangleright Write an equation in terms of the adjacency matrix A.
- \triangleright Use linear algebra to simplify the equation to a polynomial.
- ► Use rational root theorem to show $k \in \{2, 3, 7, 57\}$.

Ex:

$$
A_5=\left[\begin{array}{cccc} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{array}\right] \qquad A_5^2=\left[\begin{array}{cccc} 2 & 0 & 1 & 1 & 0 \\ 0 & 2 & 0 & 1 & 1 \\ 1 & 0 & 2 & 0 & 1 \\ 1 & 1 & 0 & 2 & 0 \\ 0 & 1 & 1 & 0 & 2 \end{array}\right]
$$

In fact, $A_5^2 + A_5 - I_5 = J_5$, and more generally:

 $A^2 + A - (k-1)I = J$

Recall that

 $A^2 + A - (k-1)I = J.$

Note that $\vec{v} = [1 \dots 1]^T$ is an eigenvector of A and J.

Recall that

 $A^2 + A - (k-1)I = J.$

Note that $\vec{v} = [1 \dots 1]^T$ is an eigenvector of A and J.

 $(A^{2} + A - (k - 1)I)\vec{v} = J\vec{v}$

Recall that

 $A^2 + A - (k-1)I = J.$

Note that $\vec{v} = [1 \dots 1]^T$ is an eigenvector of A and J.

$$
(A2 + A - (k - 1))\vec{v} = J\vec{v}
$$

$$
k2\vec{v} + k\vec{v} - (k - 1))\vec{v} = n\vec{v}
$$

Recall that

 $A^2 + A - (k-1)I = J.$

Note that $\vec{v} = [1 \dots 1]^T$ is an eigenvector of A and J.

$$
(A2 + A - (k - 1)I)\vec{v} = J\vec{v}
$$

$$
k2\vec{v} + k\vec{v} - (k - 1)\vec{v} = n\vec{v}
$$

$$
k2 + 1 = n
$$

Recall that

 $A^2 + A - (k-1)I = J.$

Note that $\vec{v} = [1 \dots 1]^T$ is an eigenvector of A and J.

$$
(A2 + A - (k - 1)I)\vec{v} = J\vec{v}
$$

$$
k2\vec{v} + k\vec{v} - (k - 1)\vec{v} = n\vec{v}
$$

$$
k2 + 1 = n
$$

Spectral Theorem

Every real symmetric $n \times n$ matrix has real eigenvalues and n orthogonal eigenvectors.

Recall that

 $A^2 + A - (k-1)I = J.$

Note that $\vec{v} = [1 \dots 1]^T$ is an eigenvector of A and J.

$$
(A2 + A - (k - 1)I)\vec{v} = J\vec{v}
$$

$$
k2\vec{v} + k\vec{v} - (k - 1)\vec{v} = n\vec{v}
$$

$$
k2 + 1 = n
$$

Spectral Theorem

Every real symmetric $n \times n$ matrix has real eigenvalues and n orthogonal eigenvectors.

Let \vec{u} be another eigenvector of A with eigenvalue r.

 $(A^{2} + A - (k - 1)I)\vec{u} = J\vec{u}$

Recall that

 $A^2 + A - (k-1)I = J.$

Note that $\vec{v} = [1 \dots 1]^T$ is an eigenvector of A and J.

$$
(A2 + A - (k - 1)I)\vec{v} = J\vec{v}
$$

$$
k2\vec{v} + k\vec{v} - (k - 1)\vec{v} = n\vec{v}
$$

$$
k2 + 1 = n
$$

Spectral Theorem

Every real symmetric $n \times n$ matrix has real eigenvalues and n orthogonal eigenvectors.

Let \vec{u} be another eigenvector of A with eigenvalue r.

$$
(A2 + A - (k - 1)I)\vec{u} = J\vec{u}
$$

$$
(r2 + r - (k - 1))\vec{u} = \vec{0}
$$

Recall that

 $A^2 + A - (k-1)I = J.$

Note that $\vec{v} = [1 \dots 1]^T$ is an eigenvector of A and J.

$$
(A2 + A - (k - 1)I)\vec{v} = J\vec{v}
$$

$$
k2\vec{v} + k\vec{v} - (k - 1)\vec{v} = n\vec{v}
$$

$$
k2 + 1 = n
$$

Spectral Theorem

Every real symmetric $n \times n$ matrix has real eigenvalues and n orthogonal eigenvectors.

Let \vec{u} be another eigenvector of A with eigenvalue r.

$$
(A2 + A - (k - 1)I) \vec{u} = J\vec{u}
$$

$$
(r2 + r - (k - 1))\vec{u} = \vec{0}
$$

$$
r2 + r - (k - 1) = 0
$$

$$
r_1 = \tfrac{-1+\sqrt{4k-3}}{2} \text{ and } r_2 = \tfrac{-1-\sqrt{4k-3}}{2}
$$

$$
r_1 = \frac{-1 + \sqrt{4k - 3}}{2} \text{ and } r_2 = \frac{-1 - \sqrt{4k - 3}}{2}
$$

Fact: Sum of the eigenvalues equals sum of the diagonal entries.

$$
r_1 = \frac{-1 + \sqrt{4k - 3}}{2} \text{ and } r_2 = \frac{-1 - \sqrt{4k - 3}}{2}
$$

Fact: Sum of the eigenvalues equals sum of the diagonal entries.

 $k + r_1m_1 + r_2m_2 = 0.$

$$
r_1 = \tfrac{-1+\sqrt{4k-3}}{2} \text{ and } r_2 = \tfrac{-1-\sqrt{4k-3}}{2}
$$

Fact: Sum of the eigenvalues equals sum of the diagonal entries.

 $k + r_1m_1 + r_2m_2 = 0.$

Case 1: r_1 and r_2 are irrational

$$
r_1 = \tfrac{-1+\sqrt{4k-3}}{2} \text{ and } r_2 = \tfrac{-1-\sqrt{4k-3}}{2}
$$

Fact: Sum of the eigenvalues equals sum of the diagonal entries.

 $k + r_1m_1 + r_2m_2 = 0.$

Case 1: r_1 and r_2 are irrational $0 = k + (r_1 + r_2)\frac{n-1}{2}$ 2

$$
r_1 = \frac{-1 + \sqrt{4k - 3}}{2} \text{ and } r_2 = \frac{-1 - \sqrt{4k - 3}}{2}
$$

Fact: Sum of the eigenvalues equals sum of the diagonal entries.

 $k + r_1m_1 + r_2m_2 = 0.$

Case 1: r_1 and r_2 are irrational $0 = k + (r_1 + r_2)\frac{n-1}{2} = k + (-1)\frac{n-1}{2}$

$$
r_1 = \frac{-1 + \sqrt{4k - 3}}{2} \text{ and } r_2 = \frac{-1 - \sqrt{4k - 3}}{2}
$$

Fact: Sum of the eigenvalues equals sum of the diagonal entries.

 $k + r_1m_1 + r_2m_2 = 0.$

Case 1: r_1 and r_2 are irrational $0 = k + (r_1 + r_2)\frac{n-1}{2} = k + (-1)\frac{n-1}{2} = k + (-1)\frac{k^2}{2}$ 2

$$
r_1 = \frac{-1 + \sqrt{4k - 3}}{2} \text{ and } r_2 = \frac{-1 - \sqrt{4k - 3}}{2}
$$

Fact: Sum of the eigenvalues equals sum of the diagonal entries.

 $k + r_1m_1 + r_2m_2 = 0.$

Case 1: r_1 and r_2 are irrational $0 = k + (r_1 + r_2) \frac{n-1}{2} = k + (-1) \frac{n-1}{2} = k + (-1) \frac{k^2}{2} \Rightarrow k \in \{0, 2\}$
$$
r_1 = \frac{-1 + \sqrt{4k - 3}}{2} \text{ and } r_2 = \frac{-1 - \sqrt{4k - 3}}{2}
$$

Fact: Sum of the eigenvalues equals sum of the diagonal entries.

 $k + r_1m_1 + r_2m_2 = 0.$

Case 1: r_1 and r_2 are irrational $0 = k + (r_1 + r_2) \frac{n-1}{2} = k + (-1) \frac{n-1}{2} = k + (-1) \frac{k^2}{2} \Rightarrow k \in \{0, 2\}$

Case 2: r_1 and r_2 are rational

$$
r_1 = \frac{-1 + \sqrt{4k - 3}}{2} \text{ and } r_2 = \frac{-1 - \sqrt{4k - 3}}{2}
$$

Fact: Sum of the eigenvalues equals sum of the diagonal entries.

 $k + r_1m_1 + r_2m_2 = 0.$

Case 1: r_1 and r_2 are irrational $0 = k + (r_1 + r_2) \frac{n-1}{2} = k + (-1) \frac{n-1}{2} = k + (-1) \frac{k^2}{2} \Rightarrow k \in \{0, 2\}$

Case 2: r_1 and r_2 are rational, so let $s^2 = 4k - 3$.

$$
r_1 = \frac{-1 + \sqrt{4k - 3}}{2} \text{ and } r_2 = \frac{-1 - \sqrt{4k - 3}}{2}
$$

Fact: Sum of the eigenvalues equals sum of the diagonal entries.

 $k + r_1m_1 + r_2m_2 = 0.$

Case 1: r_1 and r_2 are irrational $0 = k + (r_1 + r_2) \frac{n-1}{2} = k + (-1) \frac{n-1}{2} = k + (-1) \frac{k^2}{2} \Rightarrow k \in \{0, 2\}$ **Case 2:** r_1 and r_2 are rational, so let $s^2 = 4k - 3$. $r_1 = \frac{s-1}{2}$ $\frac{-1}{2}$ and $r_2 = \frac{-s-1}{2}$ $\frac{5-1}{2}$,

$$
r_1 = \frac{-1 + \sqrt{4k - 3}}{2} \text{ and } r_2 = \frac{-1 - \sqrt{4k - 3}}{2}
$$

Fact: Sum of the eigenvalues equals sum of the diagonal entries.

 $k + r_1 m_1 + r_2 m_2 = 0.$

Case 1: r_1 and r_2 are irrational $0 = k + (r_1 + r_2) \frac{n-1}{2} = k + (-1) \frac{n-1}{2} = k + (-1) \frac{k^2}{2} \Rightarrow k \in \{0, 2\}$ **Case 2:** r_1 and r_2 are rational, so let $s^2 = 4k - 3$. $r_1 = \frac{s-1}{2}$ $\frac{-1}{2}$ and $r_2 = \frac{-s-1}{2}$ $\frac{s-1}{2}$, so $k + \frac{s-1}{2}m + \frac{-s-1}{2}$ $\frac{s-1}{2}(n-m-1)=0$

$$
r_1 = \frac{-1 + \sqrt{4k - 3}}{2} \text{ and } r_2 = \frac{-1 - \sqrt{4k - 3}}{2}
$$

Fact: Sum of the eigenvalues equals sum of the diagonal entries.

 $k + r_1m_1 + r_2m_2 = 0.$

$$
r_1 = \frac{-1 + \sqrt{4k - 3}}{2} \text{ and } r_2 = \frac{-1 - \sqrt{4k - 3}}{2}
$$

Fact: Sum of the eigenvalues equals sum of the diagonal entries.

 $k + r_1m_1 + r_2m_2 = 0.$

Fact: Sum of the eigenvalues equals sum of the diagonal entries.

$k + r_1m_1 + r_2m_2 = 0.$

2 Fact: Sum of the eigenvalues equals sum of the diagonal entries.

$k + r_1m_1 + r_2m_2 = 0.$

s k n 2 5 3 3 10 5 7 50 15 57 3250

2 Fact: Sum of the eigenvalues equals sum of the diagonal entries.

$k + r_1m_1 + r_2m_2 = 0.$

s k n 2 5 ←− 5-cycle 3 3 10 5 7 50 15 57 3250

2 Fact: Sum of the eigenvalues equals sum of the diagonal entries.

$k + r_1m_1 + r_2m_2 = 0.$

s k n 2 5 ←− 5-cycle 3 3 10 ←− Petersen 5 7 50 15 57 3250

Fact: Sum of the eigenvalues equals sum of the diagonal entries.

$k + r_1m_1 + r_2m_2 = 0.$

s k n 2 5 ←− 5-cycle 3 3 10 ←− Petersen 5 7 50 ←− ? 15 57 3250

Fact: Sum of the eigenvalues equals sum of the diagonal entries.

$k + r_1m_1 + r_2m_2 = 0.$

Main Theorem: There exists a Moore graph when $k = 7$.

Main Theorem: There exists a Moore graph when $k = 7$. Big idea: Partition the 50 vertices into ten 5-cycles:

Main Theorem: There exists a Moore graph when $k = 7$. Big idea: Partition the 50 vertices into ten 5-cycles:

such that all remaining edges are between an A_i and a $B_j,$ and such that $\forall i, j$ the subgraph $G[A_i \cup B_j] \cong$ Petersen.

Main Theorem: There exists a Moore graph when $k = 7$. Big idea: Partition the 50 vertices into ten 5-cycles:

such that all remaining edges are between an A_i and a $B_j,$ and such that $\forall i, j$ the subgraph $G[A_i \cup B_j] \cong$ Petersen.

To avoid 3-cycles and 4-cycles, we can complete these 25 copies of the Petersen graph in exactly one way (up to isomorphism).

Main Theorem: There exists a Moore graph when $k = 7$. Big idea: Partition the 50 vertices into ten 5-cycles:

such that all remaining edges are between an A_i and a $B_j,$ and such that $\forall i, j$ the subgraph $G[A_i \cup B_j] \cong$ Petersen.

To avoid 3-cycles and 4-cycles, we can complete these 25 copies of the Petersen graph in exactly one way (up to isomorphism).

So our desired Moore graph exists and is unique.

Let A be the neighbors of some 5-cycle, and let $B = V(G) \setminus A$.

Let A be the neighbors of some 5-cycle, and let $B = V(G) \setminus A$.

Let A be the neighbors of some 5-cycle, and let $B = V(G) \setminus A$.

Lemma 1: For all $a \in A$ and $b \in B$ we have $d_A(a) = d_B(b) = 2$ and $d_B(a) = d_A(b) = 5$.

Let A be the neighbors of some 5-cycle, and let $B = V(G) \setminus A$.

Lemma 1: For all $a \in A$ and $b \in B$ we have $d_A(a) = d_B(b) = 2$ and $d_B(a) = d_A(b) = 5$. **Pf:** Note that $d_A(a) \le 2$ and $d_A(b) \le 5$ and $|A| = |B| = 25.$

Let A be the neighbors of some 5-cycle, and let $B = V(G) \setminus A$.

Lemma 1: For all $a \in A$ and $b \in B$ we have $d_A(a) = d_B(b) = 2$ and $d_B(a) = d_A(b) = 5$. **Pf:** Note that $d_A(a) \leq 2$ and $d_A(b) \leq 5$ and $|A| = |B| = 25.$

Lemma 2: G has 1260 5-cycles:

Let A be the neighbors of some 5-cycle, and let $B = V(G) \setminus A$.

Lemma 1: For all $a \in A$ and $b \in B$ we have $d_A(a) = d_B(b) = 2$ and $d_B(a) = d_A(b) = 5$. **Pf:** Note that $d_A(a) \leq 2$ and $d_A(b) \leq 5$ and $|A| = |B| = 25.$

Lemma 2: G has 1260 5-cycles: 50

Let A be the neighbors of some 5-cycle, and let $B = V(G) \setminus A$.

Lemma 1: For all $a \in A$ and $b \in B$ we have $d_A(a) = d_B(b) = 2$ and $d_B(a) = d_A(b) = 5$. **Pf:** Note that $d_A(a) \leq 2$ and $d_A(b) \leq 5$ and $|A| = |B| = 25.$

Lemma 2: G has 1260 5-cycles: 50(7)

Let A be the neighbors of some 5-cycle, and let $B = V(G) \setminus A$.

Lemma 1: For all $a \in A$ and $b \in B$ we have $d_A(a) = d_B(b) = 2$ and $d_B(a) = d_A(b) = 5$. **Pf:** Note that $d_A(a) \leq 2$ and $d_A(b) \leq 5$ and $|A| = |B| = 25.$

Lemma 2: G has 1260 5-cycles: 50(7)(6)

Let A be the neighbors of some 5-cycle, and let $B = V(G) \setminus A$.

Lemma 1: For all $a \in A$ and $b \in B$ we have $d_A(a) = d_B(b) = 2$ and $d_B(a) = d_A(b) = 5$. **Pf:** Note that $d_A(a) \leq 2$ and $d_A(b) \leq 5$ and $|A| = |B| = 25.$

Lemma 2: G has 1260 5-cycles: 50(7)(6)(6)

>

Let A be the neighbors of some 5-cycle, and let $B = V(G) \setminus A$.

Lemma 1: For all $a \in A$ and $b \in B$ we have $d_A(a) = d_B(b) = 2$ and $d_B(a) = d_A(b) = 5$. **Pf:** Note that $d_A(a) \leq 2$ and $d_A(b) \leq 5$ and $|A| = |B| = 25.$

Lemma 2: \overline{G} has
1260 5-cycles:

 $50(7)(6)(6)(1)$

Let A be the neighbors of some 5-cycle, and let $B = V(G) \setminus A$.

Lemma 1: For all $a \in A$ and $b \in B$ we have $d_A(a) = d_B(b) = 2$ and $d_B(a) = d_A(b) = 5$. **Pf:** Note that $d_A(a) \leq 2$ and $d_A(b) \leq 5$ and $|A| = |B| = 25.$

Lemma 2: \overline{G} has
1260 5-cycles:

 $50(7)(6)(6)(1)/10$

Let A be the neighbors of some 5-cycle, and let $B = V(G) \setminus A$.

Lemma 1: For all $a \in A$ and $b \in B$ we have $d_A(a) = d_B(b) = 2$ and $d_B(a) = d_A(b) = 5$. **Pf:** Note that $d_A(a) \leq 2$ and $d_A(b) \leq 5$ and $|A| = |B| = 25.$

Lemma 2: G has
1260 5-cycles: $50(7)(6)(6)(1)/10$ 1000 type ABABx

Let A be the neighbors of some 5-cycle, and let $B = V(G) \setminus A$.

Lemma 1: For all $a \in A$ and $b \in B$ we have $d_A(a) = d_B(b) = 2$ and $d_B(a) = d_A(b) = 5$. **Pf:** Note that $d_A(a) \leq 2$ and $d_A(b) \leq 5$ and $|A| = |B| = 25.$

Lemma 2: G has 1260 5-cycles: $50(7)(6)(6)(1)/10$ 1000 type $ABABx$ 25(5)(4)(4)(1)/2

Let A be the neighbors of some 5-cycle, and let $B = V(G) \setminus A$.

Lemma 1: For all $a \in A$ and $b \in B$ we have $d_A(a) = d_B(b) = 2$ and $d_B(a) = d_A(b) = 5$. **Pf:** Note that $d_A(a) \leq 2$ and $d_A(b) \leq 5$ and $|A| = |B| = 25.$

Lemma 2: G has 1260 5-cycles: $50(7)(6)(6)(1)/10$ 1000 type $ABABx$ 25(5)(4)(4)(1)/2 250 type AABBx

Let A be the neighbors of some 5-cycle, and let $B = V(G) \setminus A$.

Lemma 1: For all $a \in A$ and $b \in B$ we have $d_A(a) = d_B(b) = 2$ and $d_B(a) = d_A(b) = 5$. **Pf:** Note that $d_A(a) \leq 2$ and $d_A(b) \leq 5$ and $|A| = |B| = 25.$

Lemma 2: G has 1260 5-cycles: $50(7)(6)(6)(1)/10$ 1000 type $ABABx$ 25(5)(4)(4)(1)/2 250 type AABBx 25(2)(5)(2)(1)/2

Let A be the neighbors of some 5-cycle, and let $B = V(G) \setminus A$.

Lemma 1: For all $a \in A$ and $b \in B$ we have $d_A(a) = d_B(b) = 2$ and $d_B(a) = d_A(b) = 5$. **Pf:** Note that $d_A(a) \leq 2$ and $d_A(b) \leq 5$ and $|A| = |B| = 25.$

Lemma 2: G has 1260 5-cycles: $50(7)(6)(6)(1)/10$ 1000 type $ABABx$ 25(5)(4)(4)(1)/2 250 type AABBx 25(2)(5)(2)(1)/2 10 types AAAAx and BBBBx

Let A be the neighbors of some 5-cycle, and let $B = V(G) \setminus A$.

Lemma 1: For all $a \in A$ and $b \in B$ we have $d_A(a) = d_B(b) = 2$ and $d_B(a) = d_A(b) = 5$. **Pf:** Note that $d_A(a) \leq 2$ and $d_A(b) \leq 5$ and $|A| = |B| = 25.$

Lemma 2: G has 1260 5-cycles: $50(7)(6)(6)(1)/10$ 1000 type $ABABx$ 25(5)(4)(4)(1)/2 250 type $AABBx$ 25(2)(5)(2)(1)/2 and BBBBx

10 types AAAAx 1260 − 1000 − 250

Let A be the neighbors of some 5-cycle, and let $B = V(G) \setminus A$.

Lemma 1: For all $a \in A$ and $b \in B$ we have $d_A(a) = d_B(b) = 2$ and $d_B(a) = d_A(b) = 5$. **Pf:** Note that $d_A(a) \leq 2$ and $d_A(b) \leq 5$ and $|A| = |B| = 25.$

Lemma 2: G has 1260 5-cycles: $50(7)(6)(6)(1)/10$ 1000 type $ABABx$ 25(5)(4)(4)(1)/2 250 type $AABBx$ 25(2)(5)(2)(1)/2 10 types AAAAx 1260 − 1000 − 250 and BBBBx

Cor: $G[A]$ and $G[B]$ each consist of 5 disjoint 5-cycles.

Let A be the neighbors of some 5-cycle, and let $B = V(G) \setminus A$.

Lemma 1: For all $a \in A$ and $b \in B$ we have $d_A(a) = d_B(b) = 2$ and $d_B(a) = d_A(b) = 5$. **Pf:** Note that $d_A(a) \leq 2$ and $d_A(b) \leq 5$ and $|A| = |B| = 25.$

Lemma 2: G has 1260 5-cycles: $50(7)(6)(6)(1)/10$ 1000 type $ABABx$ 25(5)(4)(4)(1)/2 250 type $AABBx$ 25(2)(5)(2)(1)/2 10 types AAAAx 1260 − 1000 − 250 and BBBBx

Cor: $G[A]$ and $G[B]$ each consist of 5 disjoint 5-cycles. **Pf:** If not, we have too many $AAAAx$ and $BBBBx$ 5-cycles.
Vertex sets \overline{A} and \overline{B} each induce 5 disjoint 5-cycles.

Vertex sets \overline{A} and \overline{B} each induce 5 disjoint 5-cycles.

So all remaining edges are between an A_i and a $B_j,$ and $\forall i, j$ the subgraph $G[A_i \cup B_j] \cong$ Petersen.

Vertex sets \overline{A} and \overline{B} each induce 5 disjoint 5-cycles.

So all remaining edges are between an A_i and a $B_j,$ and $\forall i, j$ the subgraph $G[A_i \cup B_j] \cong$ Petersen.

To form Petersens:

Vertex sets \overline{A} and \overline{B} each induce 5 disjoint 5-cycles.

So all remaining edges are between an A_i and a $B_j,$ and $\forall i, j$ the subgraph $G[A_i \cup B_j] \cong$ Petersen.

To form Petersens: Connect vertex x in A_i to vertex $2x + c_{ij}$ in $B_j.$

Vertex sets \overline{A} and \overline{B} each induce 5 disjoint 5-cycles.

So all remaining edges are between an A_i and a $B_j,$ and $\forall i, j$ the subgraph $G[A_i \cup B_j] \cong$ Petersen.

To form Petersens: Connect vertex x in A_i to vertex $2x + c_{ij}$ in $B_j.$ To avoid 4-cycles:

Vertex sets \overline{A} and \overline{B} each induce 5 disjoint 5-cycles.

So all remaining edges are between an A_i and a $B_j,$ and $\forall i, j$ the subgraph $G[A_i \cup B_j] \cong$ Petersen.

To form Petersens: Connect vertex x in A_i to vertex $2x + c_{ij}$ in $B_j.$ To avoid 4-cycles: Need $c_{ij} + c_{i'j'} \neq c_{ij'} + c_{i'j}$.

Vertex sets \overline{A} and \overline{B} each induce 5 disjoint 5-cycles.

So all remaining edges are between an A_i and a $B_j,$ and $\forall i, j$ the subgraph $G[A_i \cup B_j] \cong$ Petersen.

To form Petersens: Connect vertex x in A_i to vertex $2x + c_{ij}$ in $B_j.$ To avoid 4-cycles: Need $c_{ij}+c_{i^{\prime}j^{\prime}}\neq c_{ij^{\prime}}+c_{i^{\prime}j}.$ Let $c_{ij}=ij.$

Vertex sets \overline{A} and \overline{B} each induce 5 disjoint 5-cycles.

So all remaining edges are between an A_i and a $B_j,$ and $\forall i, j$ the subgraph $G[A_i \cup B_j] \cong$ Petersen.

To form Petersens: Connect vertex x in A_i to vertex $2x + c_{ij}$ in $B_j.$ To avoid 4-cycles: Need $c_{ij}+c_{i^{\prime}j^{\prime}}\neq c_{ij^{\prime}}+c_{i^{\prime}j}.$ Let $c_{ij}=ij.$

So for $k = 7$ our desired Moore graph exists and is unique!

So for $k = 7$ our desired Moore graph exists and is unique!