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Two Simple Examples

Bootstrap Percolation: Some faces start infected. Infected faces
stay infected. Uninfected faces with at least two infected neighbors
become infected. Does the whole graph become infected?

Ex:

X
XX XXX X
XX XXX X
XX XXX X
XX XXX X
XX XXX X
XX XXX X

Yes. No.



The k-bootstrap Model



The k-bootstrap Model

We make a few key changes to our game.

1. The initially infected faces are picked randomly.



The k-bootstrap Model

We make a few key changes to our game.

1. The initially infected faces are picked randomly. Each face is
infected with prob. p, independently. This is a p-random set.



The k-bootstrap Model

We make a few key changes to our game.

1.

The initially infected faces are picked randomly. Each face is
infected with prob. p, independently. This is a p-random set.

Number of infected nbrs needed to infect a healthy face is k.



The k-bootstrap Model

We make a few key changes to our game.

1.

The initially infected faces are picked randomly. Each face is
infected with prob. p, independently. This is a p-random set.

2. Number of infected nbrs needed to infect a healthy face is k.
. We mainly consider infinite graphs.



The k-bootstrap Model

We make a few key changes to our game.

1. The initially infected faces are picked randomly. Each face is
infected with prob. p, independently. This is a p-random set.

2. Number of infected nbrs needed to infect a healthy face is k.

3. We mainly consider infinite graphs.

The k-bootstrap Model: Fix a plane graph G, a p-random set
7 of initially infected faces, and an integer k.



The k-bootstrap Model

We make a few key changes to our game.

1. The initially infected faces are picked randomly. Each face is
infected with prob. p, independently. This is a p-random set.

2. Number of infected nbrs needed to infect a healthy face is k.

3. We mainly consider infinite graphs.

The k-bootstrap Model: Fix a plane graph G, a p-random set
T of initially infected faces, and an integer k. If a healthy face, f,
has at least k infected neighbors, then f becomes infected.



The k-bootstrap Model

We make a few key changes to our game.

1. The initially infected faces are picked randomly. Each face is
infected with prob. p, independently. This is a p-random set.

2. Number of infected nbrs needed to infect a healthy face is k.
3. We mainly consider infinite graphs.

The k-bootstrap Model: Fix a plane graph G, a p-random set
7 of initially infected faces, and an integer k. If a healthy face, f,
has at least k infected neighbors, then f becomes infected. The
percolation threshold of G is the largest k such that G eventually
becomes completely infected with prob > % (since Z is random).



The k-bootstrap Model

We make a few key changes to our game.
1. The initially infected faces are picked randomly. Each face is
infected with prob. p, independently. This is a p-random set.
2. Number of infected nbrs needed to infect a healthy face is k.
3. We mainly consider infinite graphs.

The k-bootstrap Model: Fix a plane graph G, a p-random set
7 of initially infected faces, and an integer k. If a healthy face, f,
has at least k infected neighbors, then f becomes infected. The
percolation threshold of G is the largest k such that G eventually
becomes completely infected with prob > % (since Z is random).

Warmup: In the 1-bootstrap model if Z # (), then 7 percolates.



The k-bootstrap Model

We make a few key changes to our game.
1. The initially infected faces are picked randomly. Each face is
infected with prob. p, independently. This is a p-random set.
2. Number of infected nbrs needed to infect a healthy face is k.

3. We mainly consider infinite graphs.

The k-bootstrap Model: Fix a plane graph G, a p-random set
7 of initially infected faces, and an integer k. If a healthy face, f,
has at least k infected neighbors, then f becomes infected. The
percolation threshold of G is the largest k such that G eventually
becomes completely infected with prob > % (since Z is random).

Warmup: In the 1-bootstrap model if Z # (), then 7 percolates.
Pf: Say that fy € 7.



The k-bootstrap Model

We make a few key changes to our game.

1. The initially infected faces are picked randomly. Each face is
infected with prob. p, independently. This is a p-random set.
2. Number of infected nbrs needed to infect a healthy face is k.

3. We mainly consider infinite graphs.

The k-bootstrap Model: Fix a plane graph G, a p-random set
7 of initially infected faces, and an integer k. If a healthy face, f,
has at least k infected neighbors, then f becomes infected. The
percolation threshold of G is the largest k such that G eventually
becomes completely infected with prob > % (since Z is random).

Warmup: In the 1-bootstrap model if Z # (), then 7 percolates.

Pf: Say that fy € Z. By induction, we show that each face within
distance t of fy becomes infected (for all t).



The k-bootstrap Model

We make a few key changes to our game.

1. The initially infected faces are picked randomly. Each face is
infected with prob. p, independently. This is a p-random set.
2. Number of infected nbrs needed to infect a healthy face is k.

3. We mainly consider infinite graphs.

The k-bootstrap Model: Fix a plane graph G, a p-random set
7 of initially infected faces, and an integer k. If a healthy face, f,
has at least k infected neighbors, then f becomes infected. The
percolation threshold of G is the largest k such that G eventually
becomes completely infected with prob > % (since Z is random).

Warmup: In the 1-bootstrap model if Z # (), then 7 percolates.

Pf: Say that fy € Z. By induction, we show that each face within
distance t of fy becomes infected (for all t). So Z percolates. W



The Triangular Lattice




The Triangular Lattice

Lem 1: Let G be the triangular lattice and 7 be a p-random set,
with 0 < p. In the 1-bootstrap model, 7 percolates with prob. 1.



The Triangular Lattice

Lem 1: Let G be the triangular lattice and 7 be a p-random set,
with 0 < p. In the 1-bootstrap model, 7 percolates with prob. 1.

Pf: By the warmup, we must show that Pr[Z # ()] = 1.



The Triangular Lattice

Lem 1: Let G be the triangular lattice and 7 be a p-random set,
with 0 < p. In the 1-bootstrap model, 7 percolates with prob. 1.
Pf: By the warmup, we must show that Pr[Z # ()] = 1. For t > 0,
let A; be a set of t faces.



The Triangular Lattice

Lem 1: Let G be the triangular lattice and 7 be a p-random set,
with 0 < p. In the 1-bootstrap model, 7 percolates with prob. 1.
Pf: By the warmup, we must show that Pr[Z # ()] = 1. For t > 0,
let A; be a set of t faces. Now Pr[Z = ()] < Pr[(/ N A;) = 0]
=(1-p)".



The Triangular Lattice

Lem 1: Let G be the triangular lattice and 7 be a p-random set,
with 0 < p. In the 1-bootstrap model, 7 percolates with prob. 1.
Pf: By the warmup, we must show that Pr[Z # ()] = 1. For t > 0,
let A; be a set of t faces. Now Pr[Z = ()] < Pr[(/ N A;) = 0]

= (1— p)'. Given ¢ > 0, we pick t big enough s.t. (1 — p)* < e.



The Triangular Lattice

Lem 1: Let G be the triangular lattice and 7 be a p-random set,
with 0 < p. In the 1-bootstrap model, 7 percolates with prob. 1.
Pf: By the warmup, we must show that Pr[Z # ()] = 1. For t > 0,
let A; be a set of t faces. Now Pr[Z = ()] < Pr[(/ N A;) = 0]

= (1— p)'. Given ¢ > 0, we pick t big enough s.t. (1 — p)* < e.
So Pr[Z = ()] < ¢ for all € > 0.



The Triangular Lattice
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Pf: By the warmup, we must show that Pr[Z # ()] = 1. For t > 0,
let A; be a set of t faces. Now Pr[Z = ()] < Pr[(/ N A;) = 0]

= (1— p)'. Given ¢ > 0, we pick t big enough s.t. (1 — p)* < e.
So Pr[Z = ()] < € forall e > 0. Thus, Pr[Z #0]=1. SoZ
percolates with prob. 1. |
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Lem 2: Let G be the triangular lattice and 7 be a p-random set,
with p < 1. In the 2-bootstrap model, 7 percolates with prob. 0.

Cor: The triangular lattice has percolation threshold 1,
whenever 0 < p < 1.
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Pf: Same as Lem 2, but with @ in place of K. m
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Lem 4: Fix p > 0. For the hex lattice, in the 3-bootstrap
model, a p-random set 7 percolates with prob. > 0.

Pf: Now Pr[side with t hexes is bad] = (1 — p)* > 0,

so Pr[ring with t hexes per side is bad] < 6(1 — p)*.

Sum for all rings: S =377 . 6(1 — p)* = @ < 1 for big J.
Pr[Z percolates| > (1 — S) Pr[all small rings good| > 0. M
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Goal: For hex lattice, in 3-bootstrap model, want to show that
p-random set percolates with prob. 1. Try to copy proof for
triangular lattice, repeating Lem 4 proof infinitely often.

Problem: Events “all big rings are good” will never be
independent. But can get arbitrarily close. ..

Solution: 0-1 Law If an event E is translation invariant, then
Pr(E) =0 or Pr(E) = 1.

Thm 5: For the hex lattice, in the 3-bootstrap model, a p-random
set percolates with prob. 1.
Cor 6: The hex lattice has threshold 3.
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Regular Lattices and Beyond

What other graphs to consider?
» Allow more face lengths in same graph

> All faces are still regular polygons
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