Painting Squares with Δ^2 -1 shades

Daniel W. Cranston Virginia Commonwealth University dcranston@vcu.edu

Joint with Landon Rabern Slides available on my webpage

> SIAM Discrete Math 19 June 2014

Thm [Brooks 1941]: If $\Delta(G) \geq 3$ and $\omega(G) \leq \Delta(G)$ then $\chi(G) \leq \Delta(G)$.

Thm [Brooks 1941]: If $\Delta(\mathsf{G}^2) \geq 3$ and $\omega(\mathsf{G}^2) \leq \Delta(\mathsf{G}^2)$, then $\chi(\mathsf{G}^2) \leq \Delta(\mathsf{G}^2)$

Thm [Brooks 1941]: If $\Delta(\mathit{G}^{2}) \geq 3$ and $\omega(\mathit{G}^{2}) \leq \Delta(\mathit{G}^{2})$, then $\chi(\mathit{G}^{2}) \leq \Delta(\mathit{G}^{2}) \leq \Delta(\mathit{G})^{2}.$

Thm [Brooks 1941]: If $\Delta(\mathit{G}^{2}) \geq 3$ and $\omega(\mathit{G}^{2}) \leq \Delta(\mathit{G}^{2})$, then $\chi(\mathit{G}^{2}) \leq \Delta(\mathit{G}^{2}) \leq \Delta(\mathit{G})^{2}.$

Thm [C.–Kim '08]: If $\Delta(G) = 3$ and $\omega(G^2) \leq 8$, then $\chi(G^2) \leq 8$.

Thm [Brooks 1941]: If $\Delta(\mathit{G}^{2}) \geq 3$ and $\omega(\mathit{G}^{2}) \leq \Delta(\mathit{G}^{2})$, then $\chi(\mathit{G}^{2}) \leq \Delta(\mathit{G}^{2}) \leq \Delta(\mathit{G})^{2}.$

Thm [C.–Kim '08]: If $\Delta(G) = 3$ and $\omega(G^2) \leq 8$, then $\chi_{\ell}(G^2) \leq 8$.

Thm [Brooks 1941]: If $\Delta(\mathit{G}^{2}) \geq 3$ and $\omega(\mathit{G}^{2}) \leq \Delta(\mathit{G}^{2})$, then $\chi(\mathit{G}^{2}) \leq \Delta(\mathit{G}^{2}) \leq \Delta(\mathit{G})^{2}.$

Thm [C.–Kim '08]: If $\Delta(G) = 3$ and $\omega(G^2) \leq 8$, then $\chi_{\ell}(G^2) \leq 8$. If G is connected and not Petersen, then $\omega(\mathit{G}^{2}) \leq 8.$

Thm [Brooks 1941]: If $\Delta(\mathit{G}^{2}) \geq 3$ and $\omega(\mathit{G}^{2}) \leq \Delta(\mathit{G}^{2})$, then $\chi(\mathit{G}^{2}) \leq \Delta(\mathit{G}^{2}) \leq \Delta(\mathit{G})^{2}.$

Thm [C.–Kim '08]: If $\Delta(G) = 3$ and $\omega(G^2) \leq 8$, then $\chi_{\ell}(G^2) \leq 8$. If G is connected and not Petersen, then $\omega(\mathit{G}^{2}) \leq 8.$

Conj $[C - Kim' 08]$: If G is connected, not a Moore graph, and $\Delta(G) \geq 3$, then $\chi_{\ell}(\mathsf{G}^2) \leq \Delta(\mathsf{G})^2 - 1.$

Thm [Brooks 1941]: If $\Delta(\mathit{G}^{2}) \geq 3$ and $\omega(\mathit{G}^{2}) \leq \Delta(\mathit{G}^{2})$, then $\chi(\mathit{G}^{2}) \leq \Delta(\mathit{G}^{2}) \leq \Delta(\mathit{G})^{2}.$

Thm [C.–Kim '08]: If $\Delta(G) = 3$ and $\omega(G^2) \leq 8$, then $\chi_{\ell}(G^2) \leq 8$. If G is connected and not Petersen, then $\omega(\mathit{G}^{2}) \leq 8.$

Conj $[C - Kim' 08]$: If G is connected, not a Moore graph, and $\Delta(G) \geq 3$, then $\chi_{\ell}(\mathsf{G}^2) \leq \Delta(\mathsf{G})^2 - 1.$

Thm [Brooks 1941]: If $\Delta(\mathit{G}^{2}) \geq 3$ and $\omega(\mathit{G}^{2}) \leq \Delta(\mathit{G}^{2})$, then $\chi(\mathit{G}^{2}) \leq \Delta(\mathit{G}^{2}) \leq \Delta(\mathit{G})^{2}.$

Thm [C.–Kim '08]: If $\Delta(G) = 3$ and $\omega(G^2) \leq 8$, then $\chi_{\ell}(G^2) \leq 8$. If G is connected and not Petersen, then $\omega(\mathit{G}^{2}) \leq 8.$

Conj $[C - Kim '08]$: If G is connected not a Moore graph, and $\Delta(G) \geq 3$, then $\chi_{\ell}(\mathsf{G}^2) \leq \Delta(\mathsf{G})^2 - 1.$

Thm [Brooks 1941]: If $\Delta(\mathit{G}^{2}) \geq 3$ and $\omega(\mathit{G}^{2}) \leq \Delta(\mathit{G}^{2})$, then $\chi(\mathit{G}^{2}) \leq \Delta(\mathit{G}^{2}) \leq \Delta(\mathit{G})^{2}.$

Thm [C.–Kim '08]: If $\Delta(G) = 3$ and $\omega(G^2) \leq 8$, then $\chi_{\ell}(G^2) \leq 8$. If G is connected and not Petersen, then $\omega(\mathit{G}^{2}) \leq 8.$

Conj $[C - Kim '08]$: If G is connected not a Moore graph, and $\Delta(G) \geq 3$, then $\chi_{\ell}(\mathsf{G}^2) \leq \Delta(\mathsf{G})^2 - 1.$

Thm [C.-Rabern '14+]: If G is connected, not a Moore graph, and $\Delta(G)\geq$ 3, then $\chi_{\ell}(G^2)\leq \Delta(G)^2-1.$

Thm [Brooks 1941]: If $\Delta(\mathit{G}^{2}) \geq 3$ and $\omega(\mathit{G}^{2}) \leq \Delta(\mathit{G}^{2})$, then $\chi(\mathit{G}^{2}) \leq \Delta(\mathit{G}^{2}) \leq \Delta(\mathit{G})^{2}.$

Thm [C.–Kim '08]: If $\Delta(G) = 3$ and $\omega(G^2) \leq 8$, then $\chi_{\ell}(G^2) \leq 8$. If G is connected and not Petersen, then $\omega(\mathit{G}^{2}) \leq 8.$

Conj $[C - Kim '08]$: If G is connected not a Moore graph, and $\Delta(G) \geq 3$, then $\chi_{\ell}(\mathsf{G}^2) \leq \Delta(\mathsf{G})^2 - 1.$

Thm [C.-Rabern '14+]: If G is connected, not a Moore graph, and $\Delta(G)\geq$ 3, then $\chi_{\rho}(G^2)\leq \Delta(G)^2-1.$

Wegner's (Very General) Conjecture [1977]: If \mathcal{G}_k is the class of all graphs with $\Delta \leq k$, then for all $k \geq 3$, $d \geq 1$

$$
\max_{G \in \mathcal{G}_k} \chi(G^d) = \max_{G \in \mathcal{G}_k} \omega(G^d).
$$

Wegner's (Very General) Conjecture [1977]: If \mathcal{G}_k is the class of all graphs with $\Delta \leq k$, then for all $k \geq 3$, $d \geq 1$

$$
\max_{G \in \mathcal{G}_k} \chi(G^d) = \max_{G \in \mathcal{G}_k} \omega(G^d).
$$

► Our result implies Wegner's conj. for $d = 2$ and $k \in \{4, 5\}$.

Wegner's (Very General) Conjecture [1977]: If \mathcal{G}_k is the class of all graphs with $\Delta \leq k$, then for all $k \geq 3$, $d \geq 1$

$$
\max_{G \in \mathcal{G}_k} \chi(G^d) = \max_{G \in \mathcal{G}_k} \omega(G^d).
$$

► Our result implies Wegner's conj. for $d = 2$ and $k \in \{4, 5\}$.

Wegner's (Very General) Conjecture [1977]: If \mathcal{G}_k is the class of all graphs with $\Delta \leq k$, then for all $k \geq 3$, $d \geq 1$

$$
\max_{G \in \mathcal{G}_k} \chi(G^d) = \max_{G \in \mathcal{G}_k} \omega(G^d).
$$

► Our result implies Wegner's conj. for $d = 2$ and $k \in \{4, 5\}$.

Wegner's (Very General) Conjecture [1977]: If \mathcal{G}_k is the class of all graphs with $\Delta \leq k$, then for all $k \geq 3$, $d \geq 1$

$$
\max_{G \in \mathcal{G}_k} \chi(G^d) = \max_{G \in \mathcal{G}_k} \omega(G^d).
$$

► Our result implies Wegner's conj. for $d = 2$ and $k \in \{4, 5\}$.

Borodin–Kostochka Conjecture [1977]:

Wegner's (Very General) Conjecture [1977]: If \mathcal{G}_k is the class of all graphs with $\Delta \leq k$, then for all $k \geq 3$, $d \geq 1$

$$
\max_{G \in \mathcal{G}_k} \chi(G^d) = \max_{G \in \mathcal{G}_k} \omega(G^d).
$$

 \triangleright Our result implies Wegner's conj. for $d = 2$ and $k \in \{4, 5\}$.

Borodin–Kostochka Conjecture [1977]: If $\Delta(G) \geq 9$ and $\omega(G) \leq \Delta(G) - 1$, then $\chi(G) \leq \Delta(G) - 1$.

Wegner's (Very General) Conjecture [1977]: If \mathcal{G}_k is the class of all graphs with $\Delta \leq k$, then for all $k \geq 3$, $d \geq 1$

$$
\max_{G \in \mathcal{G}_k} \chi(G^d) = \max_{G \in \mathcal{G}_k} \omega(G^d).
$$

 \triangleright Our result implies Wegner's conj. for $d = 2$ and $k \in \{4, 5\}$.

Borodin–Kostochka Conjecture [1977]: If $\Delta(G) \geq 9$ and $\omega(G) \leq \Delta(G) - 1$, then $\chi(G) \leq \Delta(G) - 1$.

▶ Our result implies B–K conj. for G^2 when G has girth ≥ 9 .

Def: A graph G is d_1 -choosable if it has an *L*-coloring whenever $|L(v)| = d(v) - 1$ for all $v \in V(G)$.

Def: A graph G is d_1 -choosable if it has an L-coloring whenever $|L(v)| = d(v) - 1$ for all $v \in V(G)$.

Lem: Minimal c/e G^2 contains no induced d_1 -choosable subgraph H.

Def: A graph G is d_1 -choosable if it has an L-coloring whenever $|L(v)| = d(v) - 1$ for all $v \in V(G)$.

Lem: Minimal c/e G^2 contains no induced d_1 -choosable subgraph H. Pf:

Def: A graph G is d_1 -choosable if it has an L-coloring whenever $|L(v)| = d(v) - 1$ for all $v \in V(G)$.

Lem: Minimal c/e G^2 contains no induced d_1 -choosable subgraph H. Pf:

Def: A graph G is d_1 -choosable if it has an L-coloring whenever $|L(v)| = d(v) - 1$ for all $v \in V(G)$.

Lem: Minimal c/e G^2 contains no induced d_1 -choosable subgraph H. Pf:

Def: A graph G is d_1 -choosable if it has an *L*-coloring whenever $|L(v)| = d(v) - 1$ for all $v \in V(G)$.

Lem: Minimal c/e G^2 contains no induced d_1 -choosable subgraph H. **Pf:** Color $G^2 \setminus V(H)$ by minimality.

Def: A graph G is d_1 -choosable if it has an *L*-coloring whenever $|L(v)| = d(v) - 1$ for all $v \in V(G)$.

Lem: Minimal c/e G^2 contains no induced d_1 -choosable subgraph H. **Pf:** Color $G^2 \setminus V(H)$ by minimality. Consider a vertex $v \in V(H)$.

Def: A graph G is d_1 -choosable if it has an *L*-coloring whenever $|L(v)| = d(v) - 1$ for all $v \in V(G)$.

Lem: Minimal c/e G^2 contains no induced d_1 -choosable subgraph H. **Pf:** Color $G^2 \setminus V(H)$ by minimality. Consider a vertex $v \in V(H)$.

Def: A graph G is d_1 -choosable if it has an *L*-coloring whenever $|L(v)| = d(v) - 1$ for all $v \in V(G)$.

Lem: Minimal c/e G^2 contains no induced d_1 -choosable subgraph H. **Pf:** Color $G^2 \setminus V(H)$ by minimality. Consider a vertex $v \in V(H)$. Its number of colors available is at least $\Delta^{2} - 1 - (d_{G2}(v) - d_{H}(v))$

Def: A graph G is d_1 -choosable if it has an *L*-coloring whenever $|L(v)| = d(v) - 1$ for all $v \in V(G)$.

Lem: Minimal c/e G^2 contains no induced d_1 -choosable subgraph H. **Pf:** Color $G^2 \setminus V(H)$ by minimality. Consider a vertex $v \in V(H)$. Its number of colors available is at least $\Delta^{2} - 1 - (d_{C2}(v) - d_{H}(v)) > \Delta^{2} - 1 - (\Delta^{2} - d_{H}(v))$

Def: A graph G is d_1 -choosable if it has an *L*-coloring whenever $|L(v)| = d(v) - 1$ for all $v \in V(G)$.

Lem: Minimal c/e G^2 contains no induced d_1 -choosable subgraph H. **Pf:** Color $G^2 \setminus V(H)$ by minimality. Consider a vertex $v \in V(H)$. Its number of colors available is at least $\Delta^{2} - 1 - (d_{C2}(v) - d_{H}(v)) > \Delta^{2} - 1 - (\Delta^{2} - d_{H}(v)) = d_{H}(v) - 1.$

Def: A graph G is d_1 -choosable if it has an *L*-coloring whenever $|L(v)| = d(v) - 1$ for all $v \in V(G)$.

Lem: Minimal c/e G^2 contains no induced d_1 -choosable subgraph H. **Pf:** Color $G^2 \setminus V(H)$ by minimality. Consider a vertex $v \in V(H)$. Its number of colors available is at least $\Delta^{2} - 1 - (d_{C^{2}}(v) - d_{H}(v)) > \Delta^{2} - 1 - (\Delta^{2} - d_{H}(v)) = d_{H}(v) - 1.$ Extend coloring to $V(H)$, since H is d_1 -choosable.

Def: A graph G is d_1 -choosable if it has an *L*-coloring whenever $|L(v)| = d(v) - 1$ for all $v \in V(G)$.

Lem: Minimal c/e G^2 contains no induced d_1 -choosable subgraph H. **Pf:** Color $G^2 \setminus V(H)$ by minimality. Consider a vertex $v \in V(H)$. Its number of colors available is at least $\Delta^{2} - 1 - (d_{C^{2}}(v) - d_{H}(v)) > \Delta^{2} - 1 - (\Delta^{2} - d_{H}(v)) = d_{H}(v) - 1.$ Extend coloring to $V(H)$, since H is d_1 -choosable.

Where to find d_1 -choosable subgraph?

Proof Outline
Consider a shortest cycle C in G .

 \triangleright 3-cycle:

Consider a shortest cycle C in G .

 \triangleright 3-cycle: $d_{G^2}(v) \leq \Delta^2 - 2$ for each v on C.

- \triangleright 3-cycle: $d_{G^2}(v) \leq \Delta^2 2$ for each v on C.
- \blacktriangleright 4-cycle:

- \triangleright 3-cycle: $d_{G2}(v) \leq \Delta^2 2$ for each v on C.
- \triangleright 4-cycle: $d_{G^2}(v) \leq \Delta^2 1$ for each v on C.

- \triangleright 3-cycle: $d_{G2}(v) \leq \Delta^2 2$ for each v on C.
- \triangleright 4-cycle: $d_{G^2}(v) \leq \Delta^2 1$ for each v on C.
- \triangleright 6-cycle:

- \triangleright 3-cycle: $d_{G2}(v) \leq \Delta^2 2$ for each v on C.
- \triangleright 4-cycle: $d_{G^2}(v) \leq \Delta^2 1$ for each v on C.
- ► 6-cycle: C_6^2 is 4-regular and 3-choosable.

- \triangleright 3-cycle: $d_{G2}(v) \leq \Delta^2 2$ for each v on C.
- \triangleright 4-cycle: $d_{G^2}(v) \leq \Delta^2 1$ for each v on C.
- ► 6-cycle: C_6^2 is 4-regular and 3-choosable.
- \blacktriangleright 7-cycle:

- \triangleright 3-cycle: $d_{C2}(v) \leq \Delta^2 2$ for each v on C.
- \triangleright 4-cycle: $d_{G^2}(v) \leq \Delta^2 1$ for each v on C.
- ► 6-cycle: C_6^2 is 4-regular and 3-choosable.
- \triangleright 7-cycle: Let H be $C +$ pendant edge.

- \triangleright 3-cycle: $d_{G2}(v) \leq \Delta^2 2$ for each v on C.
- \triangleright 4-cycle: $d_{G^2}(v) \leq \Delta^2 1$ for each v on C.
- ► 6-cycle: C_6^2 is 4-regular and 3-choosable.
- \triangleright 7-cycle: Let H be $C +$ pendant edge.

- \triangleright 3-cycle: $d_{G^2}(v) \leq \Delta^2 2$ for each v on C.
- \triangleright 4-cycle: $d_{G^2}(v) \leq \Delta^2 1$ for each v on C.
- ► 6-cycle: C_6^2 is 4-regular and 3-choosable.
- \triangleright 7-cycle: Let *H* be *C* + pendant edge. Now since G has no shorter cycles,

- \triangleright 3-cycle: $d_{G^2}(v) \leq \Delta^2 2$ for each v on C.
- \triangleright 4-cycle: $d_{G^2}(v) \leq \Delta^2 1$ for each v on C.
- ► 6-cycle: C_6^2 is 4-regular and 3-choosable.
- \triangleright 7-cycle: Let H be $C +$ pendant edge. Now since G has no shorter cycles, $G^2[V(H)] \cong H^2$ (no extra edges).

- \triangleright 3-cycle: $d_{G2}(v) \leq \Delta^2 2$ for each v on C.
- \triangleright 4-cycle: $d_{G^2}(v) \leq \Delta^2 1$ for each v on C.
- ► 6-cycle: C_6^2 is 4-regular and 3-choosable.
- \triangleright 7-cycle: Let H be $C +$ pendant edge. Now since G has no shorter cycles, $G^2[V(H)] \cong H^2$ (no extra edges).

Consider a shortest cycle C in G .

- \triangleright 3-cycle: $d_{G2}(v) \leq \Delta^2 2$ for each v on C.
- \triangleright 4-cycle: $d_{C_1}(v) \leq \Delta^2 1$ for each v on C.
- ► 6-cycle: C_6^2 is 4-regular and 3-choosable.
- \triangleright 7-cycle: Let H be C + pendant edge. Now since G has no shorter cycles, $G^2[V(H)] \cong H^2$ (no extra edges).

Consider a shortest cycle C in G .

- \triangleright 3-cycle: $d_{G2}(v) \leq \Delta^2 2$ for each v on C.
- \triangleright 4-cycle: $d_{C_1}(v) \leq \Delta^2 1$ for each v on C.
- ► 6-cycle: C_6^2 is 4-regular and 3-choosable.
- \triangleright 7-cycle: Let H be C + pendant edge. Now since G has no shorter cycles, $G^2[V(H)] \cong H^2$ (no extra edges).

Consider a shortest cycle C in G .

- \triangleright 3-cycle: $d_{G2}(v) \leq \Delta^2 2$ for each v on C.
- \triangleright 4-cycle: $d_{C_1}(v) \leq \Delta^2 1$ for each v on C.
- ► 6-cycle: C_6^2 is 4-regular and 3-choosable.
- \triangleright 7-cycle: Let H be C + pendant edge. Now since G has no shorter cycles, $G^2[V(H)] \cong H^2$ (no extra edges).

$$
\blacktriangleright
$$
 8⁺-cycle:

Consider a shortest cycle C in G .

- \triangleright 3-cycle: $d_{C2}(v) \leq \Delta^2 2$ for each v on C.
- \triangleright 4-cycle: $d_{C_1}(v) \leq \Delta^2 1$ for each v on C.
- ► 6-cycle: C_6^2 is 4-regular and 3-choosable.
- \triangleright 7-cycle: Let H be C + pendant edge. Now since G has no shorter cycles, $G^2[V(H)] \cong H^2$ (no extra edges).

Use Alon–Tarsi Theorem to prove H^2 is d_1 -choosable.

 \triangleright 8⁺-cycle: similar but may need two pendant edges.

Consider a shortest cycle C in G .

- \triangleright 3-cycle: $d_{C2}(v) \leq \Delta^2 2$ for each v on C.
- \triangleright 4-cycle: $d_{C_1}(v) \leq \Delta^2 1$ for each v on C.
- ► 6-cycle: C_6^2 is 4-regular and 3-choosable.
- \triangleright 7-cycle: Let H be C + pendant edge. Now since G has no shorter cycles, $G^2[V(H)] \cong H^2$ (no extra edges).

- \triangleright 8⁺-cycle: similar but may need two pendant edges.
- \blacktriangleright 5-cycle:

Consider a shortest cycle C in G .

- \triangleright 3-cycle: $d_{C2}(v) \leq \Delta^2 2$ for each v on C.
- \triangleright 4-cycle: $d_{C_1}(v) \leq \Delta^2 1$ for each v on C.
- ► 6-cycle: C_6^2 is 4-regular and 3-choosable.
- \triangleright 7-cycle: Let H be C + pendant edge. Now since G has no shorter cycles, $G^2[V(H)] \cong H^2$ (no extra edges).

- \triangleright 8⁺-cycle: similar but may need two pendant edges.
- \triangleright 5-cycle: structural analysis to find d_1 -choosable subgraph

Consider a shortest cycle C in G .

- \triangleright 3-cycle: $d_{C2}(v) \leq \Delta^2 2$ for each v on C.
- \triangleright 4-cycle: $d_{C_1}(v) \leq \Delta^2 1$ for each v on C.
- ► 6-cycle: C_6^2 is 4-regular and 3-choosable.
- \triangleright 7-cycle: Let *H* be *C* + pendant edge. Now since G has no shorter cycles, $G^2[V(H)] \cong H^2$ (no extra edges).

Use Alon–Tarsi Theorem to prove H^2 is d_1 -choosable.

- \triangleright 8⁺-cycle: similar but may need two pendant edges.
- \triangleright 5-cycle: structural analysis to find d_1 -choosable subgraph

How do we prove that (cycle $+$ pendant edge)² is d_1 -choosable?

Alon–Tarsi: For a digraph \vec{D} , if $|EE(\vec{D})| \neq |EO(\vec{D})|$, then \vec{D} is f-choosable, where $f(v) = 1 + d_{\vec{D}}(v)$ for all v.

Alon–Tarsi: For a digraph \vec{D} , if $|EE(\vec{D})| \neq |EO(\vec{D})|$, then \vec{D} is f-choosable, where $f(v) = 1 + d_{\vec{D}}(v)$ for all v.

Don't count $|EE|$ and $|EO|$;

Alon–Tarsi: For a digraph \vec{D} , if $|EE(\vec{D})| \neq |EO(\vec{D})|$, then \vec{D} is f-choosable, where $f(v) = 1 + d_{\vec{D}}(v)$ for all v.

Don't count $|EE|$ and $|EO|$; just count $|EE| - |EO|$.

Alon–Tarsi: For a digraph \vec{D} , if $|EE(\vec{D})| \neq |EO(\vec{D})|$, then \vec{D} is f-choosable, where $f(v) = 1 + d_{\vec{D}}(v)$ for all v.

Don't count $|EE|$ and $|EO|$; just count $|EE| - |EO|$. How?

Alon–Tarsi: For a digraph \vec{D} , if $|EE(\vec{D})| \neq |EO(\vec{D})|$, then \vec{D} is f-choosable, where $f(v) = 1 + d_{\vec{D}}(v)$ for all v.

Don't count $|EE|$ and $|EO|$; just count $|EE| - |EO|$. How? Parity-reversing bijections:

Alon–Tarsi: For a digraph \vec{D} , if $|EE(\vec{D})| \neq |EO(\vec{D})|$, then \vec{D} is f-choosable, where $f(v) = 1 + d_{\vec{D}}(v)$ for all v.

Alon–Tarsi: For a digraph \vec{D} , if $|EE(\vec{D})| \neq |EO(\vec{D})|$, then \vec{D} is f-choosable, where $f(v) = 1 + d_{\vec{D}}(v)$ for all v.

Alon–Tarsi: For a digraph \vec{D} , if $|EE(\vec{D})| \neq |EO(\vec{D})|$, then \vec{D} is f-choosable, where $f(v) = 1 + d_{\vec{D}}(v)$ for all v.

Alon–Tarsi: For a digraph \vec{D} , if $|EE(\vec{D})| \neq |EO(\vec{D})|$, then \vec{D} is f-choosable, where $f(v) = 1 + d_{\vec{D}}(v)$ for all v.

Alon–Tarsi: For a digraph \vec{D} , if $|EE(\vec{D})| \neq |EO(\vec{D})|$, then \vec{D} is f-choosable, where $f(v) = 1 + d_{\vec{D}}(v)$ for all v.

Alon–Tarsi: For a digraph \vec{D} , if $|EE(\vec{D})| \neq |EO(\vec{D})|$, then \vec{D} is f-choosable, where $f(v) = 1 + d_{\vec{D}}(v)$ for all v.

Don't count $|EE|$ and $|EO|$; just count $|EE| - |EO|$. How? Parity-reversing bijections: Pair most of EE and EO.

Lemma If \vec{D}_n is the square of C_n , with all edges oriented clockwise, then $|E E(\vec{D_{n}})| - |E O(\vec{D_{n}})|$ only depends on n (mod 3). A Gallery of d_1 -choosable graphs

A Gallery of d_1 -choosable graphs

(a) EE=30, EO=28 (b) EE=108, EO=107 (c) EE=88, EO=87

(d) EE=512, EO=515 (e) EE=751, EO=750 (f) EE=1097, EO=1096

In Summary

In Summary

Main Theorem:

If G is connected and not Petersen, Hoffman–Singleton, or a Moore graph with $\Delta=$ 57, then $\chi_{\rho}(G^2)\leq \Delta^2-1.$

In Summary

Main Theorem:

If G is connected and not Petersen, Hoffman–Singleton, or a Moore graph with $\Delta=$ 57, then $\chi_{\rho}(G^2)\leq \Delta^2-1.$

Why do we care?
Main Theorem:

If G is connected and not Petersen, Hoffman–Singleton, or a Moore graph with $\Delta=$ 57, then $\chi_{\rho}(G^2)\leq \Delta^2-1.$

Why do we care? Relevant to multiple conjectures.

Main Theorem:

If G is connected and not Petersen, Hoffman–Singleton, or a Moore graph with $\Delta=$ 57, then $\chi_{\rho}(G^2)\leq \Delta^2-1.$

Why do we care? Relevant to multiple conjectures.

 \triangleright Solves conjecture of Cranston–Kim, even for paintability.

Main Theorem:

If G is connected and not Petersen, Hoffman–Singleton, or a Moore graph with $\Delta=$ 57, then $\chi_{\rho}(G^2)\leq \Delta^2-1.$

Why do we care? Relevant to multiple conjectures.

- \triangleright Solves conjecture of Cranston–Kim, even for paintability.
- ► Verifies Wegner's Conjecture for $d = 2$ and $k \in \{4, 5\}$.

Main Theorem:

If G is connected and not Petersen, Hoffman–Singleton, or a Moore graph with $\Delta=$ 57, then $\chi_{\rho}(G^2)\leq \Delta^2-1.$

Why do we care? Relevant to multiple conjectures.

- \triangleright Solves conjecture of Cranston–Kim, even for paintability.
- ► Verifies Wegner's Conjecture for $d = 2$ and $k \in \{4, 5\}$.
- ▶ Verifies Borodin–Kostoch Conj. for G^2 when girth (G) ≥ 9 .

Main Theorem:

If G is connected and not Petersen, Hoffman–Singleton, or a Moore graph with $\Delta=$ 57, then $\chi_{\rho}(G^2)\leq \Delta^2-1.$

Why do we care? Relevant to multiple conjectures.

- \triangleright Solves conjecture of Cranston–Kim, even for paintability.
- ► Verifies Wegner's Conjecture for $d = 2$ and $k \in \{4, 5\}$.
- ▶ Verifies Borodin–Kostoch Conj. for G^2 when girth (G) ≥ 9 .

Key idea: G^2 can't contain induced d_1 -paintable subgraph.

Main Theorem:

If G is connected and not Petersen, Hoffman–Singleton, or a Moore graph with $\Delta=$ 57, then $\chi_{\rho}(G^2)\leq \Delta^2-1.$

Why do we care? Relevant to multiple conjectures.

- \triangleright Solves conjecture of Cranston–Kim, even for paintability.
- ► Verifies Wegner's Conjecture for $d = 2$ and $k \in \{4, 5\}$.
- ▶ Verifies Borodin–Kostoch Conj. for G^2 when girth (G) ≥ 9 .

Key idea: G^2 can't contain induced d_1 -paintable subgraph.

 \triangleright Where is one?

Main Theorem:

If G is connected and not Petersen, Hoffman–Singleton, or a Moore graph with $\Delta=$ 57, then $\chi_{\rho}(G^2)\leq \Delta^2-1.$

Why do we care? Relevant to multiple conjectures.

- \triangleright Solves conjecture of Cranston–Kim, even for paintability.
- ► Verifies Wegner's Conjecture for $d = 2$ and $k \in \{4, 5\}$.
- ▶ Verifies Borodin–Kostoch Conj. for G^2 when girth (G) ≥ 9 .

Key idea: G^2 can't contain induced d_1 -paintable subgraph.

 \triangleright Where is one? Shortest cycle in $G +$ few pendant edges.

Main Theorem:

If G is connected and not Petersen, Hoffman–Singleton, or a Moore graph with $\Delta=$ 57, then $\chi_{\rho}(G^2)\leq \Delta^2-1.$

Why do we care? Relevant to multiple conjectures.

- \triangleright Solves conjecture of Cranston–Kim, even for paintability.
- ► Verifies Wegner's Conjecture for $d = 2$ and $k \in \{4, 5\}$.
- ▶ Verifies Borodin–Kostoch Conj. for G^2 when girth (G) ≥ 9 .

Key idea: G^2 can't contain induced d_1 -paintable subgraph.

 \triangleright Where is one? Shortest cycle in $G +$ few pendant edges.

Main tool: Alon–Tarsi Theorem (for paintability)

Main Theorem:

If G is connected and not Petersen, Hoffman–Singleton, or a Moore graph with $\Delta=$ 57, then $\chi_{\rho}(G^2)\leq \Delta^2-1.$

Why do we care? Relevant to multiple conjectures.

- \triangleright Solves conjecture of Cranston–Kim, even for paintability.
- ► Verifies Wegner's Conjecture for $d = 2$ and $k \in \{4, 5\}$.
- ▶ Verifies Borodin–Kostoch Conj. for G^2 when girth (G) ≥ 9 .

Key idea: G^2 can't contain induced d_1 -paintable subgraph.

 \triangleright Where is one? Shortest cycle in $G +$ few pendant edges.

Main tool: Alon–Tarsi Theorem (for paintability)

 \triangleright Neat trick: Don't count $|EE|$ and $|EO|$, just $|EE| - |EO|$.

Main Theorem:

If G is connected and not Petersen, Hoffman–Singleton, or a Moore graph with $\Delta=$ 57, then $\chi_{\rho}(G^2)\leq \Delta^2-1.$

Why do we care? Relevant to multiple conjectures.

- \triangleright Solves conjecture of Cranston–Kim, even for paintability.
- ► Verifies Wegner's Conjecture for $d = 2$ and $k \in \{4, 5\}$.
- ▶ Verifies Borodin–Kostoch Conj. for G^2 when girth (G) ≥ 9 .

Key idea: G^2 can't contain induced d_1 -paintable subgraph.

 \triangleright Where is one? Shortest cycle in $G +$ few pendant edges.

Main tool: Alon–Tarsi Theorem (for paintability)

- \triangleright Neat trick: Don't count $|EE|$ and $|EO|$, just $|EE| |EO|$.
- \blacktriangleright How?

Main Theorem:

If G is connected and not Petersen, Hoffman–Singleton, or a Moore graph with $\Delta=$ 57, then $\chi_{\rho}(G^2)\leq \Delta^2-1.$

Why do we care? Relevant to multiple conjectures.

- \triangleright Solves conjecture of Cranston–Kim, even for paintability.
- ► Verifies Wegner's Conjecture for $d = 2$ and $k \in \{4, 5\}$.
- ▶ Verifies Borodin–Kostoch Conj. for G^2 when girth (G) ≥ 9 .

Key idea: G^2 can't contain induced d_1 -paintable subgraph.

 \triangleright Where is one? Shortest cycle in $G +$ few pendant edges.

Main tool: Alon–Tarsi Theorem (for paintability)

- \triangleright Neat trick: Don't count $|EE|$ and $|EO|$, just $|EE| |EO|$.
- \triangleright How? Parity reversing bijections pair up most of EE and EO .