Using the Potential Method to Color Near-bipartite Graphs

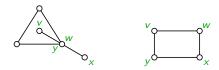
> Daniel W. Cranston Virginia Commonwealth University dcranston@vcu.edu

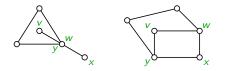
> > Joint with Matthew Yancey

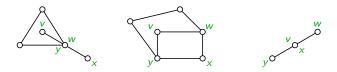
24 September 2019

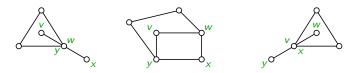
Introduction Thm [Grötzsch '59]: If G is planar with no 3-cycle, then $\chi(G) \leq 3$.

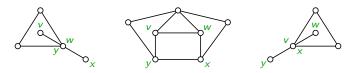
Thm [Grötzsch '59]: If G is planar with no 3-cycle, then $\chi(G) \leq 3$. **Thm**: If G is planar with no 3-cycle and no 4-face, then $\chi(G) \leq 3$.



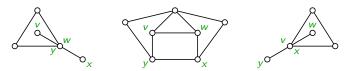




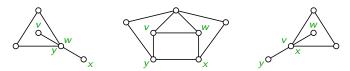




Thm [Grötzsch '59]: If *G* is planar with no 3-cycle, then $\chi(G) \leq 3$. **Thm:** If *G* is planar with no 3-cycle and no 4-face, then $\chi(G) \leq 3$. **Prop:** Theorems are equivalent. **Pf:** "Fold away" all 4-faces.

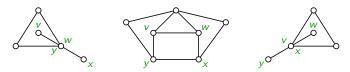


Dream: Maybe we don't need planarity. Could sparsity be enough?



Dream: Maybe we don't need planarity. Could sparsity be enough? 3-coloring G also 3-colors each subgraph H, so also need H sparse.

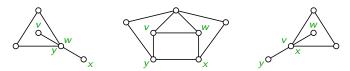
Thm [Grötzsch '59]: If *G* is planar with no 3-cycle, then $\chi(G) \leq 3$. **Thm:** If *G* is planar with no 3-cycle and no 4-face, then $\chi(G) \leq 3$. **Prop:** Theorems are equivalent. **Pf:** "Fold away" all 4-faces.



Dream: Maybe we don't need planarity. Could sparsity be enough? 3-coloring G also 3-colors each subgraph H, so also need H sparse.

Prop: If G is planar with no 3-cycle and no 4-cycle, then mad(G) < 10/3, where $mad(G) := max_{H \subseteq G} 2|E(H)|/|V(H)|$.

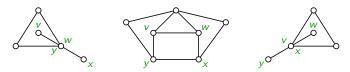
Thm [Grötzsch '59]: If *G* is planar with no 3-cycle, then $\chi(G) \leq 3$. **Thm:** If *G* is planar with no 3-cycle and no 4-face, then $\chi(G) \leq 3$. **Prop:** Theorems are equivalent. **Pf:** "Fold away" all 4-faces.



Dream: Maybe we don't need planarity. Could sparsity be enough? 3-coloring G also 3-colors each subgraph H, so also need H sparse.

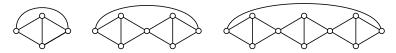
Prop: If G is planar with no 3-cycle and no 4-cycle, then mad(G) < 10/3, where $mad(G) := max_{H \subseteq G} 2|E(H)|/|V(H)|$. **Conj:** If mad(G) < 10/3, then $\chi(G) \le 3$.

Thm [Grötzsch '59]: If *G* is planar with no 3-cycle, then $\chi(G) \leq 3$. **Thm:** If *G* is planar with no 3-cycle and no 4-face, then $\chi(G) \leq 3$. **Prop:** Theorems are equivalent. **Pf:** "Fold away" all 4-faces.



Dream: Maybe we don't need planarity. Could sparsity be enough? 3-coloring G also 3-colors each subgraph H, so also need H sparse.

Prop: If G is planar with no 3-cycle and no 4-cycle, then mad(G) < 10/3, where $mad(G) := max_{H \subseteq G} 2|E(H)|/|V(H)|$. **Conj:** If mad(G) < 10/3, then $\chi(G) \le 3$.



Idea: Measure "average degree" more finely.

Idea: Measure "average degree" more finely. For $W \subseteq V(G)$, let $\rho(W) := 5|W| - 3|E(G[W])|$

Idea: Measure "average degree" more finely. For $W \subseteq V(G)$, let $\rho(W) := 5|W| - 3|E(G[W])|$ and $pot(G) := \min_{\emptyset \neq W \subseteq V(G)} \rho(W)$.

Idea: Measure "average degree" more finely. For $W \subseteq V(G)$, let $\rho(W) := 5|W| - 3|E(G[W])|$ and $pot(G) := \min_{\emptyset \neq W \subseteq V(G)} \rho(W)$.

Prop: If G is planar with no 3-cycle or 4-cycle, then $pot(G) \ge 5$.

Idea: Measure "average degree" more finely. For $W \subseteq V(G)$, let $\rho(W) := 5|W| - 3|E(G[W])|$ and $pot(G) := \min_{\emptyset \neq W \subseteq V(G)} \rho(W)$.

Prop: If G is planar with no 3-cycle or 4-cycle, then $pot(G) \ge 5$. **Prop:** Each necklace G_k has $pot(G_k) = 5(3k+1) - 3(5k+1) = 2$.

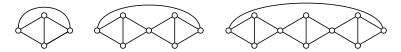
Idea: Measure "average degree" more finely. For $W \subseteq V(G)$, let $\rho(W) := 5|W| - 3|E(G[W])|$ and $pot(G) := \min_{\emptyset \neq W \subseteq V(G)} \rho(W)$.

Prop: If G is planar with no 3-cycle or 4-cycle, then $pot(G) \ge 5$. **Prop:** Each necklace G_k has $pot(G_k) = 5(3k+1) - 3(5k+1) = 2$.

Thm [Kostochka–Yancey '12]: If $pot(G) \ge 3$, then $\chi(G) \le 3$.

Idea: Measure "average degree" more finely. For $W \subseteq V(G)$, let $\rho(W) := 5|W| - 3|E(G[W])|$ and $pot(G) := \min_{\emptyset \neq W \subseteq V(G)} \rho(W)$.

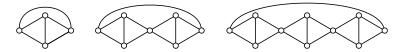
Prop: If G is planar with no 3-cycle or 4-cycle, then $pot(G) \ge 5$. **Prop:** Each necklace G_k has $pot(G_k) = 5(3k+1) - 3(5k+1) = 2$.



Thm [Kostochka–Yancey '12]: If $pot(G) \ge 3$, then $\chi(G) \le 3$. Pf sketch:

Idea: Measure "average degree" more finely. For $W \subseteq V(G)$, let $\rho(W) := 5|W| - 3|E(G[W])|$ and $pot(G) := \min_{\emptyset \neq W \subseteq V(G)} \rho(W)$.

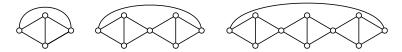
Prop: If G is planar with no 3-cycle or 4-cycle, then $pot(G) \ge 5$. **Prop:** Each necklace G_k has $pot(G_k) = 5(3k+1) - 3(5k+1) = 2$.



Thm [Kostochka–Yancey '12]: If $pot(G) \ge 3$, then $\chi(G) \le 3$. **Pf sketch:** Note: $pot(G) > 0 \Leftrightarrow mad(G) < 10/3$.

Idea: Measure "average degree" more finely. For $W \subseteq V(G)$, let $\rho(W) := 5|W| - 3|E(G[W])|$ and $pot(G) := \min_{\emptyset \neq W \subseteq V(G)} \rho(W)$.

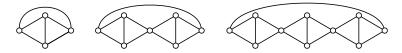
Prop: If G is planar with no 3-cycle or 4-cycle, then $pot(G) \ge 5$. **Prop:** Each necklace G_k has $pot(G_k) = 5(3k+1) - 3(5k+1) = 2$.



Thm [Kostochka–Yancey '12]: If $pot(G) \ge 3$, then $\chi(G) \le 3$. Pf sketch: Note: $pot(G) > 0 \Leftrightarrow mad(G) < 10/3$. G is min c/e, so $\delta(G) \ge 3$.

Idea: Measure "average degree" more finely. For $W \subseteq V(G)$, let $\rho(W) := 5|W| - 3|E(G[W])|$ and $pot(G) := \min_{\emptyset \neq W \subseteq V(G)} \rho(W)$.

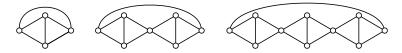
Prop: If G is planar with no 3-cycle or 4-cycle, then $pot(G) \ge 5$. **Prop:** Each necklace G_k has $pot(G_k) = 5(3k+1) - 3(5k+1) = 2$.



Thm [Kostochka–Yancey '12]: If $pot(G) \ge 3$, then $\chi(G) \le 3$. **Pf sketch:** Note: $pot(G) > 0 \Leftrightarrow mad(G) < 10/3$. *G* is min c/e, so $\delta(G) \ge 3$. WTS: Each 3-vertex has two 4⁺-nbrs.

Idea: Measure "average degree" more finely. For $W \subseteq V(G)$, let $\rho(W) := 5|W| - 3|E(G[W])|$ and $pot(G) := \min_{\emptyset \neq W \subseteq V(G)} \rho(W)$.

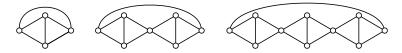
Prop: If G is planar with no 3-cycle or 4-cycle, then $pot(G) \ge 5$. **Prop:** Each necklace G_k has $pot(G_k) = 5(3k+1) - 3(5k+1) = 2$.



Thm [Kostochka–Yancey '12]: If $pot(G) \ge 3$, then $\chi(G) \le 3$. **Pf sketch:** Note: $pot(G) > 0 \Leftrightarrow mad(G) < 10/3$. *G* is min c/e, so $\delta(G) \ge 3$. WTS: Each 3-vertex has two 4⁺-nbrs. Each vertex *v* starts with d(v) and each 4⁺-vertex gives 1/6 to each 3-nbrs.

Idea: Measure "average degree" more finely. For $W \subseteq V(G)$, let $\rho(W) := 5|W| - 3|E(G[W])|$ and $pot(G) := \min_{\emptyset \neq W \subseteq V(G)} \rho(W)$.

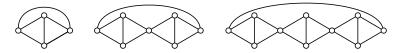
Prop: If G is planar with no 3-cycle or 4-cycle, then $pot(G) \ge 5$. **Prop:** Each necklace G_k has $pot(G_k) = 5(3k+1) - 3(5k+1) = 2$.



Thm [Kostochka–Yancey '12]: If $pot(G) \ge 3$, then $\chi(G) \le 3$. Pf sketch: Note: $pot(G) > 0 \Leftrightarrow mad(G) < 10/3$. *G* is min c/e, so $\delta(G) \ge 3$. WTS: Each 3-vertex has two 4⁺-nbrs. Each vertex *v* starts with d(v) and each 4⁺-vertex gives 1/6 to each 3-nbrs. 3: 3 + 2(1/6) = 10/3.

Idea: Measure "average degree" more finely. For $W \subseteq V(G)$, let $\rho(W) := 5|W| - 3|E(G[W])|$ and $pot(G) := \min_{\emptyset \neq W \subseteq V(G)} \rho(W)$.

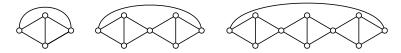
Prop: If G is planar with no 3-cycle or 4-cycle, then $pot(G) \ge 5$. **Prop:** Each necklace G_k has $pot(G_k) = 5(3k+1) - 3(5k+1) = 2$.



Thm [Kostochka–Yancey '12]: If $pot(G) \ge 3$, then $\chi(G) \le 3$. Pf sketch: Note: $pot(G) > 0 \Leftrightarrow mad(G) < 10/3$. *G* is min c/e, so $\delta(G) \ge 3$. WTS: Each 3-vertex has two 4⁺-nbrs. Each vertex *v* starts with d(v) and each 4⁺-vertex gives 1/6 to each 3-nbrs. 3: 3 + 2(1/6) = 10/3. 4^+ : $d(v) - d(v)/6 = 5d(v)/6 \ge 20/6$.

Idea: Measure "average degree" more finely. For $W \subseteq V(G)$, let $\rho(W) := 5|W| - 3|E(G[W])|$ and $pot(G) := \min_{\emptyset \neq W \subseteq V(G)} \rho(W)$.

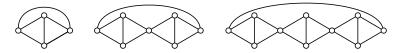
Prop: If G is planar with no 3-cycle or 4-cycle, then $pot(G) \ge 5$. **Prop:** Each necklace G_k has $pot(G_k) = 5(3k+1) - 3(5k+1) = 2$.



Thm [Kostochka–Yancey '12]: If $pot(G) \ge 3$, then $\chi(G) \le 3$. Pf sketch: Note: $pot(G) > 0 \Leftrightarrow mad(G) < 10/3$. *G* is min c/e, so $\delta(G) \ge 3$. WTS: Each 3-vertex has two 4⁺-nbrs. Each vertex *v* starts with d(v) and each 4⁺-vertex gives 1/6 to each 3-nbrs. 3: 3 + 2(1/6) = 10/3. 4^+ : $d(v) - d(v)/6 = 5d(v)/6 \ge 20/6$. Contradiction.

Idea: Measure "average degree" more finely. For $W \subseteq V(G)$, let $\rho(W) := 5|W| - 3|E(G[W])|$ and $pot(G) := \min_{\emptyset \neq W \subseteq V(G)} \rho(W)$.

Prop: If G is planar with no 3-cycle or 4-cycle, then $pot(G) \ge 5$. **Prop:** Each necklace G_k has $pot(G_k) = 5(3k+1) - 3(5k+1) = 2$.



Thm [Kostochka–Yancey '12]: If $pot(G) \ge 3$, then $\chi(G) \le 3$. Pf sketch: Note: $pot(G) > 0 \Leftrightarrow mad(G) < 10/3$. G is min c/e, so $\delta(G) \ge 3$. WTS: Each 3-vertex has two 4⁺-nbrs. Each vertex v starts with d(v) and each 4⁺-vertex gives 1/6 to each 3-nbrs. 3: 3 + 2(1/6) = 10/3. 4^+ : $d(v) - d(v)/6 = 5d(v)/6 \ge 20/6$. Contradiction.

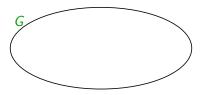
Problem: Need more power for reducibility.

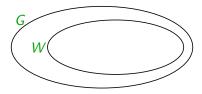
Using the Gap Lemma

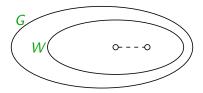
Using the Gap Lemma Gap Lemma: If $W \subsetneq V(G)$ and $|W| \ge 2$, then $\rho(W) \ge 6$.

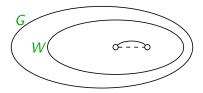
Using the Gap Lemma

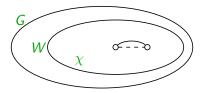
Gap Lemma: If $W \subsetneq V(G)$ and $|W| \ge 2$, then $\rho(W) \ge 6$. **Cor:** For any $W \subsetneq V(G)$ and $e \notin G[W]$, $\chi(G[W] + e) \le 3$.



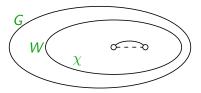






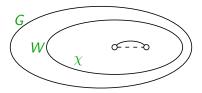


Gap Lemma: If $W \subsetneq V(G)$ and $|W| \ge 2$, then $\rho(W) \ge 6$. **Cor:** For any $W \subsetneq V(G)$ and $e \notin G[W]$, $\chi(G[W] + e) \le 3$.



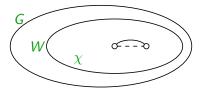
Pf: Let G' = G[W] + e. WTS $pot(G') \ge 3$.

Gap Lemma: If $W \subsetneq V(G)$ and $|W| \ge 2$, then $\rho(W) \ge 6$. **Cor:** For any $W \subsetneq V(G)$ and $e \notin G[W]$, $\chi(G[W] + e) \le 3$.



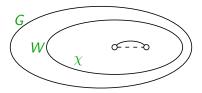
Pf: Let G' = G[W] + e. WTS $pot(G') \ge 3$. Fix $X \subseteq V(G')$. If |X| = 1, then $\rho_{G'}(X) = \rho_G(X) = 5$.

Gap Lemma: If $W \subsetneq V(G)$ and $|W| \ge 2$, then $\rho(W) \ge 6$. **Cor:** For any $W \subsetneq V(G)$ and $e \notin G[W]$, $\chi(G[W] + e) \le 3$.

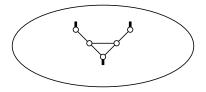


Pf: Let G' = G[W] + e. WTS $pot(G') \ge 3$. Fix $X \subseteq V(G')$. If |X| = 1, then $\rho_{G'}(X) = \rho_G(X) = 5$. If $|X| \ge 2$, then $\rho_{G'}(X) \ge \rho_G(X) - 3 \ge 6 - 3 = 3$.

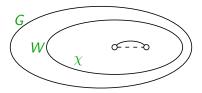
Gap Lemma: If $W \subsetneq V(G)$ and $|W| \ge 2$, then $\rho(W) \ge 6$. **Cor:** For any $W \subsetneq V(G)$ and $e \notin G[W]$, $\chi(G[W] + e) \le 3$.



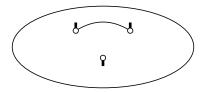
Pf: Let G' = G[W] + e. WTS $pot(G') \ge 3$. Fix $X \subseteq V(G')$. If |X| = 1, then $\rho_{G'}(X) = \rho_G(X) = 5$. If $|X| \ge 2$, then $\rho_{G'}(X) \ge \rho_G(X) - 3 \ge 6 - 3 = 3$.



Gap Lemma: If $W \subsetneq V(G)$ and $|W| \ge 2$, then $\rho(W) \ge 6$. **Cor:** For any $W \subsetneq V(G)$ and $e \notin G[W]$, $\chi(G[W] + e) \le 3$.



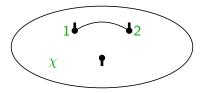
Pf: Let G' = G[W] + e. WTS $pot(G') \ge 3$. Fix $X \subseteq V(G')$. If |X| = 1, then $\rho_{G'}(X) = \rho_G(X) = 5$. If $|X| \ge 2$, then $\rho_{G'}(X) \ge \rho_G(X) - 3 \ge 6 - 3 = 3$.



Gap Lemma: If $W \subsetneq V(G)$ and $|W| \ge 2$, then $\rho(W) \ge 6$. **Cor:** For any $W \subsetneq V(G)$ and $e \notin G[W]$, $\chi(G[W] + e) \le 3$.



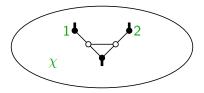
Pf: Let G' = G[W] + e. WTS $pot(G') \ge 3$. Fix $X \subseteq V(G')$. If |X| = 1, then $\rho_{G'}(X) = \rho_G(X) = 5$. If $|X| \ge 2$, then $\rho_{G'}(X) \ge \rho_G(X) - 3 \ge 6 - 3 = 3$.



Gap Lemma: If $W \subsetneq V(G)$ and $|W| \ge 2$, then $\rho(W) \ge 6$. **Cor:** For any $W \subsetneq V(G)$ and $e \notin G[W]$, $\chi(G[W] + e) \le 3$.



Pf: Let G' = G[W] + e. WTS $pot(G') \ge 3$. Fix $X \subseteq V(G')$. If |X| = 1, then $\rho_{G'}(X) = \rho_G(X) = 5$. If $|X| \ge 2$, then $\rho_{G'}(X) \ge \rho_G(X) - 3 \ge 6 - 3 = 3$.



Proving the Gap Lemma Recall: $\rho(W) = 5|W| - 3|E(G[W])|$.

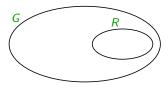
Recall: $\rho(W) = 5|W| - 3|E(G[W])|$. **Obs:** If $X, Y \subseteq V(G)$ and $X \cap Y \neq \emptyset$, then $\rho(X \cup Y) = \rho(X) + \rho(Y) - 3|E(X, Y)|$.

Recall: $\rho(W) = 5|W| - 3|E(G[W])|$. **Obs:** If $X, Y \subseteq V(G)$ and $X \cap Y \neq \emptyset$, then $\rho(X \cup Y) = \rho(X) + \rho(Y) - 3|E(X, Y)|$.

Gap Lemma: If $W \subsetneq V(G)$ and $|W| \ge 2$, then $\rho(W) \ge 6$.

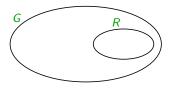
Recall: $\rho(W) = 5|W| - 3|E(G[W])|$. **Obs:** If $X, Y \subseteq V(G)$ and $X \cap Y \neq \emptyset$, then $\rho(X \cup Y) = \rho(X) + \rho(Y) - 3|E(X, Y)|$.

Gap Lemma: If $W \subsetneq V(G)$ and $|W| \ge 2$, then $\rho(W) \ge 6$. **Pf:** Choose $R \subsetneq V(G)$ with $|R| \ge 2$ to minimize $\rho(R)$.



Recall: $\rho(W) = 5|W| - 3|E(G[W])|$. **Obs:** If $X, Y \subseteq V(G)$ and $X \cap Y \neq \emptyset$, then $\rho(X \cup Y) = \rho(X) + \rho(Y) - 3|E(X, Y)|$.

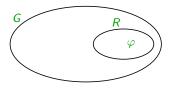
Gap Lemma: If $W \subsetneq V(G)$ and $|W| \ge 2$, then $\rho(W) \ge 6$. **Pf:** Choose $R \subsetneq V(G)$ with $|R| \ge 2$ to minimize $\rho(R)$.



Easy to check when $|R| \leq 3$; assume $|R| \geq 4$.

Recall: $\rho(W) = 5|W| - 3|E(G[W])|$. **Obs:** If $X, Y \subseteq V(G)$ and $X \cap Y \neq \emptyset$, then $\rho(X \cup Y) = \rho(X) + \rho(Y) - 3|E(X, Y)|$.

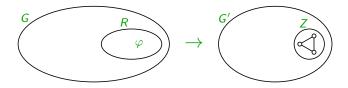
Gap Lemma: If $W \subsetneq V(G)$ and $|W| \ge 2$, then $\rho(W) \ge 6$. **Pf:** Choose $R \subsetneq V(G)$ with $|R| \ge 2$ to minimize $\rho(R)$.



Easy to check when $|R| \leq 3$; assume $|R| \geq 4$. 3-color G[R]; call it φ .

Recall: $\rho(W) = 5|W| - 3|E(G[W])|$. **Obs:** If $X, Y \subseteq V(G)$ and $X \cap Y \neq \emptyset$, then $\rho(X \cup Y) = \rho(X) + \rho(Y) - 3|E(X, Y)|$.

Gap Lemma: If $W \subsetneq V(G)$ and $|W| \ge 2$, then $\rho(W) \ge 6$. **Pf:** Choose $R \subsetneq V(G)$ with $|R| \ge 2$ to minimize $\rho(R)$.



Easy to check when $|R| \le 3$; assume $|R| \ge 4$. 3-color G[R]; call it φ . Contract each color class to a single vertex to get G'.

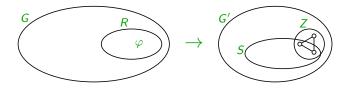
Recall: $\rho(W) = 5|W| - 3|E(G[W])|$. **Obs:** If $X, Y \subseteq V(G)$ and $X \cap Y \neq \emptyset$, then $\rho(X \cup Y) = \rho(X) + \rho(Y) - 3|E(X, Y)|$.

Gap Lemma: If $W \subsetneq V(G)$ and $|W| \ge 2$, then $\rho(W) \ge 6$. **Pf:** Choose $R \subsetneq V(G)$ with $|R| \ge 2$ to minimize $\rho(R)$.

Easy to check when $|R| \le 3$; assume $|R| \ge 4$. 3-color G[R]; call it φ . Contract each color class to a single vertex to get G'. If $\chi(G') \le 3$, then $\chi(G) \le 3$.

Recall: $\rho(W) = 5|W| - 3|E(G[W])|$. **Obs:** If $X, Y \subseteq V(G)$ and $X \cap Y \neq \emptyset$, then $\rho(X \cup Y) = \rho(X) + \rho(Y) - 3|E(X, Y)|$.

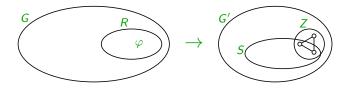
Gap Lemma: If $W \subsetneq V(G)$ and $|W| \ge 2$, then $\rho(W) \ge 6$. **Pf:** Choose $R \subsetneq V(G)$ with $|R| \ge 2$ to minimize $\rho(R)$.



Easy to check when $|R| \le 3$; assume $|R| \ge 4$. 3-color G[R]; call it φ . Contract each color class to a single vertex to get G'. If $\chi(G') \le 3$, then $\chi(G) \le 3$. Some $S \subseteq V(G')$ has $\rho_{G'}(S) \le 2$.

Recall: $\rho(W) = 5|W| - 3|E(G[W])|$. **Obs:** If $X, Y \subseteq V(G)$ and $X \cap Y \neq \emptyset$, then $\rho(X \cup Y) = \rho(X) + \rho(Y) - 3|E(X, Y)|$.

Gap Lemma: If $W \subsetneq V(G)$ and $|W| \ge 2$, then $\rho(W) \ge 6$. **Pf:** Choose $R \subsetneq V(G)$ with $|R| \ge 2$ to minimize $\rho(R)$.



Easy to check when $|R| \leq 3$; assume $|R| \geq 4$. 3-color G[R]; call it φ . Contract each color class to a single vertex to get G'. If $\chi(G') \leq 3$, then $\chi(G) \leq 3$. Some $S \subseteq V(G')$ has $\rho_{G'}(S) \leq 2$. If $S \cap Z = \emptyset$, then $2 \geq \rho_{G'}(S) = \rho_G(S)$, a contradiction.

Recall: $\rho(W) = 5|W| - 3|E(G[W])|$. **Obs:** If $X, Y \subseteq V(G)$ and $X \cap Y \neq \emptyset$, then $\rho(X \cup Y) = \rho(X) + \rho(Y) - 3|E(X, Y)|$.

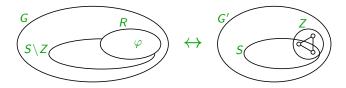
Gap Lemma: If $W \subsetneq V(G)$ and $|W| \ge 2$, then $\rho(W) \ge 6$. **Pf:** Choose $R \subsetneq V(G)$ with $|R| \ge 2$ to minimize $\rho(R)$.

Easy to check when $|R| \leq 3$; assume $|R| \geq 4$. 3-color G[R]; call it φ . Contract each color class to a single vertex to get G'. If $\chi(G') \leq 3$, then $\chi(G) \leq 3$. Some $S \subseteq V(G')$ has $\rho_{G'}(S) \leq 2$. If $S \cap Z = \emptyset$, then $2 \geq \rho_{G'}(S) = \rho_G(S)$, a contradiction. Instead

 $\rho_G((S \setminus Z) \cup R) \le \rho_{G'}(S) - \rho_{G'}(S \cap Z) + \rho_G(R)$

Recall: $\rho(W) = 5|W| - 3|E(G[W])|$. **Obs:** If $X, Y \subseteq V(G)$ and $X \cap Y \neq \emptyset$, then $\rho(X \cup Y) = \rho(X) + \rho(Y) - 3|E(X, Y)|$.

Gap Lemma: If $W \subsetneq V(G)$ and $|W| \ge 2$, then $\rho(W) \ge 6$. **Pf:** Choose $R \subsetneq V(G)$ with $|R| \ge 2$ to minimize $\rho(R)$.



Easy to check when $|R| \leq 3$; assume $|R| \geq 4$. 3-color G[R]; call it φ . Contract each color class to a single vertex to get G'. If $\chi(G') \leq 3$, then $\chi(G) \leq 3$. Some $S \subseteq V(G')$ has $\rho_{G'}(S) \leq 2$. If $S \cap Z = \emptyset$, then $2 \geq \rho_{G'}(S) = \rho_G(S)$, a contradiction. Instead

$$\begin{split} \rho_G((S \setminus Z) \cup R) &\leq \rho_{G'}(S) - \rho_{G'}(S \cap Z) + \rho_G(R) \\ &\leq 2 - 5 + 5 = 2, \end{split}$$

Recall: $\rho(W) = 5|W| - 3|E(G[W])|$. **Obs:** If $X, Y \subseteq V(G)$ and $X \cap Y \neq \emptyset$, then $\rho(X \cup Y) = \rho(X) + \rho(Y) - 3|E(X, Y)|$.

Gap Lemma: If $W \subsetneq V(G)$ and $|W| \ge 2$, then $\rho(W) \ge 6$. **Pf:** Choose $R \subsetneq V(G)$ with $|R| \ge 2$ to minimize $\rho(R)$.

Easy to check when $|R| \leq 3$; assume $|R| \geq 4$. 3-color G[R]; call it φ . Contract each color class to a single vertex to get G'. If $\chi(G') \leq 3$, then $\chi(G) \leq 3$. Some $S \subseteq V(G')$ has $\rho_{G'}(S) \leq 2$. If $S \cap Z = \emptyset$, then $2 \geq \rho_{G'}(S) = \rho_G(S)$, a contradiction. Instead

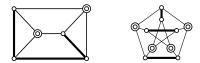
 $\rho_G((S \setminus Z) \cup R) \le \rho_{G'}(S) - \rho_{G'}(S \cap Z) + \rho_G(R)$ $\le 2 - 5 + 5 = 2,$ Contradiction!

Defn: G is near-bipartite (nb) if V(G) has a partition (I, F) with I an independent set and G[F] a forest.

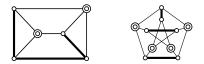
Defn: *G* is near-bipartite (nb) if V(G) has a partition (I, F) with *I* an independent set and G[F] a forest. **Rem:** 2-colorable \subseteq near-bipartite \subseteq 3-colorable.

Defn: *G* is near-bipartite (nb) if V(G) has a partition (I, F) with *I* an independent set and G[F] a forest. **Rem:** 2-colorable \subseteq near-bipartite \subseteq 3-colorable.

Defn: *G* is near-bipartite (nb) if V(G) has a partition (I, F) with *I* an independent set and G[F] a forest. **Rem:** 2-colorable \subseteq near-bipartite \subseteq 3-colorable.

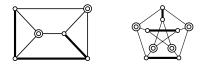


Defn: *G* is near-bipartite (nb) if V(G) has a partition (I, F) with *I* an independent set and G[F] a forest. **Rem:** 2-colorable \subseteq near-bipartite \subseteq 3-colorable.

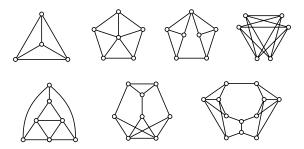


Defn: G is nb-critical if G is not nb, but G - e is for all e.

Defn: *G* is near-bipartite (nb) if V(G) has a partition (I, F) with *I* an independent set and G[F] a forest. **Rem:** 2-colorable \subseteq near-bipartite \subseteq 3-colorable.



Defn: G is nb-critical if G is not nb, but G - e is for all e.



Defn: G is near-bipartite (nb) if V(G) has a partition (I, F) with I an ind. set and G[F] a forest.

Defn: G is near-bipartite (nb) if V(G) has a partition (I, F) with I an ind. set and G[F] a forest. For multigraph G and $W \subseteq V(G)$,

$$\rho_m(W) := 3|W| - 2|E(G[W])| \text{ and } \operatorname{pot}_m(G) := \min_{W \subseteq V(G)} \rho(W).$$

Defn: G is near-bipartite (nb) if V(G) has a partition (I, F) with I an ind. set and G[F] a forest. For multigraph G and $W \subseteq V(G)$,

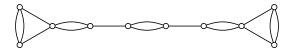
 $\rho_m(W) := 3|W| - 2|E(G[W])| \text{ and } \operatorname{pot}_m(G) := \min_{W \subseteq V(G)} \rho(W).$

Thm: If G is a multigraph with $pot_m(G) \ge -1$ and G has no K_4 or Moser spindle, then G is nb. This is sharp infinitely often.

Defn: G is near-bipartite (nb) if V(G) has a partition (I, F) with I an ind. set and G[F] a forest. For multigraph G and $W \subseteq V(G)$,

$$\rho_m(W) := 3|W| - 2|E(G[W])| \text{ and } \operatorname{pot}_m(G) := \min_{W \subseteq V(G)} \rho(W).$$

Thm: If G is a multigraph with $pot_m(G) \ge -1$ and G has no K_4 or Moser spindle, then G is nb. This is sharp infinitely often.

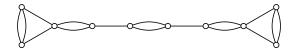


Main Results: Near-bipartite Graphs

Defn: G is near-bipartite (nb) if V(G) has a partition (I, F) with I an ind. set and G[F] a forest. For multigraph G and $W \subseteq V(G)$,

$$\rho_m(W) := 3|W| - 2|E(G[W])| \text{ and } \operatorname{pot}_m(G) := \min_{W \subseteq V(G)} \rho(W).$$

Thm: If G is a multigraph with $pot_m(G) \ge -1$ and G has no K_4 or Moser spindle, then G is nb. This is sharp infinitely often.



Defn: For a simple graph G and each $W \subseteq V(G)$,

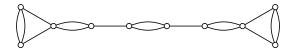
 $\rho_s(W) := 8|W| - 5|E(G[W])| \text{ and } \operatorname{pot}_s(G) := \min_{W \subseteq V(G)} \rho(W).$

Main Results: Near-bipartite Graphs

Defn: G is near-bipartite (nb) if V(G) has a partition (I, F) with I an ind. set and G[F] a forest. For multigraph G and $W \subseteq V(G)$,

$$\rho_m(W) := 3|W| - 2|E(G[W])| \text{ and } \operatorname{pot}_m(G) := \min_{W \subseteq V(G)} \rho(W).$$

Thm: If G is a multigraph with $pot_m(G) \ge -1$ and G has no K_4 or Moser spindle, then G is nb. This is sharp infinitely often.



Defn: For a simple graph G and each $W \subseteq V(G)$,

 $\rho_s(W) := 8|W| - 5|E(G[W])| \text{ and } \operatorname{pot}_s(G) := \min_{W \subseteq V(G)} \rho(W).$

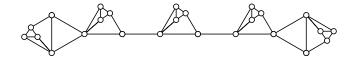
Thm: If G is a simple graph with $\text{pot}_s(G) \ge -4$ and G has no subgraph in a finite \mathcal{H} then G is nb. This is sharp infinitely often.

Main Results: Near-bipartite Graphs

Defn: G is near-bipartite (nb) if V(G) has a partition (I, F) with I an ind. set and G[F] a forest. For multigraph G and $W \subseteq V(G)$,

 $\rho_m(W) := 3|W| - 2|E(G[W])| \text{ and } \operatorname{pot}_m(G) := \min_{W \subseteq V(G)} \rho(W).$

Thm: If G is a multigraph with $pot_m(G) \ge -1$ and G has no K_4 or Moser spindle, then G is nb. This is sharp infinitely often.



Defn: For a simple graph G and each $W \subseteq V(G)$,

 $\rho_s(W) := 8|W| - 5|E(G[W])| \text{ and } \operatorname{pot}_s(G) := \min_{W \subseteq V(G)} \rho(W).$

Thm: If G is a simple graph with $\text{pot}_s(G) \ge -4$ and G has no subgraph in a finite \mathcal{H} then G is nb. This is sharp infinitely often.

Ques: What is harder for us than in proof for 3-coloring?

▶ Colors *I* and *F* are "different".

Ques: What is harder for us than in proof for 3-coloring?

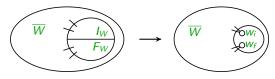
 Colors I and F are "different". To prove gap lemma, color subgraph and contract.

Ques: What is harder for us than in proof for 3-coloring?

 Colors / and F are "different". To prove gap lemma, color subgraph and contract. Specify which vertex is colored / and which is colored F.

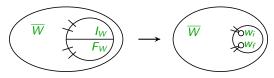
Ques: What is harder for us than in proof for 3-coloring?

Ques: What is harder for us than in proof for 3-coloring?



Ques: What is harder for us than in proof for 3-coloring?

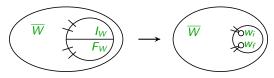
Colors / and F are "different". To prove gap lemma, color subgraph and contract. Specify which vertex is colored / and which is colored F. Prove general result allowing precoloring.



► To contract a subset W with low potential, must ensure new graph G' has no forbidden H ∈ H.

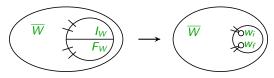
Ques: What is harder for us than in proof for 3-coloring?

Colors / and F are "different". To prove gap lemma, color subgraph and contract. Specify which vertex is colored / and which is colored F. Prove general result allowing precoloring.



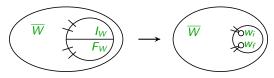
► To contract a subset W with low potential, must ensure new graph G' has no forbidden H ∈ H. Must really understand H.

Ques: What is harder for us than in proof for 3-coloring?



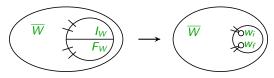
- ► To contract a subset W with low potential, must ensure new graph G' has no forbidden H ∈ H. Must really understand H.
- ► Maybe mad(G) > 16/5, so discharging to get 16/5 everywhere gives no contradiction.

Ques: What is harder for us than in proof for 3-coloring?



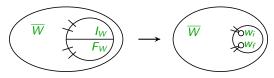
- ► To contract a subset W with low potential, must ensure new graph G' has no forbidden H ∈ H. Must really understand H.
- Maybe mad(G) > 16/5, so discharging to get 16/5 everywhere gives no contradiction. Show G almost consists of ind. set of 4-vertices and 3-vertices inducing a forest.

Ques: What is harder for us than in proof for 3-coloring?

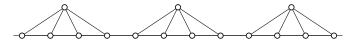


- ► To contract a subset W with low potential, must ensure new graph G' has no forbidden H ∈ H. Must really understand H.
- Maybe mad(G) > 16/5, so discharging to get 16/5 everywhere gives no contradiction. Show G almost consists of ind. set of 4-vertices and 3-vertices inducing a forest. Color G.

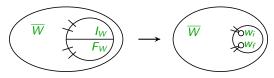
Ques: What is harder for us than in proof for 3-coloring?



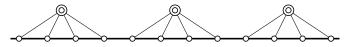
- ► To contract a subset W with low potential, must ensure new graph G' has no forbidden H ∈ H. Must really understand H.
- Maybe mad(G) > 16/5, so discharging to get 16/5 everywhere gives no contradiction. Show G almost consists of ind. set of 4-vertices and 3-vertices inducing a forest. Color G.



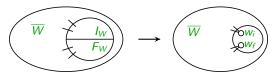
Ques: What is harder for us than in proof for 3-coloring?



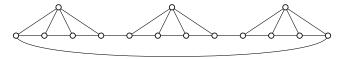
- ► To contract a subset W with low potential, must ensure new graph G' has no forbidden H ∈ H. Must really understand H.
- Maybe mad(G) > 16/5, so discharging to get 16/5 everywhere gives no contradiction. Show G almost consists of ind. set of 4-vertices and 3-vertices inducing a forest. Color G.



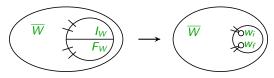
Ques: What is harder for us than in proof for 3-coloring?



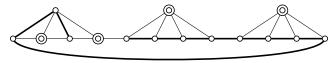
- ► To contract a subset W with low potential, must ensure new graph G' has no forbidden H ∈ H. Must really understand H.
- Maybe mad(G) > 16/5, so discharging to get 16/5 everywhere gives no contradiction. Show G almost consists of ind. set of 4-vertices and 3-vertices inducing a forest. Color G.



Ques: What is harder for us than in proof for 3-coloring?



- ► To contract a subset W with low potential, must ensure new graph G' has no forbidden H ∈ H. Must really understand H.
- Maybe mad(G) > 16/5, so discharging to get 16/5 everywhere gives no contradiction. Show G almost consists of ind. set of 4-vertices and 3-vertices inducing a forest. Color G.



Discharging Proof into Algorithm (Typical)

- ► Find reducible configuration *H*
- Recursively color G H
- Extend coloring to *H*

Discharging Proof into Algorithm (Typical)

- ▶ Find reducible configuration *H*
- Recursively color G H
- Extend coloring to H

Our Proof into Algorithm

Handle "easy" reducible configurations as above

Discharging Proof into Algorithm (Typical)

- ▶ Find reducible configuration *H*
- Recursively color G H
- Extend coloring to H

- Handle "easy" reducible configurations as above
- If red. config uses gap lemma, first find W minimizing $\rho(W)$

Discharging Proof into Algorithm (Typical)

- ► Find reducible configuration *H*
- Recursively color G H
- Extend coloring to H

- Handle "easy" reducible configurations as above
- If red. config uses gap lemma, first find W minimizing $\rho(W)$
 - If ρ(W) violates gap lemma, color G[W] and G(φ, W) (gap lemma guarantees success)

Discharging Proof into Algorithm (Typical)

- ▶ Find reducible configuration *H*
- Recursively color G H
- Extend coloring to H

- Handle "easy" reducible configurations as above
- If red. config uses gap lemma, first find W minimizing $\rho(W)$
 - If ρ(W) violates gap lemma, color G[W] and G(φ, W) (gap lemma guarantees success)
 - Otherwise, reduce as normal

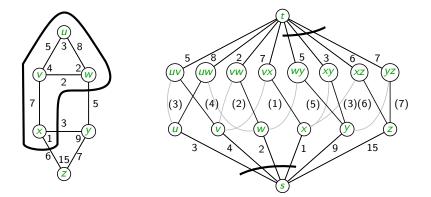
Discharging Proof into Algorithm (Typical)

- ▶ Find reducible configuration *H*
- Recursively color G H
- Extend coloring to H

- Handle "easy" reducible configurations as above
- If red. config uses gap lemma, first find W minimizing $\rho(W)$
 - If ρ(W) violates gap lemma, color G[W] and G(φ, W) (gap lemma guarantees success)
 - Otherwise, reduce as normal
- ▶ May have many plausible reductions; need one with no $H \in \mathcal{H}$ Finding right one takes time $O(n^{21})$; color recursively, extend

Algorithms: Finding Low Potential Sets

Thm [Goldberg '84]: Given arbitrary vertex and edge weights, we can find a set of minimum potential in polynomial time.



Prove Grötzsch's Theorem by edge density?

- Prove Grötzsch's Theorem by edge density?
- ▶ Fold 4-faces; need mad(G) < $10/3 \implies \chi(G) \le 3$.

- Prove Grötzsch's Theorem by edge density?
- ► Fold 4-faces; need mad(G) < 10/3 $\implies \chi(G) \le 3$.
- Necklaces are infinitely many counterexamples.

- Prove Grötzsch's Theorem by edge density?
- ▶ Fold 4-faces; need mad(G) < 10/3 $\implies \chi(G) \le 3$.
- Necklaces are infinitely many counterexamples.
- Better measure: $\rho(W) = 5|W| 3|E(G[W])|$.

- Prove Grötzsch's Theorem by edge density?
- ► Fold 4-faces; need mad(G) < 10/3 $\implies \chi(G) \le 3$.
- Necklaces are infinitely many counterexamples.
- Better measure: ρ(W) = 5|W| − 3|E(G[W])|. pot(G) = min ρ(W); mad(G) < 10/3 iff pot(G) > 0

- Prove Grötzsch's Theorem by edge density?
- ▶ Fold 4-faces; need mad(G) < 10/3 $\implies \chi(G) \le 3$.
- Necklaces are infinitely many counterexamples.
- ▶ Better measure: ρ(W) = 5|W| 3|E(G[W])|. pot(G) = min ρ(W); mad(G) < 10/3 iff pot(G) > 0

• For all necklaces,
$$pot(G) = 2$$
.

- Prove Grötzsch's Theorem by edge density?
- ▶ Fold 4-faces; need mad(G) < 10/3 $\implies \chi(G) \le 3$.
- Necklaces are infinitely many counterexamples.
- Better measure: ρ(W) = 5|W| − 3|E(G[W])|. pot(G) = min ρ(W); mad(G) < 10/3 iff pot(G) > 0
- For all necklaces, pot(G) = 2.
- Thm [KY]: If $pot(G) \ge 3$, then $\chi(G) \le 3$.

- Prove Grötzsch's Theorem by edge density?
- ▶ Fold 4-faces; need mad(G) < 10/3 $\implies \chi(G) \le 3$.
- Necklaces are infinitely many counterexamples.
- Better measure: ρ(W) = 5|W| − 3|E(G[W])|. pot(G) = min ρ(W); mad(G) < 10/3 iff pot(G) > 0
- For all necklaces, pot(G) = 2.
- Thm [KY]: If $pot(G) \ge 3$, then $\chi(G) \le 3$.
- Pf: reducibility/discharging, gap lemma.

- Prove Grötzsch's Theorem by edge density?
- ▶ Fold 4-faces; need mad(G) < 10/3 $\implies \chi(G) \le 3$.
- Necklaces are infinitely many counterexamples.
- Better measure: ρ(W) = 5|W| − 3|E(G[W])|. pot(G) = min ρ(W); mad(G) < 10/3 iff pot(G) > 0
- For all necklaces, pot(G) = 2.
- Thm [KY]: If $pot(G) \ge 3$, then $\chi(G) \le 3$.
- Pf: reducibility/discharging, gap lemma.
- 2-colorable \subsetneq near-bipartite (nb) \subsetneq 3-colorable

- Prove Grötzsch's Theorem by edge density?
- ▶ Fold 4-faces; need mad(G) < 10/3 $\implies \chi(G) \le 3$.
- Necklaces are infinitely many counterexamples.
- Better measure: ρ(W) = 5|W| − 3|E(G[W])|. pot(G) = min ρ(W); mad(G) < 10/3 iff pot(G) > 0
- For all necklaces, pot(G) = 2.
- Thm [KY]: If $pot(G) \ge 3$, then $\chi(G) \le 3$.
- Pf: reducibility/discharging, gap lemma.
- 2-colorable \subsetneq near-bipartite (nb) \subsetneq 3-colorable
- $\rho_s(W) = 8|W| 5|E(G[W])|$ and $\text{pot}_s(G) = \min \rho_s(W)$

- Prove Grötzsch's Theorem by edge density?
- ▶ Fold 4-faces; need mad(G) < 10/3 $\implies \chi(G) \le 3$.
- Necklaces are infinitely many counterexamples.
- Better measure: ρ(W) = 5|W| − 3|E(G[W])|. pot(G) = min ρ(W); mad(G) < 10/3 iff pot(G) > 0
- For all necklaces, pot(G) = 2.
- Thm [KY]: If $pot(G) \ge 3$, then $\chi(G) \le 3$.
- Pf: reducibility/discharging, gap lemma.
- ▶ 2-colorable \subseteq near-bipartite (nb) \subseteq 3-colorable
- $\rho_s(W) = 8|W| 5|E(G[W])|$ and $\text{pot}_s(G) = \min \rho_s(W)$
- If $pot_s(G) \ge -4$ and G has no subgraph in \mathcal{H} , then G is nb.

- Prove Grötzsch's Theorem by edge density?
- ▶ Fold 4-faces; need mad(G) < 10/3 $\implies \chi(G) \le 3$.
- Necklaces are infinitely many counterexamples.
- Better measure: ρ(W) = 5|W| − 3|E(G[W])|. pot(G) = min ρ(W); mad(G) < 10/3 iff pot(G) > 0
- For all necklaces, pot(G) = 2.
- Thm [KY]: If $pot(G) \ge 3$, then $\chi(G) \le 3$.
- Pf: reducibility/discharging, gap lemma.
- ▶ 2-colorable \subseteq near-bipartite (nb) \subseteq 3-colorable
- $\rho_s(W) = 8|W| 5|E(G[W])|$ and $\text{pot}_s(G) = \min \rho_s(W)$
- If $\text{pot}_s(G) \ge -4$ and G has no subgraph in \mathcal{H} , then G is nb.
- Pf similar to above; 3 complications.

- Prove Grötzsch's Theorem by edge density?
- ▶ Fold 4-faces; need mad(G) < 10/3 $\implies \chi(G) \le 3$.
- Necklaces are infinitely many counterexamples.
- Better measure: ρ(W) = 5|W| − 3|E(G[W])|. pot(G) = min ρ(W); mad(G) < 10/3 iff pot(G) > 0
- For all necklaces, pot(G) = 2.
- Thm [KY]: If $pot(G) \ge 3$, then $\chi(G) \le 3$.
- Pf: reducibility/discharging, gap lemma.
- 2-colorable \subsetneq near-bipartite (nb) \subsetneq 3-colorable
- $\rho_s(W) = 8|W| 5|E(G[W])|$ and $\text{pot}_s(G) = \min \rho_s(W)$
- If $pot_s(G) \ge -4$ and G has no subgraph in \mathcal{H} , then G is nb.
- ▶ Pf similar to above; 3 complications. Sharp infinitely often.