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Related Problems

Wegner’s (Very General) Conjecture [1977]:
If Gy is the class of all graphs with A < k, then forall k >3, d > 1

max Y(G?) = max w(GY).
GegkX( ) Gegk( )

» Our result implies Wegner's conj. for d = 2 and k € {4,5}.

Borodin—Kostochka Conjecture [1977]:
If A(G) > 9 and w(G) < A(G) — 1, then x(G) < A(G) — 1.
» Our result implies B-K conj. for G> when G has girth > 9.
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Def: A graph G is di-choosable if it has an L-coloring whenever
\L(v)| =d(v)—1forall veV(G).

G2
H

Lem: Minimal c/e G? contains no induced di-choosable subgraph H.

Pf: Color G?\ V/(H) by minimality. Consider a vertex v € V(H).
Its number of colors available is at least

A% —1—(dg2(v) —dy(v)) > A% —1— (A% —dy(v)) = dy(v) — 1.
Extend coloring to V/(H), since H is di-choosable.

Where to find di-choosable subgraph?
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> 6O-cycle: C62 is 4-regular and 3-choosable.

» 7-cycle: Let H be C + pendant edge.
Now since G has no shorter cycles,

G?[V(H)] = H? (no extra edges).
Use Alon—Tarsi Theorem to
prove H? is di-choosable.

» 8'-cycle: similar but may
need two pendant edges.

» 5-cycle: structural analysis
to find di-choosable subgraph

How do we prove that (cycle + pendant edge)? is d;-choosable?
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Alon—Tarsi to prove d;-choosability

Alon-Tarsi: For a digraph D, if |EE(D)| # |EO(D)],
then D is f-choosable, where f(v) = 1 + dx(v) for all v.

Don't count |EE| and |EO|; just count |EE| — |EO].
How? Parity-reversing bijections: Pair most of EE and EO.

o090 0 — 6 08 0

o6 60 0 — 0 0

Lemma If D, is the square of C,, with all edges oriented
clockwise, then |[EE(D,)| — |EO(D,)| only depends on n (mod 3).
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Main Theorem:
If G is connected and not Petersen, Hoffman—Singleton,
or a Moore graph with A = 57, then y,(G?) < AZ — 1.
Why do we care? Relevant to multiple conjectures.

» Solves conjecture of Cranston—Kim, even for paintability.
» Verifies Wegner's Conjecture for d = 2 and k € {4,5}.
» Verifies Borodin—Kostoch Conj. for G? when girth(G)> 9.

Key idea: G? can't contain induced d;-paintable subgraph.

» Where is one? Shortest cycle in G + few pendant edges.

Main tool: Alon—Tarsi Theorem (for paintability)

» Neat trick: Don't count |EE| and |EO|, just |EE| — |EO|.
» How? Parity reversing bijections pair up most of EE and EO.
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