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Algorithms

Discharging Proof into Algorithm (Typical)
» Find reducible configuration H
» Recursively color G — H

» Extend coloring to H

Our Proof into Algorithm

» Handle “easy” reducible configurations as above
» If red. config uses gap lemma, first find W minimizing p(\W)
» If p(W) violates gap lemma, color G[W] and G(p, W)
(gap lemma guarantees success)
» Otherwise, reduce as normal
» May have many plausible reductions; need one with no H € H
Finding right one takes time O(n?!); color recursively, extend



Algorithms: Finding Low Potential Sets

Thm [Goldberg '84]: Given arbitrary vertex and edge weights, we
can find a set of minimum potential in polynomial time.
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