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Coloring Squares

Thm [Brooks 1941]:
If ∆(G 2) ≥ 3 and ω(G 2) ≤ ∆(G 2), then χ(G 2) ≤ ∆(G 2)≤ ∆(G )2.

If G is connected and not Petersen, then ω(G 2) ≤ 8.

Conj [C.–Kim ’08]: If G is connected,
not a Moore graph, and ∆(G ) ≥ 3,
then χ`(G

2) ≤ ∆(G )2 − 1.

The Finale

So for k = 7 our desired Moore graph exists and is unique!

Thm [C.-Rabern ’14+]: If G is connected, not a Moore graph,
and ∆(G ) ≥ 3, then χ`(G

2) ≤ ∆(G )2 − 1.
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Related Problems

Wegner’s (Very General) Conjecture [1977]:
If Gk is the class of all graphs with ∆ ≤ k , then for all k ≥ 3, d ≥ 1

max
G∈Gk

χ(Gd) = max
G∈Gk

ω(Gd).

I Our result implies Wegner’s conj. for d = 2 and k ∈ {4, 5}.

Borodin–Kostochka Conjecture [1977]:

If ∆(G ) ≥ 9 and ω(G ) ≤ ∆(G )− 1, then χ(G ) ≤ ∆(G )− 1.

I Our result implies B–K conj. for G 2 when G has girth ≥ 9.
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Key Idea: d1-choosable graphs

Def: A graph G is d1-choosable if it has an L-coloring whenever
|L(v)| = d(v)− 1 for all v ∈ V (G ).

G 2

H

v

Lem: Minimal c/e G 2 contains no induced d1-choosable subgraph H.

Pf: Color G 2 \ V (H) by minimality. Consider a vertex v ∈ V (H).
Its number of colors available is at least
∆2− 1− (dG2(v)− dH(v)) ≥ ∆2− 1− (∆2− dH(v)) = dH(v)− 1.
Extend coloring to V (H), since H is d1-choosable.

Where to find d1-choosable subgraph?
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Proof Outline

Consider a shortest cycle C in G .

I 3-cycle: dG2(v) ≤ ∆2 − 2 for each v on C .

I 4-cycle: dG2(v) ≤ ∆2 − 1 for each v on C .

I 6-cycle: C 2
6 is 4-regular and 3-choosable.

I 7-cycle: Let H be C + pendant edge.
Now since G has no shorter cycles,
G 2[V (H)] ∼= H2 (no extra edges).

Use Alon–Tarsi Theorem to
prove H2 is d1-choosable.

I 8+-cycle: similar but may
need two pendant edges.

I 5-cycle: structural analysis
to find d1-choosable subgraph

How do we prove that (cycle + pendant edge)2 is d1-choosable?
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Alon–Tarsi to prove d1-choosability

Alon–Tarsi: For a digraph ~D, if |EE (~D)| 6= |EO(~D)|,
then ~D is f -choosable, where f (v) = 1 + d~D(v) for all v .

Don’t count |EE | and |EO|; just count |EE | − |EO|.
How? Parity-reversing bijections: Pair most of EE and EO.

1 2 3 . . . n 1 2 3 . . . n

1 2 3 4 . . . n 4 . . . n

Lemma If ~Dn is the square of Cn, with all edges oriented
clockwise, then |EE ( ~Dn)| − |EO( ~Dn)| only depends on n (mod 3).
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A Gallery of d1-choosable graphs

(a) EE=30, EO=28 (b) EE=108, EO=107 (c) EE=88, EO=87

(d) EE=512, EO=515 (e) EE=751, EO=750 (f) EE=1097, EO=1096
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In Summary

Main Theorem:
If G is connected and not Petersen, Hoffman–Singleton,
or a Moore graph with ∆ = 57, then χp(G 2) ≤ ∆2 − 1.

Why do we care? Relevant to multiple conjectures.

I Solves conjecture of Cranston–Kim, even for paintability.

I Verifies Wegner’s Conjecture for d = 2 and k ∈ {4, 5}.
I Verifies Borodin–Kostoch Conj. for G 2 when girth(G )≥ 9.

Key idea: G 2 can’t contain induced d1-paintable subgraph.

I Where is one? Shortest cycle in G + few pendant edges.

Main tool: Alon–Tarsi Theorem (for paintability)

I Neat trick: Don’t count |EE | and |EO|, just |EE | − |EO|.
I How? Parity reversing bijections pair up most of EE and EO.
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I Where is one?

Shortest cycle in G + few pendant edges.

Main tool: Alon–Tarsi Theorem (for paintability)

I Neat trick: Don’t count |EE | and |EO|, just |EE | − |EO|.
I How? Parity reversing bijections pair up most of EE and EO.
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