Painting Squares with Δ^2 -1 shades

Daniel W. Cranston Virginia Commonwealth University dcranston@vcu.edu

Joint with Landon Rabern Slides available on my webpage

> SIAM Discrete Math 19 June 2014

Thm [Brooks 1941]: If $\Delta(G) \geq 3$ and $\omega(G) \leq \Delta(G)$ then $\chi(G) \leq \Delta(G)$.

Thm [Brooks 1941]: If $\Delta(G^2) \ge 3$ and $\omega(G^2) \le \Delta(G^2)$, then $\chi(G^2) \le \Delta(G^2)$

Thm [Brooks 1941]: If $\Delta(G^2) \ge 3$ and $\omega(G^2) \le \Delta(G^2)$, then $\chi(G^2) \le \Delta(G^2) \le \Delta(G)^2$.

Thm [Brooks 1941]: If $\Delta(G^2) \ge 3$ and $\omega(G^2) \le \Delta(G^2)$, then $\chi(G^2) \le \Delta(G^2) \le \Delta(G)^2$.

Thm [C.–Kim '08]: If $\Delta(G) = 3$ and $\omega(G^2) \le 8$, then $\chi(G^2) \le 8$.

Thm [Brooks 1941]: If $\Delta(G^2) \ge 3$ and $\omega(G^2) \le \Delta(G^2)$, then $\chi(G^2) \le \Delta(G^2) \le \Delta(G)^2$.

Thm [C.–Kim '08]: If $\Delta(G) = 3$ and $\omega(G^2) \le 8$, then $\chi_{\ell}(G^2) \le 8$.

Thm [Brooks 1941]: If $\Delta(G^2) \ge 3$ and $\omega(G^2) \le \Delta(G^2)$, then $\chi(G^2) \le \Delta(G^2) \le \Delta(G)^2$.

Thm [C.–Kim '08]: If $\Delta(G) = 3$ and $\omega(G^2) \le 8$, then $\chi_{\ell}(G^2) \le 8$. If G is connected and not Petersen, then $\omega(G^2) \le 8$.

Thm [Brooks 1941]: If $\Delta(G^2) \ge 3$ and $\omega(G^2) \le \Delta(G^2)$, then $\chi(G^2) \le \Delta(G^2) \le \Delta(G)^2$.

Thm [C.–Kim '08]: If $\Delta(G) = 3$ and $\omega(G^2) \le 8$, then $\chi_{\ell}(G^2) \le 8$. If G is connected and not Petersen, then $\omega(G^2) \le 8$.

Conj [C.–Kim '08]: If G is connected, not a Moore graph, and $\Delta(G) \ge 3$, then $\chi_{\ell}(G^2) \le \Delta(G)^2 - 1$.

Thm [Brooks 1941]: If $\Delta(G^2) \ge 3$ and $\omega(G^2) \le \Delta(G^2)$, then $\chi(G^2) \le \Delta(G^2) \le \Delta(G)^2$.

Thm [C.–Kim '08]: If $\Delta(G) = 3$ and $\omega(G^2) \le 8$, then $\chi_{\ell}(G^2) \le 8$. If G is connected and not Petersen, then $\omega(G^2) \le 8$.

Conj [C.-Kim '08]: If G is connected, not a Moore graph, and $\Delta(G) \ge 3$, then $\chi_{\ell}(G^2) \le \Delta(G)^2 - 1$.

Thm [Brooks 1941]: If $\Delta(G^2) \ge 3$ and $\omega(G^2) \le \Delta(G^2)$, then $\chi(G^2) \le \Delta(G^2) \le \Delta(G)^2$.

Thm [C.–Kim '08]: If $\Delta(G) = 3$ and $\omega(G^2) \le 8$, then $\chi_{\ell}(G^2) \le 8$. If G is connected and not Petersen, then $\omega(G^2) \le 8$.

Conj [C.–Kim '08]: If G is connected not a Moore graph, and $\Delta(G) \ge 3$, then $\chi_{\ell}(G^2) \le \Delta(G)^2 - 1$.

Thm [Brooks 1941]: If $\Delta(G^2) \ge 3$ and $\omega(G^2) \le \Delta(G^2)$, then $\chi(G^2) \le \Delta(G^2) \le \Delta(G)^2$.

Thm [C.–Kim '08]: If $\Delta(G) = 3$ and $\omega(G^2) \le 8$, then $\chi_{\ell}(G^2) \le 8$. If G is connected and not Petersen, then $\omega(G^2) \le 8$.

Conj [C.–Kim '08]: If G is connected not a Moore graph, and $\Delta(G) \ge 3$, then $\chi_{\ell}(G^2) \le \Delta(G)^2 - 1$.

Thm [C.-Rabern '14+]: If G is connected, not a Moore graph, and $\Delta(G) \ge 3$, then $\chi_{\ell}(G^2) \le \Delta(G)^2 - 1$.

Thm [Brooks 1941]: If $\Delta(G^2) \ge 3$ and $\omega(G^2) \le \Delta(G^2)$, then $\chi(G^2) \le \Delta(G^2) \le \Delta(G)^2$.

Thm [C.–Kim '08]: If $\Delta(G) = 3$ and $\omega(G^2) \le 8$, then $\chi_{\ell}(G^2) \le 8$. If G is connected and not Petersen, then $\omega(G^2) \le 8$.

Conj [C.–Kim '08]: If G is connected not a Moore graph, and $\Delta(G) \ge 3$, then $\chi_{\ell}(G^2) \le \Delta(G)^2 - 1$.

Thm [C.-Rabern '14+]: If G is connected, not a Moore graph, and $\Delta(G) \ge 3$, then $\chi_p(G^2) \le \Delta(G)^2 - 1$.

Wegner's (Very General) Conjecture [1977]: If \mathcal{G}_k is the class of all graphs with $\Delta \leq k$, then for all $k \geq 3$, $d \geq 1$

$$\max_{G\in\mathcal{G}_k}\chi(G^d)=\max_{G\in\mathcal{G}_k}\omega(G^d).$$

Wegner's (Very General) Conjecture [1977]: If \mathcal{G}_k is the class of all graphs with $\Delta \leq k$, then for all $k \geq 3$, $d \geq 1$

$$\max_{G\in\mathcal{G}_k}\chi(G^d)=\max_{G\in\mathcal{G}_k}\omega(G^d).$$

• Our result implies Wegner's conj. for d = 2 and $k \in \{4, 5\}$.

Wegner's (Very General) Conjecture [1977]: If \mathcal{G}_k is the class of all graphs with $\Delta \leq k$, then for all $k \geq 3$, $d \geq 1$

$$\max_{G\in\mathcal{G}_k}\chi(G^d)=\max_{G\in\mathcal{G}_k}\omega(G^d).$$

• Our result implies Wegner's conj. for d = 2 and $k \in \{4, 5\}$.

Wegner's (Very General) Conjecture [1977]: If \mathcal{G}_k is the class of all graphs with $\Delta \leq k$, then for all $k \geq 3$, $d \geq 1$

$$\max_{G\in\mathcal{G}_k}\chi(G^d)=\max_{G\in\mathcal{G}_k}\omega(G^d).$$

• Our result implies Wegner's conj. for d = 2 and $k \in \{4, 5\}$.

Wegner's (Very General) Conjecture [1977]: If \mathcal{G}_k is the class of all graphs with $\Delta \leq k$, then for all $k \geq 3$, $d \geq 1$

$$\max_{G\in\mathcal{G}_k}\chi(G^d)=\max_{G\in\mathcal{G}_k}\omega(G^d).$$

• Our result implies Wegner's conj. for d = 2 and $k \in \{4, 5\}$.

Borodin–Kostochka Conjecture [1977]:

Wegner's (Very General) Conjecture [1977]: If \mathcal{G}_k is the class of all graphs with $\Delta \leq k$, then for all $k \geq 3$, $d \geq 1$

$$\max_{G\in\mathcal{G}_k}\chi(G^d)=\max_{G\in\mathcal{G}_k}\omega(G^d).$$

• Our result implies Wegner's conj. for d = 2 and $k \in \{4, 5\}$.

Borodin–Kostochka Conjecture [1977]: If $\Delta(G) \ge 9$ and $\omega(G) \le \Delta(G) - 1$, then $\chi(G) \le \Delta(G) - 1$.

Wegner's (Very General) Conjecture [1977]: If \mathcal{G}_k is the class of all graphs with $\Delta \leq k$, then for all $k \geq 3$, $d \geq 1$

$$\max_{G\in\mathcal{G}_k}\chi(G^d)=\max_{G\in\mathcal{G}_k}\omega(G^d).$$

• Our result implies Wegner's conj. for d = 2 and $k \in \{4, 5\}$.

Borodin–Kostochka Conjecture [1977]: If $\Delta(G) \ge 9$ and $\omega(G) \le \Delta(G) - 1$, then $\chi(G) \le \Delta(G) - 1$. • Our result implies B–K conj. for G^2 when G has girth > 9.

Def: A graph G is d_1 -choosable if it has an L-coloring whenever |L(v)| = d(v) - 1 for all $v \in V(G)$.

Lem: Minimal c/e G^2 contains no induced d_1 -choosable subgraph H.

Def: A graph G is d_1 -choosable if it has an L-coloring whenever |L(v)| = d(v) - 1 for all $v \in V(G)$.

Lem: Minimal c/e G^2 contains no induced d_1 -choosable subgraph H. **Pf:**

Lem: Minimal c/e G^2 contains no induced d_1 -choosable subgraph H. **Pf:**

Def: A graph G is d_1 -choosable if it has an L-coloring whenever |L(v)| = d(v) - 1 for all $v \in V(G)$.

Lem: Minimal c/e G^2 contains no induced d_1 -choosable subgraph H. **Pf:**

Lem: Minimal c/e G^2 contains no induced d_1 -choosable subgraph H. **Pf:** Color $G^2 \setminus V(H)$ by minimality.

Lem: Minimal c/e G^2 contains no induced d_1 -choosable subgraph H. **Pf:** Color $G^2 \setminus V(H)$ by minimality. Consider a vertex $v \in V(H)$.

Lem: Minimal c/e G^2 contains no induced d_1 -choosable subgraph H. **Pf:** Color $G^2 \setminus V(H)$ by minimality. Consider a vertex $v \in V(H)$.

Def: A graph G is d_1 -choosable if it has an L-coloring whenever |L(v)| = d(v) - 1 for all $v \in V(G)$.

Lem: Minimal c/e G^2 contains no induced d_1 -choosable subgraph H. **Pf:** Color $G^2 \setminus V(H)$ by minimality. Consider a vertex $v \in V(H)$. Its number of colors available is at least $\Delta^2 - 1 - (d_{G^2}(v) - d_H(v))$

Def: A graph G is d_1 -choosable if it has an L-coloring whenever |L(v)| = d(v) - 1 for all $v \in V(G)$.

Lem: Minimal c/e G^2 contains no induced d_1 -choosable subgraph H. **Pf:** Color $G^2 \setminus V(H)$ by minimality. Consider a vertex $v \in V(H)$. Its number of colors available is at least $\Delta^2 - 1 - (d_{G^2}(v) - d_H(v)) \ge \Delta^2 - 1 - (\Delta^2 - d_H(v))$

Def: A graph G is d_1 -choosable if it has an L-coloring whenever |L(v)| = d(v) - 1 for all $v \in V(G)$.

Lem: Minimal c/e G^2 contains no induced d_1 -choosable subgraph H. **Pf:** Color $G^2 \setminus V(H)$ by minimality. Consider a vertex $v \in V(H)$. Its number of colors available is at least $\Delta^2 - 1 - (d_{G^2}(v) - d_H(v)) \ge \Delta^2 - 1 - (\Delta^2 - d_H(v)) = d_H(v) - 1$.

Def: A graph G is d_1 -choosable if it has an L-coloring whenever |L(v)| = d(v) - 1 for all $v \in V(G)$.

Lem: Minimal c/e G^2 contains no induced d_1 -choosable subgraph H. **Pf:** Color $G^2 \setminus V(H)$ by minimality. Consider a vertex $v \in V(H)$. Its number of colors available is at least $\Delta^2 - 1 - (d_{G^2}(v) - d_H(v)) \ge \Delta^2 - 1 - (\Delta^2 - d_H(v)) = d_H(v) - 1$. Extend coloring to V(H), since H is d_1 -choosable.

Def: A graph G is d_1 -choosable if it has an L-coloring whenever |L(v)| = d(v) - 1 for all $v \in V(G)$.

Lem: Minimal c/e G^2 contains no induced d_1 -choosable subgraph H. **Pf:** Color $G^2 \setminus V(H)$ by minimality. Consider a vertex $v \in V(H)$. Its number of colors available is at least $\Delta^2 - 1 - (d_{G^2}(v) - d_H(v)) \ge \Delta^2 - 1 - (\Delta^2 - d_H(v)) = d_H(v) - 1$. Extend coloring to V(H), since H is d_1 -choosable.

Where to find d_1 -choosable subgraph?

Proof Outline
Consider a shortest cycle C in G.

► 3-cycle:

Consider a shortest cycle C in G.

• 3-cycle: $d_{G^2}(v) \leq \Delta^2 - 2$ for each v on C.

- ► 3-cycle: $d_{G^2}(v) \le \Delta^2 2$ for each v on C.
- ► 4-cycle:

- ► 3-cycle: $d_{G^2}(v) \le \Delta^2 2$ for each v on C.
- 4-cycle: $d_{G^2}(v) \leq \Delta^2 1$ for each v on C.

- ► 3-cycle: $d_{G^2}(v) \le \Delta^2 2$ for each v on C.
- 4-cycle: $d_{G^2}(v) \leq \Delta^2 1$ for each v on C.
- ► 6-cycle:

- ► 3-cycle: $d_{G^2}(v) \le \Delta^2 2$ for each v on C.
- 4-cycle: $d_{G^2}(v) \leq \Delta^2 1$ for each v on C.
- 6-cycle: C_6^2 is 4-regular and 3-choosable.

- ► 3-cycle: $d_{G^2}(v) \le \Delta^2 2$ for each v on C.
- 4-cycle: $d_{G^2}(v) \leq \Delta^2 1$ for each v on C.
- 6-cycle: C_6^2 is 4-regular and 3-choosable.
- 7-cycle:

- ► 3-cycle: $d_{G^2}(v) \le \Delta^2 2$ for each v on C.
- 4-cycle: $d_{G^2}(v) \leq \Delta^2 1$ for each v on C.
- 6-cycle: C_6^2 is 4-regular and 3-choosable.
- 7-cycle: Let H be C + pendant edge.

- ► 3-cycle: $d_{G^2}(v) \le \Delta^2 2$ for each v on C.
- 4-cycle: $d_{G^2}(v) \leq \Delta^2 1$ for each v on C.
- 6-cycle: C_6^2 is 4-regular and 3-choosable.
- 7-cycle: Let H be C + pendant edge.

- ► 3-cycle: $d_{G^2}(v) \le \Delta^2 2$ for each v on C.
- 4-cycle: $d_{G^2}(v) \leq \Delta^2 1$ for each v on C.
- 6-cycle: C_6^2 is 4-regular and 3-choosable.
- ► 7-cycle: Let H be C + pendant edge. Now since G has no shorter cycles,

- ► 3-cycle: $d_{G^2}(v) \le \Delta^2 2$ for each v on C.
- 4-cycle: $d_{G^2}(v) \leq \Delta^2 1$ for each v on C.
- 6-cycle: C_6^2 is 4-regular and 3-choosable.
- 7-cycle: Let H be C + pendant edge. Now since G has no shorter cycles, G²[V(H)] ≅ H² (no extra edges).

- ► 3-cycle: $d_{G^2}(v) \le \Delta^2 2$ for each v on C.
- 4-cycle: $d_{G^2}(v) \leq \Delta^2 1$ for each v on C.
- 6-cycle: C_6^2 is 4-regular and 3-choosable.
- 7-cycle: Let H be C + pendant edge. Now since G has no shorter cycles, G²[V(H)] ≅ H² (no extra edges).

Consider a shortest cycle C in G.

- ► 3-cycle: $d_{G^2}(v) \le \Delta^2 2$ for each v on C.
- 4-cycle: $d_{G^2}(v) \leq \Delta^2 1$ for each v on C.
- 6-cycle: C_6^2 is 4-regular and 3-choosable.
- 7-cycle: Let H be C + pendant edge. Now since G has no shorter cycles, G²[V(H)] ≅ H² (no extra edges).

Use Alon–Tarsi Theorem to prove H^2 is d_1 -choosable.

Consider a shortest cycle C in G.

- ► 3-cycle: $d_{G^2}(v) \le \Delta^2 2$ for each v on C.
- 4-cycle: $d_{G^2}(v) \leq \Delta^2 1$ for each v on C.
- 6-cycle: C_6^2 is 4-regular and 3-choosable.
- 7-cycle: Let H be C + pendant edge. Now since G has no shorter cycles, G²[V(H)] ≅ H² (no extra edges).

Use Alon–Tarsi Theorem to prove H^2 is d_1 -choosable.

Consider a shortest cycle C in G.

- ► 3-cycle: $d_{G^2}(v) \le \Delta^2 2$ for each v on C.
- 4-cycle: $d_{G^2}(v) \leq \Delta^2 1$ for each v on C.
- 6-cycle: C_6^2 is 4-regular and 3-choosable.
- 7-cycle: Let H be C + pendant edge. Now since G has no shorter cycles, G²[V(H)] ≅ H² (no extra edges).

Use Alon–Tarsi Theorem to prove H^2 is d_1 -choosable.

► 8⁺-cycle:

Consider a shortest cycle C in G.

- ► 3-cycle: $d_{G^2}(v) \le \Delta^2 2$ for each v on C.
- 4-cycle: $d_{G^2}(v) \leq \Delta^2 1$ for each v on C.
- 6-cycle: C_6^2 is 4-regular and 3-choosable.
- 7-cycle: Let H be C + pendant edge. Now since G has no shorter cycles, G²[V(H)] ≅ H² (no extra edges).

Use Alon–Tarsi Theorem to prove H^2 is d_1 -choosable.

 8⁺-cycle: similar but may need two pendant edges.

Consider a shortest cycle C in G.

- ► 3-cycle: $d_{G^2}(v) \le \Delta^2 2$ for each v on C.
- 4-cycle: $d_{G^2}(v) \leq \Delta^2 1$ for each v on C.
- 6-cycle: C_6^2 is 4-regular and 3-choosable.
- 7-cycle: Let H be C + pendant edge. Now since G has no shorter cycles, G²[V(H)] ≅ H² (no extra edges).

Use Alon–Tarsi Theorem to prove H^2 is d_1 -choosable.

- 8⁺-cycle: similar but may need two pendant edges.
- ► 5-cycle:

Consider a shortest cycle C in G.

- ► 3-cycle: $d_{G^2}(v) \le \Delta^2 2$ for each v on C.
- 4-cycle: $d_{G^2}(v) \leq \Delta^2 1$ for each v on C.
- 6-cycle: C_6^2 is 4-regular and 3-choosable.
- 7-cycle: Let H be C + pendant edge. Now since G has no shorter cycles, G²[V(H)] ≅ H² (no extra edges).

Use Alon–Tarsi Theorem to prove H^2 is d_1 -choosable.

- 8⁺-cycle: similar but may need two pendant edges.
- ► 5-cycle: structural analysis to find d₁-choosable subgraph

Consider a shortest cycle C in G.

- ► 3-cycle: $d_{G^2}(v) \le \Delta^2 2$ for each v on C.
- 4-cycle: $d_{G^2}(v) \leq \Delta^2 1$ for each v on C.
- 6-cycle: C_6^2 is 4-regular and 3-choosable.
- 7-cycle: Let H be C + pendant edge. Now since G has no shorter cycles, G²[V(H)] ≅ H² (no extra edges).

Use Alon–Tarsi Theorem to prove H^2 is d_1 -choosable.

- 8⁺-cycle: similar but may need two pendant edges.
- 5-cycle: structural analysis to find d₁-choosable subgraph

How do we prove that $(cycle + pendant edge)^2$ is d_1 -choosable?

Alon–Tarsi: For a digraph \vec{D} , if $|EE(\vec{D})| \neq |EO(\vec{D})|$, then \vec{D} is *f*-choosable, where $f(v) = 1 + d_{\vec{D}}(v)$ for all v.

Alon–Tarsi: For a digraph \vec{D} , if $|EE(\vec{D})| \neq |EO(\vec{D})|$, then \vec{D} is *f*-choosable, where $f(v) = 1 + d_{\vec{D}}(v)$ for all *v*.

Don't count |EE| and |EO|;

Alon–Tarsi: For a digraph \vec{D} , if $|EE(\vec{D})| \neq |EO(\vec{D})|$, then \vec{D} is *f*-choosable, where $f(v) = 1 + d_{\vec{D}}(v)$ for all *v*.

Don't count |EE| and |EO|; just count |EE| - |EO|.

Alon–Tarsi: For a digraph \vec{D} , if $|EE(\vec{D})| \neq |EO(\vec{D})|$, then \vec{D} is *f*-choosable, where $f(v) = 1 + d_{\vec{D}}(v)$ for all *v*.

Don't count |EE| and |EO|; just count |EE| - |EO|. How?

Alon–Tarsi: For a digraph \vec{D} , if $|EE(\vec{D})| \neq |EO(\vec{D})|$, then \vec{D} is *f*-choosable, where $f(v) = 1 + d_{\vec{D}}(v)$ for all *v*.

Don't count |EE| and |EO|; just count |EE| - |EO|. How? Parity-reversing bijections:

Alon–Tarsi: For a digraph \vec{D} , if $|EE(\vec{D})| \neq |EO(\vec{D})|$, then \vec{D} is *f*-choosable, where $f(v) = 1 + d_{\vec{D}}(v)$ for all *v*.

Alon–Tarsi: For a digraph \vec{D} , if $|EE(\vec{D})| \neq |EO(\vec{D})|$, then \vec{D} is *f*-choosable, where $f(v) = 1 + d_{\vec{D}}(v)$ for all *v*.

Alon–Tarsi: For a digraph \vec{D} , if $|EE(\vec{D})| \neq |EO(\vec{D})|$, then \vec{D} is *f*-choosable, where $f(v) = 1 + d_{\vec{D}}(v)$ for all v.

Alon–Tarsi: For a digraph \vec{D} , if $|EE(\vec{D})| \neq |EO(\vec{D})|$, then \vec{D} is *f*-choosable, where $f(v) = 1 + d_{\vec{D}}(v)$ for all v.

Alon–Tarsi: For a digraph \vec{D} , if $|EE(\vec{D})| \neq |EO(\vec{D})|$, then \vec{D} is *f*-choosable, where $f(v) = 1 + d_{\vec{D}}(v)$ for all v.

Alon–Tarsi: For a digraph \vec{D} , if $|EE(\vec{D})| \neq |EO(\vec{D})|$, then \vec{D} is *f*-choosable, where $f(v) = 1 + d_{\vec{D}}(v)$ for all *v*.

Don't count |EE| and |EO|; just count |EE| - |EO|. How? Parity-reversing bijections: Pair most of EE and EO.

Lemma If \vec{D}_n is the square of C_n , with all edges oriented clockwise, then $|EE(\vec{D}_n)| - |EO(\vec{D}_n)|$ only depends on $n \pmod{3}$.

A Gallery of d_1 -choosable graphs

A Gallery of d_1 -choosable graphs

(a) EE=30, EO=28

(b) EE=108, EO=107

(c) EE=88, EO=87

(d) EE=512, EO=515

(e) EE=751, EO=750 (f) EE=1097, EO=1096

In Summary

In Summary

Main Theorem:

If G is connected and not Petersen, Hoffman–Singleton, or a Moore graph with $\Delta = 57$, then $\chi_{p}(G^{2}) \leq \Delta^{2} - 1$.

In Summary

Main Theorem:

If G is connected and not Petersen, Hoffman–Singleton, or a Moore graph with $\Delta = 57$, then $\chi_{\rho}(G^2) \leq \Delta^2 - 1$.

Why do we care?
Main Theorem:

If G is connected and not Petersen, Hoffman–Singleton, or a Moore graph with $\Delta = 57$, then $\chi_{\rho}(G^2) \leq \Delta^2 - 1$.

Why do we care? Relevant to multiple conjectures.

Main Theorem:

If G is connected and not Petersen, Hoffman–Singleton, or a Moore graph with $\Delta = 57$, then $\chi_p(G^2) \leq \Delta^2 - 1$.

Why do we care? Relevant to multiple conjectures.

Solves conjecture of Cranston–Kim, even for paintability.

Main Theorem:

If G is connected and not Petersen, Hoffman–Singleton, or a Moore graph with $\Delta = 57$, then $\chi_{\rho}(G^2) \leq \Delta^2 - 1$.

Why do we care? Relevant to multiple conjectures.

- Solves conjecture of Cranston–Kim, even for paintability.
- Verifies Wegner's Conjecture for d = 2 and $k \in \{4, 5\}$.

Main Theorem:

If G is connected and not Petersen, Hoffman–Singleton, or a Moore graph with $\Delta = 57$, then $\chi_{\rho}(G^2) \leq \Delta^2 - 1$.

Why do we care? Relevant to multiple conjectures.

- Solves conjecture of Cranston–Kim, even for paintability.
- Verifies Wegner's Conjecture for d = 2 and $k \in \{4, 5\}$.
- ▶ Verifies Borodin–Kostoch Conj. for G^2 when girth(G) ≥ 9.

Main Theorem:

If G is connected and not Petersen, Hoffman–Singleton, or a Moore graph with $\Delta = 57$, then $\chi_{\rho}(G^2) \leq \Delta^2 - 1$.

Why do we care? Relevant to multiple conjectures.

- Solves conjecture of Cranston–Kim, even for paintability.
- Verifies Wegner's Conjecture for d = 2 and $k \in \{4, 5\}$.
- ▶ Verifies Borodin–Kostoch Conj. for G^2 when girth(G) ≥ 9.

Key idea: G^2 can't contain induced d_1 -paintable subgraph.

Main Theorem:

If G is connected and not Petersen, Hoffman–Singleton, or a Moore graph with $\Delta = 57$, then $\chi_{\rho}(G^2) \leq \Delta^2 - 1$.

Why do we care? Relevant to multiple conjectures.

- Solves conjecture of Cranston–Kim, even for paintability.
- Verifies Wegner's Conjecture for d = 2 and $k \in \{4, 5\}$.
- ▶ Verifies Borodin–Kostoch Conj. for G^2 when girth(G) ≥ 9.

Key idea: G^2 can't contain induced d_1 -paintable subgraph.

Where is one?

Main Theorem:

If G is connected and not Petersen, Hoffman–Singleton, or a Moore graph with $\Delta = 57$, then $\chi_{\rho}(G^2) \leq \Delta^2 - 1$.

Why do we care? Relevant to multiple conjectures.

- Solves conjecture of Cranston–Kim, even for paintability.
- Verifies Wegner's Conjecture for d = 2 and $k \in \{4, 5\}$.
- ▶ Verifies Borodin–Kostoch Conj. for G^2 when girth(G) ≥ 9.

Key idea: G^2 can't contain induced d_1 -paintable subgraph.

▶ Where is one? Shortest cycle in *G* + few pendant edges.

Main Theorem:

If G is connected and not Petersen, Hoffman–Singleton, or a Moore graph with $\Delta = 57$, then $\chi_{\rho}(G^2) \leq \Delta^2 - 1$.

Why do we care? Relevant to multiple conjectures.

- Solves conjecture of Cranston–Kim, even for paintability.
- Verifies Wegner's Conjecture for d = 2 and $k \in \{4, 5\}$.
- ▶ Verifies Borodin–Kostoch Conj. for G^2 when girth(G) ≥ 9.

Key idea: G^2 can't contain induced d_1 -paintable subgraph.

▶ Where is one? Shortest cycle in *G* + few pendant edges.

Main tool: Alon-Tarsi Theorem (for paintability)

Main Theorem:

If G is connected and not Petersen, Hoffman–Singleton, or a Moore graph with $\Delta = 57$, then $\chi_{\rho}(G^2) \leq \Delta^2 - 1$.

Why do we care? Relevant to multiple conjectures.

- Solves conjecture of Cranston–Kim, even for paintability.
- Verifies Wegner's Conjecture for d = 2 and $k \in \{4, 5\}$.
- ▶ Verifies Borodin–Kostoch Conj. for G^2 when girth(G) ≥ 9.

Key idea: G^2 can't contain induced d_1 -paintable subgraph.

▶ Where is one? Shortest cycle in *G* + few pendant edges.

Main tool: Alon-Tarsi Theorem (for paintability)

▶ Neat trick: Don't count |EE| and |EO|, just |EE| - |EO|.

Main Theorem:

If G is connected and not Petersen, Hoffman–Singleton, or a Moore graph with $\Delta = 57$, then $\chi_{\rho}(G^2) \leq \Delta^2 - 1$.

Why do we care? Relevant to multiple conjectures.

- Solves conjecture of Cranston–Kim, even for paintability.
- Verifies Wegner's Conjecture for d = 2 and $k \in \{4, 5\}$.
- ▶ Verifies Borodin–Kostoch Conj. for G^2 when girth(G) ≥ 9.

Key idea: G^2 can't contain induced d_1 -paintable subgraph.

▶ Where is one? Shortest cycle in *G* + few pendant edges.

Main tool: Alon-Tarsi Theorem (for paintability)

- ▶ Neat trick: Don't count |EE| and |EO|, just |EE| |EO|.
- ► How?

Main Theorem:

If G is connected and not Petersen, Hoffman–Singleton, or a Moore graph with $\Delta = 57$, then $\chi_{\rho}(G^2) \leq \Delta^2 - 1$.

Why do we care? Relevant to multiple conjectures.

- Solves conjecture of Cranston–Kim, even for paintability.
- Verifies Wegner's Conjecture for d = 2 and $k \in \{4, 5\}$.
- ▶ Verifies Borodin–Kostoch Conj. for G^2 when girth(G) ≥ 9.

Key idea: G^2 can't contain induced d_1 -paintable subgraph.

▶ Where is one? Shortest cycle in *G* + few pendant edges.

Main tool: Alon-Tarsi Theorem (for paintability)

- Neat trick: Don't count |EE| and |EO|, just |EE| |EO|.
- How? Parity reversing bijections pair up most of *EE* and *EO*.