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Introduction

Thm [Grötzsch ’59]: If G is planar with no 3-cycle, then χ(G ) ≤ 3.
Thm: If G is planar with no 3-cycle and no 4-face, then χ(G ) ≤ 3.
Prop: Theorems are equivalent. Pf: “Fold away” all 4-faces.
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Dream: Maybe we don’t need planarity. Could sparsity be enough?
3-coloring G also 3-colors each subgraph H, so also need H sparse.

Prop: If G is planar with no 3-cycle and no 4-cycle, then
mad(G ) < 10/3, where mad(G ) := maxH⊆G 2|E (H)|/|V (H)|.
If mad(G ) < 10/3, then χ(G ) ≤ 3.
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Prop: If G is planar with no 3-cycle and no 4-cycle, then
mad(G ) < 10/3, where mad(G ) := maxH⊆G 2|E (H)|/|V (H)|.
Conj: If mad(G ) < 10/3, then χ(G ) ≤ 3.
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Potential: a finer measure of edge density

Idea: Measure “average degree” more finely.

For W ⊆ V (G ), let

ρ(W ) := 5|W | − 3|E (G [W ])|

and pot(G ) := min
∅6=W⊆V (G)

ρ(W ).

Prop: If G is planar with no 3-cycle or 4-cycle, then pot(G ) ≥ 5.
Prop: Each necklace Gk has pot(Gk) = 5(3k + 1)− 3(5k + 1) = 2.

Thm [Kostochka–Yancey ’12]: If pot(G ) ≥ 3, then χ(G ) ≤ 3.
Pf sketch: Note: pot(G ) > 0⇔ mad(G ) < 10/3. G is min c/e,
so δ(G ) ≥ 3. WTS: Each 3-vertex has two 4+-nbrs. Each vertex v
starts with d(v) and each 4+-vertex gives 1/6 to each 3-nbrs.
3: 3 + 2(1/6) = 10/3. 4+: d(v)− d(v)/6 = 5d(v)/6 ≥ 20/6.
Contradiction.

Problem: Need more power for reducibility.
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Using the Gap Lemma

Gap Lemma: If W ( V (G ) and |W | ≥ 2, then ρ(W ) ≥ 6.
Cor: For any W ( V (G ) and e /∈ G [W ], χ(G [W ] + e) ≤ 3.

G

W
χ

Pf: Let G ′ = G [W ] + e. WTS pot(G ′) ≥ 3. Fix X ⊆ V (G ′).
If |X | = 1, then ρG ′(X ) = ρG (X ) = 5. If |X | ≥ 2, then
ρG ′(X ) ≥ ρG (X )− 3 ≥ 6− 3 = 3.

Cor: G has no triangle with 2 or more 3-vertices.
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Proving the Gap Lemma
Recall: ρ(W ) = 5|W | − 3|E (G [W ])|.

Obs: If X ,Y ⊆ V (G ) and
X ∩ Y 6= ∅, then ρ(X ∪ Y ) = ρ(X ) + ρ(Y )− 3|E (X ,Y )|.

Gap Lemma: If W ( V (G ) and |W | ≥ 2, then ρ(W ) ≥ 6.
Pf: Choose R ( V (G ) with |R| ≥ 2 to minimize ρ(R).

G R

→
G ′

Z

Easy to check when |R| ≤ 3; assume |R| ≥ 4. 3-color G [R];
call it ϕ. Contract each color class to a single vertex to get G ′.
If χ(G ′) ≤ 3, then χ(G ) ≤ 3. Some S ⊆ V (G ′) has ρG ′(S) ≤ 2.
If S ∩ Z = ∅, then 2 ≥ ρG ′(S) = ρG (S), a contradiction. Instead

ρG ((S \ Z ) ∪ R) ≤ ρG ′(S)− ρG ′(S ∩ Z ) + ρG (R)

≤ 2− 5 + 5 = 2,

Contradiction!
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Near-bipartite Graphs
Defn: G is near-bipartite (nb) if V (G ) has a partition
(I ,F ) with I an independent set and G [F ] a forest.

Rem: 2-colorable ( near-bipartite ( 3-colorable.

Defn: G is nb-critical if G is not nb, but G − e is for all e.
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Thm: If G is a multigraph with potm(G ) ≥ −1 and G has no K4
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ρs(W ) := 8|W | − 5|E (G [W ])|

and pots(G ) := min
W⊆V (G)

ρ(W ).

Thm: If G is a simple graph with pots(G ) ≥ −4 and G has no
subgraph in a finite H then G is nb. This is sharp infinitely often.



Main Results: Near-bipartite Graphs

Defn: G is near-bipartite (nb) if V (G ) has a partition (I ,F ) with I
an ind. set and G [F ] a forest.

For multigraph G and W ⊆ V (G ),

ρm(W ) := 3|W | − 2|E (G [W ])|

and potm(G ) := min
W⊆V (G)

ρ(W ).

Thm: If G is a multigraph with potm(G ) ≥ −1 and G has no K4

or Moser spindle, then G is nb. This is sharp infinitely often.

Defn: For a simple graph G and each W ⊆ V (G ),

ρs(W ) := 8|W | − 5|E (G [W ])|

and pots(G ) := min
W⊆V (G)

ρ(W ).

Thm: If G is a simple graph with pots(G ) ≥ −4 and G has no
subgraph in a finite H then G is nb. This is sharp infinitely often.



Main Results: Near-bipartite Graphs

Defn: G is near-bipartite (nb) if V (G ) has a partition (I ,F ) with I
an ind. set and G [F ] a forest. For multigraph G and W ⊆ V (G ),

ρm(W ) := 3|W | − 2|E (G [W ])| and potm(G ) := min
W⊆V (G)

ρ(W ).

Thm: If G is a multigraph with potm(G ) ≥ −1 and G has no K4

or Moser spindle, then G is nb. This is sharp infinitely often.

Defn: For a simple graph G and each W ⊆ V (G ),

ρs(W ) := 8|W | − 5|E (G [W ])| and pots(G ) := min
W⊆V (G)

ρ(W ).

Thm: If G is a simple graph with pots(G ) ≥ −4 and G has no
subgraph in a finite H then G is nb. This is sharp infinitely often.



Main Results: Near-bipartite Graphs

Defn: G is near-bipartite (nb) if V (G ) has a partition (I ,F ) with I
an ind. set and G [F ] a forest. For multigraph G and W ⊆ V (G ),

ρm(W ) := 3|W | − 2|E (G [W ])| and potm(G ) := min
W⊆V (G)

ρ(W ).

Thm: If G is a multigraph with potm(G ) ≥ −1 and G has no K4

or Moser spindle, then G is nb. This is sharp infinitely often.

Defn: For a simple graph G and each W ⊆ V (G ),

ρs(W ) := 8|W | − 5|E (G [W ])| and pots(G ) := min
W⊆V (G)

ρ(W ).

Thm: If G is a simple graph with pots(G ) ≥ −4 and G has no
subgraph in a finite H then G is nb. This is sharp infinitely often.



Main Results: Near-bipartite Graphs

Defn: G is near-bipartite (nb) if V (G ) has a partition (I ,F ) with I
an ind. set and G [F ] a forest. For multigraph G and W ⊆ V (G ),

ρm(W ) := 3|W | − 2|E (G [W ])| and potm(G ) := min
W⊆V (G)

ρ(W ).

Thm: If G is a multigraph with potm(G ) ≥ −1 and G has no K4

or Moser spindle, then G is nb. This is sharp infinitely often.

Defn: For a simple graph G and each W ⊆ V (G ),

ρs(W ) := 8|W | − 5|E (G [W ])| and pots(G ) := min
W⊆V (G)

ρ(W ).

Thm: If G is a simple graph with pots(G ) ≥ −4 and G has no
subgraph in a finite H then G is nb. This is sharp infinitely often.



Main Results: Near-bipartite Graphs

Defn: G is near-bipartite (nb) if V (G ) has a partition (I ,F ) with I
an ind. set and G [F ] a forest. For multigraph G and W ⊆ V (G ),

ρm(W ) := 3|W | − 2|E (G [W ])| and potm(G ) := min
W⊆V (G)

ρ(W ).

Thm: If G is a multigraph with potm(G ) ≥ −1 and G has no K4

or Moser spindle, then G is nb. This is sharp infinitely often.

Defn: For a simple graph G and each W ⊆ V (G ),

ρs(W ) := 8|W | − 5|E (G [W ])| and pots(G ) := min
W⊆V (G)

ρ(W ).

Thm: If G is a simple graph with pots(G ) ≥ −4 and G has no
subgraph in a finite H then G is nb. This is sharp infinitely often.



Main Results: Near-bipartite Graphs

Defn: G is near-bipartite (nb) if V (G ) has a partition (I ,F ) with I
an ind. set and G [F ] a forest. For multigraph G and W ⊆ V (G ),

ρm(W ) := 3|W | − 2|E (G [W ])| and potm(G ) := min
W⊆V (G)

ρ(W ).

Thm: If G is a multigraph with potm(G ) ≥ −1 and G has no K4

or Moser spindle, then G is nb. This is sharp infinitely often.

Defn: For a simple graph G and each W ⊆ V (G ),

ρs(W ) := 8|W | − 5|E (G [W ])| and pots(G ) := min
W⊆V (G)

ρ(W ).

Thm: If G is a simple graph with pots(G ) ≥ −4 and G has no
subgraph in a finite H then G is nb. This is sharp infinitely often.



Main Results: Near-bipartite Graphs

Defn: G is near-bipartite (nb) if V (G ) has a partition (I ,F ) with I
an ind. set and G [F ] a forest. For multigraph G and W ⊆ V (G ),

ρm(W ) := 3|W | − 2|E (G [W ])| and potm(G ) := min
W⊆V (G)

ρ(W ).

Thm: If G is a multigraph with potm(G ) ≥ −1 and G has no K4

or Moser spindle, then G is nb. This is sharp infinitely often.

Defn: For a simple graph G and each W ⊆ V (G ),

ρs(W ) := 8|W | − 5|E (G [W ])| and pots(G ) := min
W⊆V (G)

ρ(W ).

Thm: If G is a simple graph with pots(G ) ≥ −4 and G has no
subgraph in a finite H then G is nb. This is sharp infinitely often.



Complications
Ques: What is harder for us than in proof for 3-coloring?

I Colors I and F are “different”.

To prove gap lemma, color
subgraph and contract. Specify which vertex is colored I and
which is colored F . Prove general result allowing precoloring.

W IW
FW

W wi

wf

I To contract a subset W with low potential, must ensure new
graph G ′ has no forbidden H ∈ H. Must really understand H.

I Maybe mad(G ) > 16/5, so discharging to get 16/5
everywhere gives no contradiction. Show G almost consists of
ind. set of 4-vertices and 3-vertices inducing a forest. Color G .
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Algorithms

Discharging Proof into Algorithm (Typical)

I Find reducible configuration H

I Recursively color G − H

I Extend coloring to H

Our Proof into Algorithm

I Handle “easy” reducible configurations as above
I If red. config uses gap lemma, first find W minimizing ρ(W )

I If ρ(W ) violates gap lemma, color G [W ] and G (ϕ,W )
(gap lemma guarantees success)

I Otherwise, reduce as normal

I May have many plausible reductions; need one with no H ∈ H
Finding right one takes time O(n21); color recursively, extend



Algorithms

Discharging Proof into Algorithm (Typical)

I Find reducible configuration H

I Recursively color G − H

I Extend coloring to H

Our Proof into Algorithm

I Handle “easy” reducible configurations as above

I If red. config uses gap lemma, first find W minimizing ρ(W )
I If ρ(W ) violates gap lemma, color G [W ] and G (ϕ,W )

(gap lemma guarantees success)
I Otherwise, reduce as normal

I May have many plausible reductions; need one with no H ∈ H
Finding right one takes time O(n21); color recursively, extend



Algorithms

Discharging Proof into Algorithm (Typical)

I Find reducible configuration H

I Recursively color G − H

I Extend coloring to H

Our Proof into Algorithm

I Handle “easy” reducible configurations as above
I If red. config uses gap lemma, first find W minimizing ρ(W )

I If ρ(W ) violates gap lemma, color G [W ] and G (ϕ,W )
(gap lemma guarantees success)

I Otherwise, reduce as normal

I May have many plausible reductions; need one with no H ∈ H
Finding right one takes time O(n21); color recursively, extend



Algorithms

Discharging Proof into Algorithm (Typical)

I Find reducible configuration H

I Recursively color G − H

I Extend coloring to H

Our Proof into Algorithm

I Handle “easy” reducible configurations as above
I If red. config uses gap lemma, first find W minimizing ρ(W )

I If ρ(W ) violates gap lemma, color G [W ] and G (ϕ,W )
(gap lemma guarantees success)

I Otherwise, reduce as normal

I May have many plausible reductions; need one with no H ∈ H
Finding right one takes time O(n21); color recursively, extend



Algorithms

Discharging Proof into Algorithm (Typical)

I Find reducible configuration H

I Recursively color G − H

I Extend coloring to H

Our Proof into Algorithm

I Handle “easy” reducible configurations as above
I If red. config uses gap lemma, first find W minimizing ρ(W )

I If ρ(W ) violates gap lemma, color G [W ] and G (ϕ,W )
(gap lemma guarantees success)

I Otherwise, reduce as normal

I May have many plausible reductions; need one with no H ∈ H
Finding right one takes time O(n21); color recursively, extend



Algorithms

Discharging Proof into Algorithm (Typical)

I Find reducible configuration H

I Recursively color G − H

I Extend coloring to H

Our Proof into Algorithm

I Handle “easy” reducible configurations as above
I If red. config uses gap lemma, first find W minimizing ρ(W )

I If ρ(W ) violates gap lemma, color G [W ] and G (ϕ,W )
(gap lemma guarantees success)

I Otherwise, reduce as normal

I May have many plausible reductions; need one with no H ∈ H
Finding right one takes time O(n21); color recursively, extend



Algorithms: Finding Low Potential Sets

Thm [Goldberg ’84]: Given arbitrary vertex and edge weights, we
can find a set of minimum potential in polynomial time.
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Summary

I Prove Grötzsch’s Theorem by edge density?

I Fold 4-faces; need mad(G ) < 10/3 =⇒ χ(G ) ≤ 3.

I Necklaces are infinitely many counterexamples.

I Better measure: ρ(W ) = 5|W | − 3|E (G [W ])|.
pot(G ) = min ρ(W ); mad(G ) < 10/3 iff pot(G ) > 0

I For all necklaces, pot(G ) = 2.

I Thm [KY]: If pot(G ) ≥ 3, then χ(G ) ≤ 3.

I Pf: reducibility/discharging, gap lemma.

I 2-colorable ( near-bipartite (nb) ( 3-colorable

I ρs(W ) = 8|W | − 5|E (G [W ])| and pots(G ) = min ρs(W )

I If pots(G ) ≥ −4 and G has no subgraph in H, then G is nb.

I Pf similar to above; 3 complications. Sharp infinitely often.
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I Thm [KY]: If pot(G ) ≥ 3, then χ(G ) ≤ 3.

I Pf: reducibility/discharging, gap lemma.

I 2-colorable ( near-bipartite (nb) ( 3-colorable

I ρs(W ) = 8|W | − 5|E (G [W ])| and pots(G ) = min ρs(W )

I If pots(G ) ≥ −4 and G has no subgraph in H, then G is nb.

I Pf similar to above; 3 complications. Sharp infinitely often.
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