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The k-bootstrap Model

We make a few key changes to our game.

1. The initially infected faces are picked randomly. Each face is
infected with prob. p, independently. This is a p-random set.

2. Number of infected nbrs needed to infect a healthy face is k .

3. We mainly consider infinite graphs.

The k-bootstrap Model: Fix a plane graph G , a p-random set
I of initially infected faces, and an integer k . If a healthy face, f ,
has at least k infected neighbors, then f becomes infected. The
percolation threshold of G is the largest k such that G eventually
becomes completely infected with prob ≥ 1

2 (since I is random).

Warmup: In the 1-bootstrap model if I 6= ∅, then I percolates.

Pf: Say that f0 ∈ I. By induction, we show that each face within
distance t of f0 becomes infected (for all t). So I percolates.
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Pf: Now Pr[side with t hexes is bad] = (1− p)t > 0,
so Pr[ring with t hexes per side is bad] ≤ 6(1− p)t .

Sum for all rings: S =
∑∞

t=j 6(1− p)t = 6(1−p)j
p < 1 for big j .

Pr[I percolates] ≥ (1− S) Pr[all small rings good] > 0.
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0–1 Laws

Goal: For hex lattice, in 3-bootstrap model, want to show that
p-random set percolates with prob. 1.

Try to copy proof for
triangular lattice, repeating Lem 4 proof infinitely often.

Problem: Events “all big rings are good” will never be
independent. But can get arbitrarily close. . .
Solution: 0–1 Law If an event E is translation invariant, then
Pr(E ) = 0 or Pr(E ) = 1.

Thm 5: For the hex lattice, in the 3-bootstrap model, a p-random
set percolates with prob. 1.
Cor 6: The hex lattice has threshold 3.
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More General Tilings

Defn: Let T be set of all plane tilings such that if T ∈ T
and T has one copy of some vertex type, then T has infinitely
many copies of that type.

Main Theorem: Every T ∈ T has threshold at most 3.
The only tilings in T with threshold 3 are the Archimedean
Lattices (3.12.12), (4.6.12), (4.8.8), and (6.6.6).
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