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What’s a flow?

Def: A flow on a graph G is a pair (D, f ) such that

1. D is an orientation of G ,

2. f is a weight function on E (G ), and

3. “flow in” equals “flow out” at each vertex
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Def: A k-flow is flow where
|f (e)| ∈ {0, 1, . . . , k − 1}
for all e ∈ E (G ). A flow is
nowhere-zero or positive
if f (e) is for all e ∈ E (G ).

Prop: For a graph G ,
the following are equivalent:

1. G has a positive k-flow.

2. G has a nowhere-zero k-flow.

3. G has a nowhere-zero k-flow for each orientation of G .

Pf: Reverse edge and negate flow value (repeatedly).
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Warmup
Lem: A linear combination of flows (same orientation) is a flow.

Pf: The net flow at each vertex is still 0.

Def: A graph is even if each vertex has even degree.
Lem: G has a nowhere-zero 2-flow iff G is even.
Pf: If G is even, then each component has Eulerian circuit.
If G has nowhere-zero 2-flow, then each degree is even.

Lem: The net flow through any vertex set S is 0.
Pf: The net flow at each v in S is 0; edges within S add 0 to net.
Cor: So if G has a nowhere-zero flow, then G is bridgeless.

Key Lemma: Suppose V (G1) = V (G2).
If G1 has a nowhere-zero k1-flow f1 and G2 has a nowhere-zero
k2-flow f2, then G1 ∪ G2 has a nowhere-zero k1k2-flow.
Pf: Extend f1 and f2 to E (G1 ∪G2) by giving “extra” edges flow 0;
call these f̂1 and f̂2. Now k2f̂1 + f̂2 is the desired flow.

Cor: Each bridgeless G has nowhere-zero k-flow for some k .
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Nowhere-zero flows in 3-regular graphs
Thm: 3-regular G has a nowhere-zero 4-flow iff 3-edge-colorable.

Pf: Edge-color G with colors a, b, c. Let H1 be union of colors a
and b; let H2 be union of colors a and c . Each Hi is even, so has a
nowhere-zero 2-flow. By Key Lemma, G has nowhere-zero 4-flow.

In nowhere-zero 4-flow, “2” edges induce 1-factor.

We show each
cycle C in remaining 2-factor has even length. Net flow into V (C )
is 0. Chords of C add 0 to net flow. Incident edges all weighted 2.
Same number of edges into/out of C , so C has even length.
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Cor: Petersen has no 3-edge-coloring, so no nowhere-zero 4-flow.
Pf: Suppose P has 3-edge-coloring; each color at each vertex.
Inner 5-cycle uses each color. Outer 5-cycle uses each color twice!
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Why do we care?

Thm: [Tutte 1954] A plane bridgeless graph is k-face colorable if
and only if it has a nowhere-zero k-flow.

(Like Tait’s Theorem.)

Rem So nowhere-zero flows generalize the idea of coloring the
planar dual of a graph, for graphs that aren’t planar.

Tutte’s 5-flow Conj: [1954] Every bridgless graph has a
nowhere-zero 5-flow.

I Proved for nowhere-zero 6-flow.

I We sketch proof for nowhere-zero 8-flow.

Tutte’s 4-flow Conj: [1966] Every bridgless graph
with no Petersen minor has a nowhere-zero 4-flow.

I Proved for cubic graphs; implies 4CT.

I condition not necessary

Tutte’s 3-flow Conj: [1970s] Every
4-edge-connected graph has a nowhere-zero 3-flow.
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Disjoint Spanning Trees
Tree-packing Thm: A multigraph contains k edge-disjoint
spanning trees if and only if for every partition P of its
vertex set it has at least k(|P| − 1) cross-edges.

Necessity is easy, since each spanning tree must contain at least
|P| − 1 cross-edges.

Cor: Every 2k-edge-connected multigraph G
has k edge-disjoint spanning trees.
Pf: Every set in P is joined to other sets by at least 2k edges. So
number of cross-edges is at least 1

2

∑
S∈P 2k = 1

2(2k)|P| = k |P|.
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Parity Subgraphs

Def: A parity subgraph of G is a subgraph H such that
dG (v) ≡ dH(v) mod 2 for all v ∈ V (G ).

Lem: Every spanning tree contains a parity subgraph.
Pf: Pick a root r arbitrarily. Direct all tree edges toward r .
Working towards r , put each edge ~uv into/out of H as needed by
u. Works for r , thanks to parity. Formally, induction on |V (G )|.

Obs: The complement of a parity subgraph is an even graph.
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Nowhere-zero 8-flows in bridgeless graphs

Thm: Every bridgeless graph has a nowhere-zero 8-flow.

Pf sketch: Find subgraphs H1,H2,H3 such that
G = H1 ∪ H2 ∪ H3 and each Hi has a nowhere-zero 2-flow.
By Key Lemma, G has a nowhere-zero 8-flow. How to find Hi?

Reduce to when G is 2-connected and 3-edge-connected.
By doubling each edge, we get a 6-edge-connected graph,
which contains three edge-disjoint spanning trees T1,T2,T3.
In G , they aren’t edge-disjoint, but no edge is in all three.

In each Ti , find parity subgraph Ri . Now let Hi = G \ E (Ri ).
Recall that each Hi is even. Since no edge is in all Ti , each edge is
in some Hi . So G = H1 ∪ H2 ∪ H3. Since each Hi is even, it has a
nowhere-zero 2-flow. By Key Lemma, G has nowhere-zero 8-flow.
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Summary

I Nowhere-zero flows extend face-coloring to non-planar graphs.
I A plane bridgeless graph is k-face colorable if and only if it has

a nowhere-zero k-flow.

I Tutte conjectured sufficient conditions for nowhere-zero flows
in bridgeless graphs:

I 5-flow: all graphs
I 4-flow: no subdivision of Petersen
I 3-flow: 4-edge-connected

I All conjectures still open, but major progress
I 4-flow conjecture implies 4CT, proved for 3-regular
I 5-flow conjecture proved for 6-flow (we proved 8-flow)

I This talk follows presentation from West’s textbook.
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