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Generalized Pentagonal Numbers

The kth pentagonal number, P(k), is the kth partial sum
of the arithmetic sequence an = 1 + 3(n − 1) = 3n − 2.
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I P(8) = 92, P(500) = 374, 750, etc. and P(0) = 0.

I Extend domain, so P(−8) = 100, P(−500) = 375, 250, etc.

I {P(0), P(1), P(−1), P(2), P(−2), ...} = {0, 1, 2, 5, 7, ...} is an
increasing sequence.
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Partition Numbers

A partition of a positive integer n is a way of expressing n as a sum
of positive integers.

Let p(n) denote the number of partitions of n.

I 3 = 2+1 = 1+1+1, so p(3) = 3.

I 4 = 3+1 = 2+2 = 2+1+1 = 1+1+1+1, so p(4) = 5.

I 5 = 4+1 = 3+1+1 = 2+2+1 = 2+1+1+1 = 3+2 =
1+1+1+1+1, so p(5) = 7.

I 6 = 5+1 = 4+1+1 = 4+2 = 3+1+1+1 = 3+3 = 3+2+1 =
2+1+1+1+1 = 2+2+2 = 2+2+1+1 = 1+1+1+1+1+1,
so p(6) = 11.

Each summand in a certain partition is called a part.
So 3 has 1 part, 2 + 1 has 2 parts, and 1 + 1 + 1 has 3 parts.
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its parts in decreasing size from top to bottom is in standard form.

Three different partitions of 9:

5 + 3 + 1 4 + 3 + 2 4 + 3 + 1 + 1
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Special Partition Numbers

pd(n) = number of partitions of n into distinct parts

I 5 = 4+1 = 3+1+1 = 2+2+1 = 2+1+1+1 = 3+2 =
1+1+1+1+1, so pd(5) = 3.

I 6 = 5+1 = 4+1+1 = 4+2 = 3+1+1+1 = 3+3 = 3+2+1 =
2+1+1+1+1 = 2+2+2 = 2+2+1+1 = 1+1+1+1+1+1, so
pd(6) = 4.

pe(n) = number of partitions of n into an even number of distinct
parts; similar for po(n), so pe(n) + po(n) = pd(n)

I 5 = 4+1 = 3+1+1 = 2+2+1 = 2+1+1+1 = 3+2 =
1+1+1+1+1, so pe(5) = 2. (po(5) = 1)

I 6 = 5+1 = 4+1+1 = 4+2 = 3+1+1+1 = 3+3 = 3+2+1 =
2+1+1+1+1 = 2+2+2 = 2+2+1+1 = 1+1+1+1+1+1, so
pe(6) = 2. (po(6) = 2)
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Proof of Lemma 1: The product as a sum
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(1− xm) = (1− x)(1− x2)(1− x3)(1− x4)(1− x5) . . . .

I xn occurs once for each partition of n into distinct parts.

I Each partition of n into an even number of distinct parts
contributes +1 to the coefficient of xn, and each partition of
n into an odd number of distinct parts contributes −1.

I Partitions of 6 into distinct parts: 6, 1+5, 2+4, and 1+2+3.

I So x6 occurs in the expansion as

(−x6) + (−x)(−x5) + (−x2)(−x4) + (−x)(−x2)(−x3) =

(−1)(x6) + (1)(x6) + (1)(x6) + (−1)(x6) =

(2)(x6)− (2)(x6) =

(pe(6)− po(6))(x6) = 0.
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We must show:

I That pe(n)− po(n) = 0 unless n is a pentagonal number.

I If n is a pentagonal number (n = 3k2−k
2 ), then

pe(n)− po(n) = (−1)k
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Proof Part 2: Cancellation of partition numbers

For any partition of n in standard form, we define:
s = number of dots along slope, and
b = number of dots along base.

n=29, b=3, s=2;

We are interested in pe(n)− po(n).
We want a bijection between Pe and Po .

Given a partition of n, we either shift the slope down, or we shift
the base up. This operation is self-inverse wherever it is defined.
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Example: n = 8

The operation is a bijection between Pe and Po .
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Case 1: b = s
Note: The “parity” of this partition is the parity of b.
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When does n have a problem partition?
Case 2: b = s + 1
Note: The “parity” of this partition is the parity of b − 1.

n = (b − 1)2 +
∑b−1

i=1 i = 2(b−1)2+b(b−1)
2 = 2(b−1)2+b2−b

2 =
2(b−1)2+b2−2b−1+b−1

2 = 3(b−1)2+(b−1)
2 = P(−(b − 1))

For such n, pe(n)− po(n) = (−1)b−1.
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even or odd by examining k , where n = 3k2−k

2 . Otherwise, n has
no problem partitions, so we have a bijection between Pe and Po .

Example: n = 7
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