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Pentagonal Numbers: 1,5,12,22 35,51,70,92,117, 145, ...
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The k'™ pentagonal number, P(k), is the k" partial sum
of the arithmetic sequence a, =1+ 3(n—1) =3n—2

P(k) = Z?m 2) _32” 221_3< k+1)>2k:3k22_k

» P(8) =92, P(500) = 374,750, etc. and P(0) = 0.

» Extend domain, so P(—8) = 100, P(—500) = 375, 250, etc.

» {P(0), P(1),P(-1),P(2),P(-2),...} ={0,1,2,5,7,...} is an
increasing sequence.
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Partition Numbers

A partition of a positive integer n is a way of expressing n as a sum
of positive integers. Let p(n) denote the number of partitions of n.

> 3 =2+1=14+1+1, so p(3) = 3.

> 4 =341 =242 = 24141 = 14+1+1+1, so p(4) = 5.

» 5 =4+1 =3+1+1 = 24+2+1 = 2+1+1+1 = 342 =
14+1+1+1+41, so p(5) = 7.

» 6 =5+1 = 4+141 = 442 = 3+1+14+1 = 343 = 342+1 =
24+1+14+141 = 24242 = 242+1+1 = 1+1+1+1+1+1,
so p(6) = 11.

Each summand in a certain partition is called a part.
So 3 has 1 part, 2+ 1 has 2 parts, and 1 + 1 + 1 has 3 parts.
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We identify a partition of n by its Ferrers diagram. A partition with
its parts in decreasing size from top to bottom is in standard form.

Three different partitions of 9:

5+4+3+1 44342 443+41+1
Q0000 Q000 0000
00 00 00

@ 0 @

@
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> 5 =441 =3+1+1 = 24241 = 2+1+1+1 = 342 =
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» 6 =5+1 =4+1+1 = 442 = 3+1+1+1 = 343 = 3+2+1 =
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» x" occurs once for each partition of n into distinct parts.

» Each partition of n into an even number of distinct parts
contributes +1 to the coefficient of x”, and each partition of
n into an odd number of distinct parts contributes —1.
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We must show:

» That pe(n) — po(n) = 0 unless n is a pentagonal number.

. 2_
» If nis a pentagonal number (n = #*5-5), then

pe(n) = po(n) = (~1)*
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If b < s, the operation is defined and self-inverse:

00000000000
0000000000
00000000
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Consider an arbitrary partition of n in standard form.

If b < s, the operation is defined and self-inverse:

00000000000
0000000000
00000000
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Proof Part 2: Cancellation of partition numbers
Consider an arbitrary partition of n in standard form.

If b < s, the operation is defined and self-inverse:

00000000000
0000000000
00000000

If b > s+ 1, the operation is defined and self-inverse:

0000000
000000
00000
000

)9

Note: This operation changes the parity of the number of parts.



Proof Part 2: Cancellation of partition numbers

Example: n =38

00000000

00000
1)
@)

000
00
@)

0000000
@)

000000
e

00000
00

The operation is a bijection between P, and P,.
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What if our partition of n has b=sor b =5+ 17
The problem occurs when the slope and base “intersect”.

Example 3:
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00

b = s + 1, intersection
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What if our partition of n has b=sor b =5+ 17
The problem occurs when the slope and base “intersect”.

Example 3:

not a valid partition!
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What if our partition of n has b=sor b =5+ 17
The problem occurs when the slope and base “intersect”.

Example 3:

000
00

b = s + 1, intersection



Proof Part 2: Cancellation of partition numbers

What if our partition of n has b=sor b =5+ 17
The problem occurs when the slope and base “intersect”.

Example 3:

00000
)
)

not in standard form!
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Proof Part 2: Cancellation of partition numbers

When does n have a problem partition?
Case l: b=s
Note: The “parity” of this partition is the parity of b.

Q000000
00000
00000
000

2 _
n— b2 + Zf?:—ll i = 2b +t;(b 1) _ 3b22—b _ P(b)

For such n, pe(n) — po(n) = (—1)".
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When does n have a problem partition?
Case2: b=s+1
Note: The “parity” of this partition is the parity of b — 1.
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Proof Part 2: Cancellation of partition numbers

When does n have a problem partition?

Case2: b=s+1
Note: The “parity” of this partition is the parity of b — 1.

Q00000
Q0000

Q000

n o= (b— 12 4 Yboli = 2b-UAE(b-L) _ 20b-1psbiob

1
12 R 9k _ —1)2 —
2(b—1) +b22b 1+b-1 _ 3(b 1)2+(b n_ P(—(b—1))

For such n, pe(n) — po(n) = (—1)>7L.
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Summary: When n is a pentagonal number, n has exactly one
problem partition. We can tell whether the problem partition is
even or odd by examining k, where n = 3"227/(. Otherwise, n has
no problem partitions, so we have a bijection between P, and P,.




Proof Part 2: Cancellation of partition numbers

Summary: When n is a pentagonal number, n has exactly one
problem partition. We can tell whether the problem partition is
even or odd by examining k, where n = WT*k Otherwise, n has
no problem partitions, so we have a bijection between P, and P,.

Example: n=7

000000 8000OO
000 00000
@0 @0
@)

0000

00
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Pentagonal Number Theorem: Outline of Proof

Lemma 1: vV
[T —=x™) =1+ (pe(n) = po(n))x"
m=1 n=1

Lemma 2: vV

1+Zpe —po(M)Xx" =1 —x— x>+ x>+ x" + ...

We may now conclude that indeed,

o
H l—x fl—x—x2+x5+x7—xu
m=1

o X15 +X22 +X26 + ..



Pentagonal Number Theorem: Outline of Proof

Lemma 1: v
L0 xm =1+ (peln) — polm)x"
m=1 n=1
Lemma 2: v
1+Zpe Pol )X”zl—x—x2—|—x5—|—x7—|—...

We may now conclude that indeed, v

0
H l—x —1—X—X2+X5+X7—X12—X15+X22+X26—|—...

m=1



