Euler's Pentagonal Number Theorem

Dan Cranston

February 22, 2012

Triangular Numbers: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...

Triangular Numbers: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...

Square Numbers: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, ...

Triangular Numbers: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...

Square Numbers: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, ...

Pentagonal Numbers: 1, 5, 12, 22, 35, 51, 70, 92, 117, 145, ...

The k^{th} pentagonal number, $P(k)$, is the k^{th} partial sum of the arithmetic sequence $a_n = 1 + 3(n - 1) = 3n - 2$.

The k^{th} pentagonal number, $P(k)$, is the k^{th} partial sum of the arithmetic sequence $a_n = 1 + 3(n - 1) = 3n - 2$.

$$
P(k)=\sum_{n=1}^k(3n-2)
$$

The k^{th} pentagonal number, $P(k)$, is the k^{th} partial sum of the arithmetic sequence $a_n = 1 + 3(n - 1) = 3n - 2$.

$$
P(k) = \sum_{n=1}^{k} (3n-2) = 3 \sum_{n=1}^{k} n-2 \sum_{n=1}^{k} 1
$$

The k^{th} pentagonal number, $P(k)$, is the k^{th} partial sum of the arithmetic sequence $a_n = 1 + 3(n - 1) = 3n - 2$.

$$
P(k) = \sum_{n=1}^{k} (3n-2) = 3 \sum_{n=1}^{k} n-2 \sum_{n=1}^{k} 1 = 3 \left(\frac{k(k+1)}{2} \right) - 2k
$$

The k^{th} pentagonal number, $P(k)$, is the k^{th} partial sum of the arithmetic sequence $a_n = 1 + 3(n - 1) = 3n - 2$.

$$
P(k) = \sum_{n=1}^{k} (3n-2) = 3 \sum_{n=1}^{k} n-2 \sum_{n=1}^{k} 1 = 3 \left(\frac{k(k+1)}{2} \right) - 2k = \frac{3k^2 - k}{2}
$$

The k^{th} pentagonal number, $P(k)$, is the k^{th} partial sum of the arithmetic sequence $a_n = 1 + 3(n - 1) = 3n - 2$.

$$
P(k) = \sum_{n=1}^{k} (3n-2) = 3 \sum_{n=1}^{k} n-2 \sum_{n=1}^{k} 1 = 3 \left(\frac{k(k+1)}{2} \right) - 2k = \frac{3k^2 - k}{2}
$$

 $P(8) = 92$, $P(500) = 374, 750$, etc.

The k^{th} pentagonal number, $P(k)$, is the k^{th} partial sum of the arithmetic sequence $a_n = 1 + 3(n - 1) = 3n - 2$.

$$
P(k) = \sum_{n=1}^{k} (3n-2) = 3 \sum_{n=1}^{k} n-2 \sum_{n=1}^{k} 1 = 3 \left(\frac{k(k+1)}{2} \right) - 2k = \frac{3k^2 - k}{2}
$$

 $P(8) = 92$, $P(500) = 374, 750$, etc. and $P(0) = 0$.

The k^{th} pentagonal number, $P(k)$, is the k^{th} partial sum of the arithmetic sequence $a_n = 1 + 3(n - 1) = 3n - 2$.

$$
P(k) = \sum_{n=1}^{k} (3n-2) = 3 \sum_{n=1}^{k} n-2 \sum_{n=1}^{k} 1 = 3 \left(\frac{k(k+1)}{2} \right) - 2k = \frac{3k^2 - k}{2}
$$

 $P(8) = 92$, $P(500) = 374, 750$, etc. and $P(0) = 0$.

► Extend domain, so $P(-8) = 100$, $P(-500) = 375, 250$, etc.

The k^{th} pentagonal number, $P(k)$, is the k^{th} partial sum of the arithmetic sequence $a_n = 1 + 3(n - 1) = 3n - 2$.

$$
P(k) = \sum_{n=1}^{k} (3n-2) = 3 \sum_{n=1}^{k} n-2 \sum_{n=1}^{k} 1 = 3 \left(\frac{k(k+1)}{2} \right) - 2k = \frac{3k^2 - k}{2}
$$

- $P(8) = 92$, $P(500) = 374, 750$, etc. and $P(0) = 0$.
- ► Extend domain, so $P(-8) = 100$, $P(-500) = 375, 250$, etc.
- ${} \triangleright \{P(0), P(1), P(-1), P(2), P(-2), \ldots\} = \{0, 1, 2, 5, 7, \ldots\}$ is an increasing sequence.

A partition of a positive integer n is a way of expressing n as a sum of positive integers.

$$
\blacktriangleright 3 = 2 + 1 = 1 + 1 + 1,
$$

$$
3 = 2+1 = 1+1+1, \text{ so } p(3) = 3.
$$

- \triangleright 3 = 2+1 = 1+1+1, so $p(3) = 3$.
- \blacktriangleright 4 = 3+1 = 2+2 = 2+1+1 = 1+1+1+1.

$$
3 = 2+1 = 1+1+1, \text{ so } p(3) = 3.
$$

$$
\blacktriangleright 4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1, \text{ so } p(4) = 5.
$$

\n- ▶ 3 = 2+1 = 1+1+1, so
$$
p(3) = 3
$$
.
\n- ▶ 4 = 3+1 = 2+2 = 2+1+1 = 1+1+1+1, so $p(4) = 5$.
\n- ▶ 5 = 4+1 = 3+1+1 = 2+2+1 = 2+1+1+1 = 3+2 = 1+1+1+1+1,
\n

\n- ▶ 3 = 2+1 = 1+1+1, so
$$
p(3) = 3
$$
.
\n- ▶ 4 = 3+1 = 2+2 = 2+1+1 = 1+1+1+1, so $p(4) = 5$.
\n- ▶ 5 = 4+1 = 3+1+1 = 2+2+1 = 2+1+1+1 = 3+2 = 1+1+1+1+1, so $p(5) = 7$.
\n

- \triangleright 3 = 2+1 = 1+1+1, so $p(3) = 3$.
- \blacktriangleright 4 = 3+1 = 2+2 = 2+1+1 = 1+1+1+1, so $p(4) = 5$.
- \blacktriangleright 5 = 4+1 = 3+1+1 = 2+2+1 = 2+1+1+1 = 3+2 = $1+1+1+1+1$, so $p(5)=7$.
- \bullet 6 = 5+1 = 4+1+1 = 4+2 = 3+1+1+1 = 3+3 = 3+2+1 = $2+1+1+1+1 = 2+2+2 = 2+2+1+1 = 1+1+1+1+1$

- \triangleright 3 = 2+1 = 1+1+1, so $p(3) = 3$.
- \blacktriangleright 4 = 3+1 = 2+2 = 2+1+1 = 1+1+1+1, so $p(4) = 5$.
- \blacktriangleright 5 = 4+1 = 3+1+1 = 2+2+1 = 2+1+1+1 = 3+2 = $1+1+1+1$, so $p(5)=7$.
- \bullet 6 = 5+1 = 4+1+1 = 4+2 = 3+1+1+1 = 3+3 = 3+2+1 = $2+1+1+1+1 = 2+2+2 = 2+2+1+1 = 1+1+1+1+1$ so $p(6) = 11$.

A partition of a positive integer n is a way of expressing n as a sum of positive integers. Let $p(n)$ denote the number of partitions of n.

- \triangleright 3 = 2+1 = 1+1+1, so $p(3) = 3$.
- \blacktriangleright 4 = 3+1 = 2+2 = 2+1+1 = 1+1+1+1, so $p(4) = 5$.
- \blacktriangleright 5 = 4+1 = 3+1+1 = 2+2+1 = 2+1+1+1 = 3+2 = $1+1+1+1+1$, so $p(5)=7$.
- \bullet 6 = 5+1 = 4+1+1 = 4+2 = 3+1+1+1 = 3+3 = 3+2+1 = $2+1+1+1+1 = 2+2+2 = 2+2+1+1 = 1+1+1+1+1$ so $p(6) = 11$.

Each summand in a certain partition is called a part.

A partition of a positive integer n is a way of expressing n as a sum of positive integers. Let $p(n)$ denote the number of partitions of n.

 \triangleright 3 = 2+1 = 1+1+1, so $p(3) = 3$.

$$
4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1, \text{ so } p(4) = 5.
$$

- \blacktriangleright 5 = 4+1 = 3+1+1 = 2+2+1 = 2+1+1+1 = 3+2 = $1+1+1+1+1$, so $p(5)=7$.
- \bullet 6 = 5+1 = 4+1+1 = 4+2 = 3+1+1+1 = 3+3 = 3+2+1 = $2+1+1+1+1 = 2+2+2 = 2+2+1+1 = 1+1+1+1+1$ so $p(6) = 11$.

Each summand in a certain partition is called a part. So 3 has 1 part, $2 + 1$ has 2 parts, and $1 + 1 + 1$ has 3 parts.

We identify a partition of n by its Ferrers diagram.

We identify a partition of n by its Ferrers diagram. A partition with its parts in decreasing size from top to bottom is in standard form.

We identify a partition of n by its Ferrers diagram. A partition with its parts in decreasing size from top to bottom is in standard form.

Three different partitions of 9:

 $p_d(n)$ = number of partitions of *n* into distinct parts

 $p_d(n)$ = number of partitions of *n* into distinct parts \triangleright 5 = 4+1 = 3+1+1 = 2+2+1 = 2+1+1+1 = 3+2 =

 $1+1+1+1+1$, so $p_d(5) = 3$.

 $p_d(n)$ = number of partitions of *n* into distinct parts

- \blacktriangleright 5 = 4+1 = 3+1+1 = 2+2+1 = 2+1+1+1 = 3+2 = $1+1+1+1+1$, so $p_d(5) = 3$.
- \triangleright 6 = 5+1 = 4+1+1 = 4+2 = 3+1+1+1 = 3+3 = 3+2+1 = $2+1+1+1+1 = 2+2+2 = 2+2+1+1 = 1+1+1+1+1$, so $p_d (6) = 4.$

 $p_d(n)$ = number of partitions of *n* into distinct parts \blacktriangleright 5 = 4+1 = 3+1+1 = 2+2+1 = 2+1+1+1 = 3+2 = $1+1+1+1+1$, so $p_d(5) = 3$. \triangleright 6 = 5+1 = 4+1+1 = 4+2 = 3+1+1+1 = 3+3 = 3+2+1 = $2+1+1+1+1 = 2+2+2 = 2+2+1+1 = 1+1+1+1+1$, so $p_d (6) = 4.$

 $p_e(n)$ = number of partitions of *n* into an even number of distinct parts

 $p_d(n)$ = number of partitions of *n* into distinct parts \blacktriangleright 5 = 4+1 = 3+1+1 = 2+2+1 = 2+1+1+1 = 3+2 = $1+1+1+1+1$, so $p_d(5)=3$. \blacktriangleright 6 = 5+1 = 4+1+1 = 4+2 = 3+1+1+1 = 3+3 = 3+2+1 = $2+1+1+1+1 = 2+2+2 = 2+2+1+1 = 1+1+1+1+1$, so $p_d (6) = 4.$

 $p_e(n)$ = number of partitions of *n* into an even number of distinct parts; similar for $p_0(n)$, so $p_e(n) + p_0(n) = p_d(n)$

 $p_d(n)$ = number of partitions of *n* into distinct parts

- \blacktriangleright 5 = 4+1 = 3+1+1 = 2+2+1 = 2+1+1+1 = 3+2 = $1+1+1+1+1$, so $p_d(5)=3$.
- \blacktriangleright 6 = 5+1 = 4+1+1 = 4+2 = 3+1+1+1 = 3+3 = 3+2+1 = $2+1+1+1+1 = 2+2+2 = 2+2+1+1 = 1+1+1+1+1$, so $p_d (6) = 4.$

 $p_e(n)$ = number of partitions of *n* into an even number of distinct parts; similar for $p_0(n)$, so $p_e(n) + p_0(n) = p_d(n)$

 \blacktriangleright 5 = 4+1 = 3+1+1 = 2+2+1 = 2+1+1+1 = 3+2 = $1+1+1+1+1$, so $p_e(5)=2$.
Special Partition Numbers

 $p_d(n)$ = number of partitions of *n* into distinct parts

- \triangleright 5 = 4+1 = 3+1+1 = 2+2+1 = 2+1+1+1 = 3+2 = $1+1+1+1+1$, so $p_d(5)=3$.
- \triangleright 6 = 5+1 = 4+1+1 = 4+2 = 3+1+1+1 = 3+3 = 3+2+1 = $2+1+1+1+1 = 2+2+2 = 2+2+1+1 = 1+1+1+1+1$, so $p_d (6) = 4.$

 $p_e(n)$ = number of partitions of *n* into an even number of distinct parts; similar for $p_0(n)$, so $p_e(n) + p_0(n) = p_d(n)$

 \blacktriangleright 5 = 4+1 = 3+1+1 = 2+2+1 = 2+1+1+1 = 3+2 = $1+1+1+1+1$, so $p_e(5) = 2$. $(p_o(5) = 1)$

Special Partition Numbers

 $p_d(n)$ = number of partitions of n into distinct parts

$$
5 = 4+1 = 3+1+1 = 2+2+1 = 2+1+1+1 = 3+2 = 1+1+1+1+1
$$
, so $p_d(5) = 3$.

 \triangleright 6 = 5+1 = 4+1+1 = 4+2 = 3+1+1+1 = 3+3 = 3+2+1 = $2+1+1+1+1 = 2+2+2 = 2+2+1+1 = 1+1+1+1+1$, so $p_d (6) = 4.$

 $p_e(n)$ = number of partitions of *n* into an even number of distinct parts; similar for $p_0(n)$, so $p_e(n) + p_o(n) = p_d(n)$

- \blacktriangleright 5 = 4+1 = 3+1+1 = 2+2+1 = 2+1+1+1 = 3+2 = $1+1+1+1+1$, so $p_e(5) = 2$. $(p_o(5) = 1)$
- \triangleright 6 = 5+1 = 4+1+1 = 4+2 = 3+1+1+1 = 3+3 = 3+2+1 = $2+1+1+1+1 = 2+2+2 = 2+2+1+1 = 1+1+1+1+1$, so $p_e (6) = 2.$ $(p_o (6) = 2)$

Main Theorem

 $\prod^{\infty} (1 - x^m) = 1 - x - x^2 + x^5 + x^7 - x^{12} - x^{15} + x^{22} + x^{26} + ...$ $m=1$

Main Theorem

 $\prod^{\infty} (1 - x^m) = 1 - x - x^2 + x^5 + x^7 - x^{12} - x^{15} + x^{22} + x^{26} + ...$ $m=1$ $= x^{P(0)} - x^{P(1)} - x^{P(-1)} + x^{P(2)} + x^{P(-2)} - ...$

Main Theorem

$$
\prod_{m=1}^{\infty} (1 - x^m) = 1 - x - x^2 + x^5 + x^7 - x^{12} - x^{15} + x^{22} + x^{26} + \dots
$$

$$
= x^{P(0)} - x^{P(1)} - x^{P(-1)} + x^{P(2)} + x^{P(-2)} - \dots
$$

Lemma 1

$$
\prod_{m=1}^{\infty} (1 - x^m) = 1 + \sum_{n=1}^{\infty} (p_e(n) - p_o(n)) x^n
$$

Main Theorem

$$
\prod_{m=1}^{\infty} (1 - x^m) = 1 - x - x^2 + x^5 + x^7 - x^{12} - x^{15} + x^{22} + x^{26} + \dots
$$

$$
= x^{P(0)} - x^{P(1)} - x^{P(-1)} + x^{P(2)} + x^{P(-2)} - \dots
$$

Lemma 1

$$
\prod_{m=1}^{\infty} (1 - x^m) = 1 + \sum_{n=1}^{\infty} (p_e(n) - p_o(n)) x^n
$$

Lemma 2

$$
1+\sum_{n=1}^{\infty}(p_e(n)-p_o(n))x^n=1-x-x^2+x^5+x^7+...
$$

$$
\prod_{m=1}^{\infty} (1-x^m) = (1-x)(1-x^2)(1-x^3)(1-x^4)(1-x^5)\ldots
$$

$$
\prod_{m=1}^{\infty} (1-x^m) = (1-x)(1-x^2)(1-x^3)(1-x^4)(1-x^5)\ldots
$$

 \blacktriangleright xⁿ occurs once for each partition of *n* into distinct parts.

$$
\prod_{m=1}^{\infty} (1-x^m) = (1-x)(1-x^2)(1-x^3)(1-x^4)(1-x^5)\ldots
$$

- \blacktriangleright xⁿ occurs once for each partition of *n* into distinct parts.
- Each partition of n into an even number of distinct parts contributes $+1$ to the coefficient of x^n , and each partition of n into an odd number of distinct parts contributes -1 .

$$
\prod_{m=1}^{\infty} (1-x^m) = (1-x)(1-x^2)(1-x^3)(1-x^4)(1-x^5)\ldots
$$

- \blacktriangleright xⁿ occurs once for each partition of *n* into distinct parts.
- \blacktriangleright Each partition of *n* into an even number of distinct parts contributes $+1$ to the coefficient of x^n , and each partition of n into an odd number of distinct parts contributes -1 .
- Partitions of 5 into distinct parts: $5, 1+4$, and $2+3$.

$$
\prod_{m=1}^{\infty} (1-x^m) = (1-x)(1-x^2)(1-x^3)(1-x^4)(1-x^5)\ldots
$$

- \blacktriangleright xⁿ occurs once for each partition of *n* into distinct parts.
- \blacktriangleright Each partition of *n* into an even number of distinct parts contributes $+1$ to the coefficient of x^n , and each partition of n into an odd number of distinct parts contributes -1 .
- Partitions of 5 into distinct parts: $5, 1+4$, and $2+3$.
- So x^5 occurs in the expansion as

$$
\prod_{m=1}^{\infty} (1-x^m) = (1-x)(1-x^2)(1-x^3)(1-x^4)(1-x^5)\ldots
$$

- \blacktriangleright xⁿ occurs once for each partition of *n* into distinct parts.
- \blacktriangleright Each partition of *n* into an even number of distinct parts contributes $+1$ to the coefficient of x^n , and each partition of n into an odd number of distinct parts contributes -1 .
- Partitions of 5 into distinct parts: $5, 1+4$, and $2+3$.
- So x^5 occurs in the expansion as

$$
(-x^5) + (-x)(-x^4) + (-x^2)(-x^3) =
$$

$$
\prod_{m=1}^{\infty} (1-x^m) = (1-x)(1-x^2)(1-x^3)(1-x^4)(1-x^5)\ldots
$$

- \blacktriangleright xⁿ occurs once for each partition of *n* into distinct parts.
- \blacktriangleright Each partition of *n* into an even number of distinct parts contributes $+1$ to the coefficient of x^n , and each partition of n into an odd number of distinct parts contributes -1 .
- Partitions of 5 into distinct parts: $5, 1+4$, and $2+3$.
- So x^5 occurs in the expansion as

$$
(-x5) + (-x)(-x4) + (-x2)(-x3) =
$$

$$
(-1)(x5) + (1)(x5) + (1)(x5) =
$$

$$
\prod_{m=1}^{\infty} (1-x^m) = (1-x)(1-x^2)(1-x^3)(1-x^4)(1-x^5)\ldots
$$

- \blacktriangleright xⁿ occurs once for each partition of *n* into distinct parts.
- \blacktriangleright Each partition of *n* into an even number of distinct parts contributes $+1$ to the coefficient of x^n , and each partition of n into an odd number of distinct parts contributes -1 .
- Partitions of 5 into distinct parts: $5, 1+4$, and $2+3$.
- So x^5 occurs in the expansion as

$$
(-x5) + (-x)(-x4) + (-x2)(-x3) =
$$

\n
$$
(-1)(x5) + (1)(x5) + (1)(x5) =
$$

\n
$$
(2)(x5) - (1)(x5) =
$$

$$
\prod_{m=1}^{\infty} (1-x^m) = (1-x)(1-x^2)(1-x^3)(1-x^4)(1-x^5)\ldots
$$

- \blacktriangleright xⁿ occurs once for each partition of *n* into distinct parts.
- \blacktriangleright Each partition of *n* into an even number of distinct parts contributes $+1$ to the coefficient of x^n , and each partition of n into an odd number of distinct parts contributes -1 .
- Partitions of 5 into distinct parts: $5, 1+4$, and $2+3$.
- So x^5 occurs in the expansion as

$$
(-x5) + (-x)(-x4) + (-x2)(-x3) =
$$

\n
$$
(-1)(x5) + (1)(x5) + (1)(x5) =
$$

\n
$$
(2)(x5) - (1)(x5) =
$$

\n
$$
(pe(5) - po(5))(x5) = x5.
$$

$$
\prod_{m=1}^{\infty} (1-x^m) = (1-x)(1-x^2)(1-x^3)(1-x^4)(1-x^5)\ldots
$$

- \blacktriangleright xⁿ occurs once for each partition of *n* into distinct parts.
- \blacktriangleright Each partition of *n* into an even number of distinct parts contributes $+1$ to the coefficient of x^n , and each partition of n into an odd number of distinct parts contributes -1 .
- Partitions of 6 into distinct parts: 6, $1+5$, $2+4$, and $1+2+3$.

$$
\prod_{m=1}^{\infty} (1-x^m) = (1-x)(1-x^2)(1-x^3)(1-x^4)(1-x^5)\ldots
$$

- \blacktriangleright xⁿ occurs once for each partition of *n* into distinct parts.
- \blacktriangleright Each partition of *n* into an even number of distinct parts contributes $+1$ to the coefficient of x^n , and each partition of n into an odd number of distinct parts contributes -1 .
- Partitions of 6 into distinct parts: 6, $1+5$, $2+4$, and $1+2+3$.
- \triangleright So x^6 occurs in the expansion as

$$
\prod_{m=1}^{\infty} (1-x^m) = (1-x)(1-x^2)(1-x^3)(1-x^4)(1-x^5)\ldots
$$

- \blacktriangleright xⁿ occurs once for each partition of *n* into distinct parts.
- \blacktriangleright Each partition of *n* into an even number of distinct parts contributes $+1$ to the coefficient of x^n , and each partition of n into an odd number of distinct parts contributes -1 .
- Partitions of 6 into distinct parts: 6, $1+5$, $2+4$, and $1+2+3$.
- \triangleright So x^6 occurs in the expansion as

 $(-x^6) + (-x)(-x^5) + (-x^2)(-x^4) + (-x)(-x^2)(-x^3) =$

$$
\prod_{m=1}^{\infty} (1-x^m) = (1-x)(1-x^2)(1-x^3)(1-x^4)(1-x^5)\ldots
$$

- \blacktriangleright xⁿ occurs once for each partition of *n* into distinct parts.
- \blacktriangleright Each partition of *n* into an even number of distinct parts contributes $+1$ to the coefficient of x^n , and each partition of n into an odd number of distinct parts contributes -1 .
- Partitions of 6 into distinct parts: 6, $1+5$, $2+4$, and $1+2+3$.
- \triangleright So x^6 occurs in the expansion as

 $(-x^6) + (-x)(-x^5) + (-x^2)(-x^4) + (-x)(-x^2)(-x^3) =$ $(-1)(x^6) + (1)(x^6) + (1)(x^6) + (-1)(x^6) =$

$$
\prod_{m=1}^{\infty} (1-x^m) = (1-x)(1-x^2)(1-x^3)(1-x^4)(1-x^5)\ldots
$$

- \blacktriangleright xⁿ occurs once for each partition of *n* into distinct parts.
- Each partition of n into an even number of distinct parts contributes $+1$ to the coefficient of x^n , and each partition of n into an odd number of distinct parts contributes -1 .
- Partitions of 6 into distinct parts: 6, $1+5$, $2+4$, and $1+2+3$.
- \triangleright So x^6 occurs in the expansion as

 $(-x^6) + (-x)(-x^5) + (-x^2)(-x^4) + (-x)(-x^2)(-x^3) =$ $(-1)(x^6) + (1)(x^6) + (1)(x^6) + (-1)(x^6) =$ $(2)(x^6) - (2)(x^6) =$

$$
\prod_{m=1}^{\infty} (1-x^m) = (1-x)(1-x^2)(1-x^3)(1-x^4)(1-x^5)\ldots
$$

- \blacktriangleright xⁿ occurs once for each partition of *n* into distinct parts.
- Each partition of n into an even number of distinct parts contributes $+1$ to the coefficient of x^n , and each partition of n into an odd number of distinct parts contributes -1 .
- Partitions of 6 into distinct parts: $6, 1+5, 2+4$, and $1+2+3$.
- \triangleright So x^6 occurs in the expansion as

 $(-x^6) + (-x)(-x^5) + (-x^2)(-x^4) + (-x)(-x^2)(-x^3) =$ $(-1)(x^6) + (1)(x^6) + (1)(x^6) + (-1)(x^6) =$ $(2)(x^6) - (2)(x^6) =$ $(p_e(6) - p_o(6))(x^6) = 0.$

Pentagonal Number Theorem: Outline of Proof

Lemma 1:

$$
\prod_{m=1}^{\infty} (1 - x^m) = 1 + \sum_{n=1}^{\infty} (p_e(n) - p_o(n)) x^n
$$

$$
1+\sum_{n=1}^{\infty}(p_e(n)-p_o(n))x^n=1-x-x^2+x^5+x^7+...
$$

Pentagonal Number Theorem: Outline of Proof

Lemma $1: \checkmark$ $\prod^{\infty} (1 - x^m) = 1 + \sum^{\infty} (p_e(n) - p_o(n)) x^n$ $m=1$ $n=1$ Lemma 2:

$$
1+\sum_{n=1}^{\infty}(p_e(n)-p_o(n))x^n=1-x-x^2+x^5+x^7+...
$$

$$
1+\sum_{n=1}^{\infty}(p_e(n)-p_o(n))x^n=1-x-x^2+x^5+x^7+...
$$

$$
1 + \sum_{n=1}^{\infty} (p_e(n) - p_o(n))x^n = 1 - x - x^2 + x^5 + x^7 + \dots
$$

= $x^{P(0)} - x^{P(1)} - x^{P(-1)} + x^{P(2)} + \dots$

$$
1 + \sum_{n=1}^{\infty} (p_e(n) - p_o(n))x^n = 1 - x - x^2 + x^5 + x^7 + \dots
$$

= $x^{P(0)} - x^{P(1)} - x^{P(-1)} + x^{P(2)} + \dots$
= $\sum_{k=-\infty}^{\infty} (-1)^k x^{\frac{3k^2 - k}{2}}$

Lemma 2:

$$
1 + \sum_{n=1}^{\infty} (p_e(n) - p_o(n))x^n = 1 - x - x^2 + x^5 + x^7 + \dots
$$

= $x^{P(0)} - x^{P(1)} - x^{P(-1)} + x^{P(2)} + \dots$
= $\sum_{k=-\infty}^{\infty} (-1)^k x^{\frac{3k^2 - k}{2}}$

We must show:

Lemma 2:

$$
1 + \sum_{n=1}^{\infty} (p_e(n) - p_o(n))x^n = 1 - x - x^2 + x^5 + x^7 + \dots
$$

= $x^{P(0)} - x^{P(1)} - x^{P(-1)} + x^{P(2)} + \dots$
= $\sum_{k=-\infty}^{\infty} (-1)^k x^{\frac{3k^2 - k}{2}}$

We must show:

 \triangleright That $p_e(n) - p_o(n) = 0$ unless *n* is a pentagonal number.

Lemma 2:

$$
1 + \sum_{n=1}^{\infty} (p_e(n) - p_o(n))x^n = 1 - x - x^2 + x^5 + x^7 + \dots
$$

= $x^{P(0)} - x^{P(1)} - x^{P(-1)} + x^{P(2)} + \dots$
= $\sum_{k=-\infty}^{\infty} (-1)^k x^{\frac{3k^2 - k}{2}}$

We must show:

- \triangleright That $p_e(n) p_o(n) = 0$ unless *n* is a pentagonal number.
- If *n* is a pentagonal number $(n = \frac{3k^2 k}{2})$ $\frac{2-k}{2}$), then $p_e(n) - p_o(n) = (-1)^k$

For any partition of n in standard form, we define:

- $s =$ number of dots along slope, and
- $b =$ number of dots along base.

\bigcirc DOOOOO

For any partition of n in standard form, we define:

- $s =$ number of dots along slope, and
- $b =$ number of dots along base.

\bigcirc DOOOOO

$$
n=29, b=3, s=2;
$$

For any partition of n in standard form, we define:

- $s =$ number of dots along slope, and
- $b =$ number of dots along base.

$$
\begin{array}{c} 0000000000 \\ 000000000 \\ 0000000 \end{array}
$$

$$
n=29, b=3, s=2;
$$

We are interested in $p_e(n) - p_o(n)$. We want a bijection between P_e and P_o .

For any partition of n in standard form, we define:

- $s =$ number of dots along slope, and
- $b =$ number of dots along base.

$$
\begin{array}{c} 0000000000 \\ 000000000 \\ 0000000 \end{array}
$$

 $n=29, b=3, s=2$;

We are interested in $p_e(n) - p_o(n)$. We want a bijection between P_e and P_o .

Given a partition of n , we either shift the slope down, or we shift the base up. This operation is self-inverse wherever it is defined.

For any partition of n in standard form, we define:

- $s =$ number of dots along slope, and
- $b =$ number of dots along base.

$$
\begin{array}{c}\n000000000 \\
00000000 \\
000000\n\end{array}
$$
\n
$$
\begin{array}{c}\n0000000 \\
000 \\
00\n\end{array}
$$
\n
$$
\begin{array}{c}\n0.00000 \\
0.000 \\
0.00\n\end{array}
$$
\n
$$
n=29, b=2, s=3;
$$

We are interested in $p_e(n) - p_o(n)$. We want a bijection between P_e and P_o .

Given a partition of n , we either shift the slope down, or we shift the base up. This operation is self-inverse wherever it is defined.

Consider an arbitrary partition of n in standard form.

If $b < s$, the operation is defined and self-inverse:

Consider an arbitrary partition of n in standard form.

If $b < s$, the operation is defined and self-inverse:

0000000 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc $($ 000000
Consider an arbitrary partition of n in standard form.

If $b < s$, the operation is defined and self-inverse:

00000000 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 0000000

Consider an arbitrary partition of n in standard form.

If $b < s$, the operation is defined and self-inverse:

 \bigcirc 0000000 \bigcirc

If $b > s + 1$, the operation is defined and self-inverse:

Consider an arbitrary partition of n in standard form.

If $b < s$, the operation is defined and self-inverse:

00000000 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc $\left(\begin{array}{c} \end{array} \right)$ $\begin{array}{ccc} & & \\ & & \\ \end{array}$ $\left(\quad \right)$

If $b > s + 1$, the operation is defined and self-inverse:

Consider an arbitrary partition of n in standard form.

If $b < s$, the operation is defined and self-inverse:

00000000 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc $\left(\begin{array}{c} \end{array} \right)$ $\begin{array}{ccc} & & \\ & & \\ \end{array}$ $($

If $b > s + 1$, the operation is defined and self-inverse:

Consider an arbitrary partition of n in standard form.

If $b < s$, the operation is defined and self-inverse:

00000000 $($ $() () () () () () ()$

If $b > s + 1$, the operation is defined and self-inverse:

Note: This operation changes the parity of the number of parts.

Example: $n = 8$ 0000000 00000 \rightarrow 00000 0000 \bigcirc \bigcirc \bigcirc \bigcirc OOO \bigcirc \bigcirc \bigcirc

The operation is a bijection between P_e and P_o .

What if our partition of n has $b = s$ or $b = s + 1$? The problem occurs when the slope and base "intersect".

What if our partition of n has $b = s$ or $b = s + 1$? The problem occurs when the slope and base "intersect".

Example 1:

00000 $b = s$, no intersection

What if our partition of n has $b = s$ or $b = s + 1$? The problem occurs when the slope and base "intersect".

Example 1:

000000 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

 $b = s + 1$, no intersection

What if our partition of n has $b = s$ or $b = s + 1$? The problem occurs when the slope and base "intersect".

Example 2:

$$
\begin{array}{c} 0.0000 \\ 0.000 \\ 0.00 \end{array}
$$

 $b = s$, intersection

What if our partition of n has $b = s$ or $b = s + 1$? The problem occurs when the slope and base "intersect".

Example 2:

 $\left(\begin{array}{c} \end{array} \right)$ not in standard form!

What if our partition of n has $b = s$ or $b = s + 1$? The problem occurs when the slope and base "intersect".

Example 2:

$$
\begin{array}{c} 0.0000 \\ 0.000 \\ 0.00 \end{array}
$$

 $b = s$, intersection

What if our partition of n has $b = s$ or $b = s + 1$? The problem occurs when the slope and base "intersect".

Example 2:

not in standard form!

What if our partition of n has $b = s$ or $b = s + 1$? The problem occurs when the slope and base "intersect".

Example 3:

 $\bigcap \bigcap \bigcap$

 $b = s + 1$, intersection

What if our partition of n has $b = s$ or $b = s + 1$? The problem occurs when the slope and base "intersect".

Example 3:

not a valid partition!

What if our partition of n has $b = s$ or $b = s + 1$? The problem occurs when the slope and base "intersect".

Example 3:

 $\bigcap \bigcap \bigcap$

 $b = s + 1$, intersection

What if our partition of n has $b = s$ or $b = s + 1$? The problem occurs when the slope and base "intersect".

Example 3:

When does n have a problem partition?

When does n have a problem partition? Case 1: $b = s$ Note: The "parity" of this partition is the parity of b .

DOOOOO \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

```
When does n have a problem partition?
Case 1: b = sNote: The "parity" of this partition is the parity of b.
```

```
000000
    \bigcirc \bigcirc \bigcirc \bigcirc\bigcirc \bigcirc \bigcirc \bigcircOOOO
```

$$
n = b2 + \sum_{i=1}^{b-1} i = \frac{2b^{2} + b(b-1)}{2} = \frac{3b^{2} - b}{2} = P(b)
$$

For such *n*, $p_e(n) - p_o(n) = (-1)^b$.

When does n have a problem partition?

```
When does n have a problem partition?
Case 2: b = s + 1Note: The "parity" of this partition is the parity of b - 1.
     DOOOC
```
 $\bigcap \bigcap \bigcap \bigcap$ \bigcirc \bigcirc \bigcirc

When does n have a problem partition?

Case 2:
$$
b = s + 1
$$

Note: The "parity" of this partition is the parity of $b-1$.

 $\bigcap \bigcap \bigcap \bigcap$ OOOO $\bigcap_{i=1}^n$

$$
\frac{n = (b-1)^2 + \sum_{i=1}^{b-1} i}{\frac{2(b-1)^2 + b^2 - 2b - 1 + b - 1}{2}} = \frac{\frac{2(b-1)^2 + b(b-1)}{2}}{\frac{2(b-1)^2 + b^2 - 2b - 1 + b - 1}{2}} = \frac{3(b-1)^2 + (b-1)}{2} = P(-(b-1))
$$

For such *n*, $p_e(n) - p_o(n) = (-1)^{b-1}$.

Summary: When n is a pentagonal number, n has exactly one problem partition. We can tell whether the problem partition is even or odd by examining k, where $n = \frac{3k^2 - k}{2}$ $\frac{2-\kappa}{2}$. Otherwise, *n* has no problem partitions, so we have a bijection between P_e and P_o .

Summary: When n is a pentagonal number, n has exactly one problem partition. We can tell whether the problem partition is even or odd by examining k, where $n = \frac{3k^2 - k}{2}$ $\frac{2-\kappa}{2}$. Otherwise, *n* has no problem partitions, so we have a bijection between P_e and P_o .

Lemma 1:

$$
\prod_{m=1}^{\infty}(1-x^m)=1+\sum_{n=1}^{\infty}(p_e(n)-p_o(n))x^n
$$

Lemma 2:

$$
1+\sum_{n=1}^{\infty}(p_e(n)-p_o(n))x^n=1-x-x^2+x^5+x^7+...
$$

Lemma 1: \checkmark

$$
\prod_{m=1}^{\infty}(1-x^m)=1+\sum_{n=1}^{\infty}(p_e(n)-p_o(n))x^n
$$

Lemma 2:

$$
1+\sum_{n=1}^{\infty}(p_e(n)-p_o(n))x^n=1-x-x^2+x^5+x^7+...
$$

Lemma 1: \checkmark

$$
\prod_{m=1}^{\infty}(1-x^m)=1+\sum_{n=1}^{\infty}(p_e(n)-p_o(n))x^n
$$

Lemma 2: \checkmark

$$
1+\sum_{n=1}^{\infty}(p_e(n)-p_o(n))x^n=1-x-x^2+x^5+x^7+...
$$

Lemma $1: \checkmark$

$$
\prod_{m=1}^{\infty}(1-x^m)=1+\sum_{n=1}^{\infty}(p_e(n)-p_o(n))x^n
$$

Lemma 2: \checkmark

$$
1+\sum_{n=1}^{\infty}(p_e(n)-p_o(n))x^n=1-x-x^2+x^5+x^7+...
$$

We may now conclude that indeed,

$$
\prod_{m=1}^{\infty} (1 - x^m) = 1 - x - x^2 + x^5 + x^7 - x^{12} - x^{15} + x^{22} + x^{26} + \dots
$$

Lemma 1: \checkmark

$$
\prod_{m=1}^{\infty}(1-x^m)=1+\sum_{n=1}^{\infty}(p_e(n)-p_o(n))x^n
$$

Lemma $2:\checkmark$

$$
1+\sum_{n=1}^{\infty}(p_e(n)-p_o(n))x^n=1-x-x^2+x^5+x^7+...
$$

We may now conclude that indeed, \checkmark

 $\prod_{x=1}^{\infty} (1-x^m) = 1 - x - x^2 + x^5 + x^7 - x^{12} - x^{15} + x^{22} + x^{26} + ...$ $m=1$