Bootstrap Percolation Thresholds in Plane Tilings using Regular Polygons

Daniel W. Cranston Virginia Commonwealth University dcranston@vcu.edu

Joint with Neal Bushaw Slides available on my webpage

> VCU Discrete Math 21 February 2018

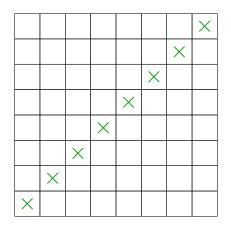
Bootstrap Percolation: Some faces start infected.

Bootstrap Percolation: Some faces start infected. Infected faces stay infected.

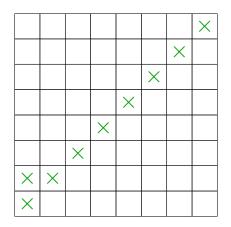
Bootstrap Percolation: Some faces start infected. Infected faces stay infected. Uninfected faces with at least two infected neighbors become infected.

Bootstrap Percolation: Some faces start infected. Infected faces stay infected. Uninfected faces with at least two infected neighbors become infected. *Does the whole graph become infected?*

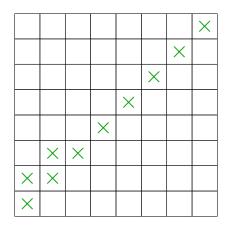
Bootstrap Percolation: Some faces start infected. Infected faces stay infected. Uninfected faces with at least two infected neighbors become infected. *Does the whole graph become infected?*



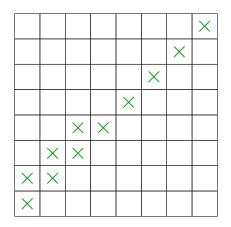
Bootstrap Percolation: Some faces start infected. Infected faces stay infected. Uninfected faces with at least two infected neighbors become infected. *Does the whole graph become infected?*



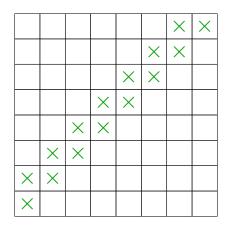
Bootstrap Percolation: Some faces start infected. Infected faces stay infected. Uninfected faces with at least two infected neighbors become infected. *Does the whole graph become infected?*



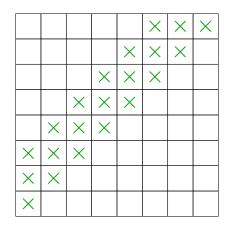
Bootstrap Percolation: Some faces start infected. Infected faces stay infected. Uninfected faces with at least two infected neighbors become infected. *Does the whole graph become infected?*



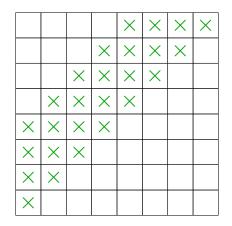
Bootstrap Percolation: Some faces start infected. Infected faces stay infected. Uninfected faces with at least two infected neighbors become infected. *Does the whole graph become infected?*



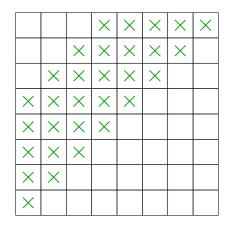
Bootstrap Percolation: Some faces start infected. Infected faces stay infected. Uninfected faces with at least two infected neighbors become infected. *Does the whole graph become infected?*



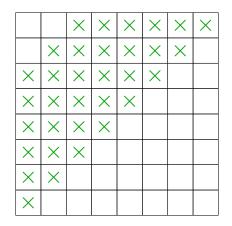
Bootstrap Percolation: Some faces start infected. Infected faces stay infected. Uninfected faces with at least two infected neighbors become infected. *Does the whole graph become infected?*



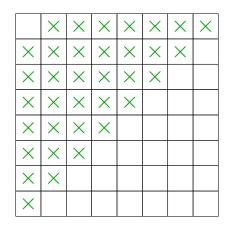
Bootstrap Percolation: Some faces start infected. Infected faces stay infected. Uninfected faces with at least two infected neighbors become infected. *Does the whole graph become infected?*



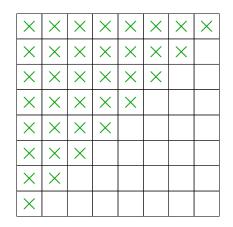
Bootstrap Percolation: Some faces start infected. Infected faces stay infected. Uninfected faces with at least two infected neighbors become infected. *Does the whole graph become infected?*



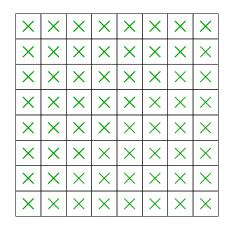
Bootstrap Percolation: Some faces start infected. Infected faces stay infected. Uninfected faces with at least two infected neighbors become infected. *Does the whole graph become infected?*



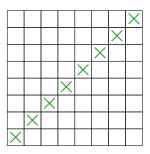
Bootstrap Percolation: Some faces start infected. Infected faces stay infected. Uninfected faces with at least two infected neighbors become infected. *Does the whole graph become infected?*

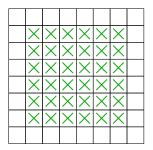


Bootstrap Percolation: Some faces start infected. Infected faces stay infected. Uninfected faces with at least two infected neighbors become infected. *Does the whole graph become infected?*



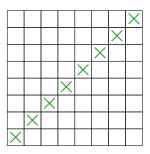
Bootstrap Percolation: Some faces start infected. Infected faces stay infected. Uninfected faces with at least two infected neighbors become infected. *Does the whole graph become infected?*

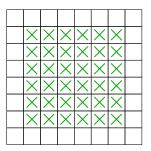




Bootstrap Percolation: Some faces start infected. Infected faces stay infected. Uninfected faces with at least two infected neighbors become infected. *Does the whole graph become infected?*

Ex:





Yes.

No.

We make a few key changes to our game.

1. The initially infected faces are picked randomly.

We make a few key changes to our game.

1. The initially infected faces are picked randomly. Each face is infected with prob. *p*, independently. This is a *p*-random set.

We make a few key changes to our game.

- 1. The initially infected faces are picked randomly. Each face is infected with prob. *p*, independently. This is a *p*-random set.
- 2. Number of infected nbrs needed to infect a healthy face is k.

We make a few key changes to our game.

- 1. The initially infected faces are picked randomly. Each face is infected with prob. *p*, independently. This is a *p*-random set.
- 2. Number of infected nbrs needed to infect a healthy face is k.
- 3. We mainly consider *infinite* graphs.

We make a few key changes to our game.

- 1. The initially infected faces are picked randomly. Each face is infected with prob. *p*, independently. This is a *p*-random set.
- 2. Number of infected nbrs needed to infect a healthy face is k.
- 3. We mainly consider *infinite* graphs.

The *k*-**bootstrap Model:** Fix a plane graph *G*, a *p*-random set \mathcal{I} of initially infected faces, and an integer *k*.

We make a few key changes to our game.

- 1. The initially infected faces are picked randomly. Each face is infected with prob. *p*, independently. This is a *p*-random set.
- 2. Number of infected nbrs needed to infect a healthy face is k.
- 3. We mainly consider *infinite* graphs.

The *k*-bootstrap Model: Fix a plane graph *G*, a *p*-random set \mathcal{I} of initially infected faces, and an integer *k*. If a healthy face, *f*, has at least *k* infected neighbors, then *f* becomes infected.

We make a few key changes to our game.

- 1. The initially infected faces are picked randomly. Each face is infected with prob. *p*, independently. This is a *p*-random set.
- 2. Number of infected nbrs needed to infect a healthy face is k.
- 3. We mainly consider *infinite* graphs.

The *k*-bootstrap Model: Fix a plane graph *G*, a *p*-random set \mathcal{I} of initially infected faces, and an integer *k*. If a healthy face, *f*, has at least *k* infected neighbors, then *f* becomes infected. The percolation threshold of *G* is the largest *k* such that *G* eventually becomes completely infected with prob $\geq \frac{1}{2}$ (since \mathcal{I} is random).

We make a few key changes to our game.

- 1. The initially infected faces are picked randomly. Each face is infected with prob. *p*, independently. This is a *p*-random set.
- 2. Number of infected nbrs needed to infect a healthy face is k.
- 3. We mainly consider *infinite* graphs.

The *k*-bootstrap Model: Fix a plane graph *G*, a *p*-random set \mathcal{I} of initially infected faces, and an integer *k*. If a healthy face, *f*, has at least *k* infected neighbors, then *f* becomes infected. The percolation threshold of *G* is the largest *k* such that *G* eventually becomes completely infected with prob $\geq \frac{1}{2}$ (since \mathcal{I} is random).

Warmup: In the 1-bootstrap model if $\mathcal{I} \neq \emptyset$, then \mathcal{I} percolates.

We make a few key changes to our game.

- 1. The initially infected faces are picked randomly. Each face is infected with prob. *p*, independently. This is a *p*-random set.
- 2. Number of infected nbrs needed to infect a healthy face is k.
- 3. We mainly consider *infinite* graphs.

The *k*-bootstrap Model: Fix a plane graph *G*, a *p*-random set \mathcal{I} of initially infected faces, and an integer *k*. If a healthy face, *f*, has at least *k* infected neighbors, then *f* becomes infected. The percolation threshold of *G* is the largest *k* such that *G* eventually becomes completely infected with prob $\geq \frac{1}{2}$ (since \mathcal{I} is random).

Warmup: In the 1-bootstrap model if $\mathcal{I} \neq \emptyset$, then \mathcal{I} percolates. **Pf:** Say that $f_0 \in \mathcal{I}$.

We make a few key changes to our game.

- 1. The initially infected faces are picked randomly. Each face is infected with prob. *p*, independently. This is a *p*-random set.
- 2. Number of infected nbrs needed to infect a healthy face is k.
- 3. We mainly consider *infinite* graphs.

The *k*-bootstrap Model: Fix a plane graph *G*, a *p*-random set \mathcal{I} of initially infected faces, and an integer *k*. If a healthy face, *f*, has at least *k* infected neighbors, then *f* becomes infected. The percolation threshold of *G* is the largest *k* such that *G* eventually becomes completely infected with prob $\geq \frac{1}{2}$ (since \mathcal{I} is random).

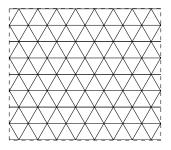
Warmup: In the 1-bootstrap model if $\mathcal{I} \neq \emptyset$, then \mathcal{I} percolates. **Pf:** Say that $f_0 \in \mathcal{I}$. By induction, we show that each face within distance *t* of f_0 becomes infected (for all *t*).

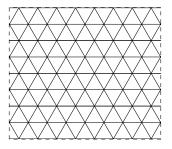
We make a few key changes to our game.

- 1. The initially infected faces are picked randomly. Each face is infected with prob. *p*, independently. This is a *p*-random set.
- 2. Number of infected nbrs needed to infect a healthy face is k.
- 3. We mainly consider *infinite* graphs.

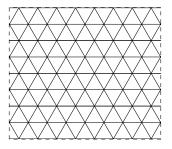
The *k*-bootstrap Model: Fix a plane graph *G*, a *p*-random set \mathcal{I} of initially infected faces, and an integer *k*. If a healthy face, *f*, has at least *k* infected neighbors, then *f* becomes infected. The percolation threshold of *G* is the largest *k* such that *G* eventually becomes completely infected with prob $\geq \frac{1}{2}$ (since \mathcal{I} is random).

Warmup: In the 1-bootstrap model if $\mathcal{I} \neq \emptyset$, then \mathcal{I} percolates. **Pf:** Say that $f_0 \in \mathcal{I}$. By induction, we show that each face within distance *t* of f_0 becomes infected (for all *t*). So \mathcal{I} percolates.

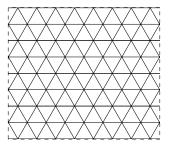




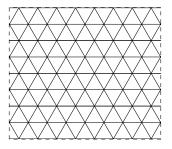
Lem 1: Let *G* be the triangular lattice and \mathcal{I} be a *p*-random set, with 0 < p. In the 1-bootstrap model, \mathcal{I} percolates with prob. 1.



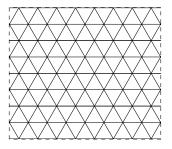
Lem 1: Let *G* be the triangular lattice and \mathcal{I} be a *p*-random set, with 0 < p. In the 1-bootstrap model, \mathcal{I} percolates with prob. 1. **Pf:** By the warmup, we must show that $\Pr[\mathcal{I} \neq \emptyset] = 1$.



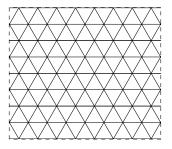
Lem 1: Let *G* be the triangular lattice and \mathcal{I} be a *p*-random set, with 0 < p. In the 1-bootstrap model, \mathcal{I} percolates with prob. 1. **Pf:** By the warmup, we must show that $\Pr[\mathcal{I} \neq \emptyset] = 1$. For $t \ge 0$, let \mathcal{A}_t be a set of *t* faces.



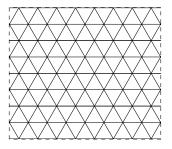
Lem 1: Let *G* be the triangular lattice and \mathcal{I} be a *p*-random set, with 0 < p. In the 1-bootstrap model, \mathcal{I} percolates with prob. 1. **Pf:** By the warmup, we must show that $\Pr[\mathcal{I} \neq \emptyset] = 1$. For $t \ge 0$, let \mathcal{A}_t be a set of *t* faces. Now $\Pr[\mathcal{I} = \emptyset] \le \Pr[(I \cap A_t) = \emptyset]$ $= (1 - p)^t$.



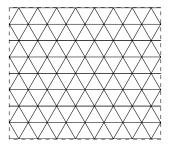
Lem 1: Let *G* be the triangular lattice and \mathcal{I} be a *p*-random set, with 0 < p. In the 1-bootstrap model, \mathcal{I} percolates with prob. 1. **Pf:** By the warmup, we must show that $\Pr[\mathcal{I} \neq \emptyset] = 1$. For $t \ge 0$, let \mathcal{A}_t be a set of *t* faces. Now $\Pr[\mathcal{I} = \emptyset] \le \Pr[(I \cap A_t) = \emptyset]$ $= (1 - p)^t$. Given $\epsilon > 0$, we pick *t* big enough s.t. $(1 - p)^t < \epsilon$.



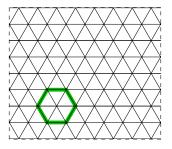
Lem 1: Let *G* be the triangular lattice and \mathcal{I} be a *p*-random set, with 0 < p. In the 1-bootstrap model, \mathcal{I} percolates with prob. 1. **Pf:** By the warmup, we must show that $\Pr[\mathcal{I} \neq \emptyset] = 1$. For $t \ge 0$, let \mathcal{A}_t be a set of *t* faces. Now $\Pr[\mathcal{I} = \emptyset] \le \Pr[(I \cap \mathcal{A}_t) = \emptyset]$ $= (1 - p)^t$. Given $\epsilon > 0$, we pick *t* big enough s.t. $(1 - p)^t < \epsilon$. So $\Pr[\mathcal{I} = \emptyset] < \epsilon$ for all $\epsilon > 0$.



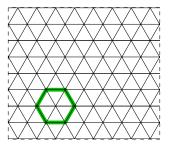
Lem 1: Let *G* be the triangular lattice and \mathcal{I} be a *p*-random set, with 0 < p. In the 1-bootstrap model, \mathcal{I} percolates with prob. 1. **Pf:** By the warmup, we must show that $\Pr[\mathcal{I} \neq \emptyset] = 1$. For $t \ge 0$, let \mathcal{A}_t be a set of *t* faces. Now $\Pr[\mathcal{I} = \emptyset] \le \Pr[(I \cap \mathcal{A}_t) = \emptyset]$ $= (1 - p)^t$. Given $\epsilon > 0$, we pick *t* big enough s.t. $(1 - p)^t < \epsilon$. So $\Pr[\mathcal{I} = \emptyset] < \epsilon$ for all $\epsilon > 0$. Thus, $\Pr[\mathcal{I} \neq \emptyset] = 1$. So \mathcal{I} percolates with prob. 1.



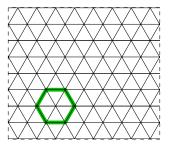
Lem 2: Let *G* be the triangular lattice and \mathcal{I} be a *p*-random set, with p < 1. In the 2-bootstrap model, \mathcal{I} percolates with prob. 0.



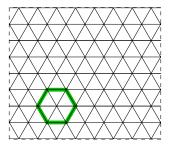
Lem 2: Let *G* be the triangular lattice and \mathcal{I} be a *p*-random set, with p < 1. In the 2-bootstrap model, \mathcal{I} percolates with prob. 0. **Pf:** Note that if any \bigotimes has no infected faces, then \mathcal{I} will not percolate.



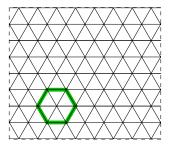
Lem 2: Let *G* be the triangular lattice and \mathcal{I} be a *p*-random set, with p < 1. In the 2-bootstrap model, \mathcal{I} percolates with prob. 0. **Pf:** Note that if any \bigotimes has no infected faces, then \mathcal{I} will not percolate. Let B_1, B_2, \ldots denote face disjoint copies of \bigotimes .



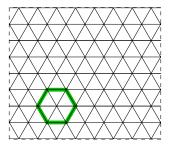
Lem 2: Let *G* be the triangular lattice and \mathcal{I} be a *p*-random set, with p < 1. In the 2-bootstrap model, \mathcal{I} percolates with prob. 0. **Pf:** Note that if any \bigotimes has no infected faces, then \mathcal{I} will not percolate. Let B_1, B_2, \ldots denote face disjoint copies of \bigotimes . Let E_j be the event that each of B_1, \ldots, B_j has at least one infected face.



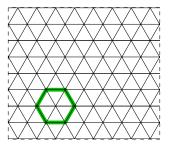
Lem 2: Let *G* be the triangular lattice and \mathcal{I} be a *p*-random set, with p < 1. In the 2-bootstrap model, \mathcal{I} percolates with prob. 0. **Pf:** Note that if any \bigotimes has no infected faces, then \mathcal{I} will not percolate. Let B_1, B_2, \ldots denote face disjoint copies of \bigotimes . Let E_j be the event that each of B_1, \ldots, B_j has at least one infected face. Now $\Pr[\mathcal{I} \text{ percolates}] \leq \Pr[E_j] = (1 - (1 - p)^6)^j$.



Lem 2: Let *G* be the triangular lattice and \mathcal{I} be a *p*-random set, with p < 1. In the 2-bootstrap model, \mathcal{I} percolates with prob. 0. **Pf:** Note that if any \bigotimes has no infected faces, then \mathcal{I} will not percolate. Let B_1, B_2, \ldots denote face disjoint copies of \bigotimes . Let E_j be the event that each of B_1, \ldots, B_j has at least one infected face. Now $\Pr[\mathcal{I} \text{ percolates}] \leq \Pr[E_j] = (1 - (1 - p)^6)^j$. Given any $\epsilon > 0$, *j* big enough s.t. $(1 - (1 - p)^6)^j < \epsilon$.

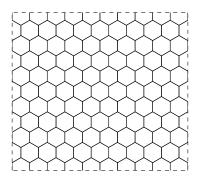


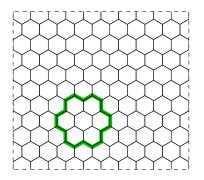
Lem 2: Let *G* be the triangular lattice and \mathcal{I} be a *p*-random set, with p < 1. In the 2-bootstrap model, \mathcal{I} percolates with prob. 0. **Pf:** Note that if any \bigotimes has no infected faces, then \mathcal{I} will not percolate. Let B_1, B_2, \ldots denote face disjoint copies of \bigotimes . Let E_j be the event that each of B_1, \ldots, B_j has at least one infected face. Now $\Pr[\mathcal{I} \text{ percolates}] \leq \Pr[E_j] = (1 - (1 - p)^6)^j$. Given any $\epsilon > 0$, *j* big enough s.t. $(1 - (1 - p)^6)^j < \epsilon$. So $\Pr[\mathcal{I} \text{ percolates}] = 0$.



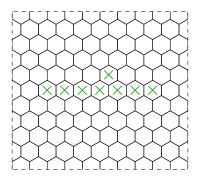
Lem 1: Let *G* be the triangular lattice and \mathcal{I} be a *p*-random set, with 0 < p. In the 1-bootstrap model, \mathcal{I} percolates with prob. 1. **Lem 2:** Let *G* be the triangular lattice and \mathcal{I} be a *p*-random set, with p < 1. In the 2-bootstrap model, \mathcal{I} percolates with prob. 0.

Cor: The triangular lattice has percolation threshold 1, whenever 0 .

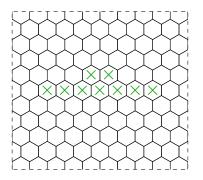




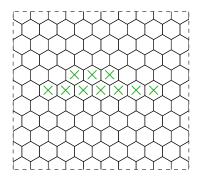
Lem 3: Fix p < 1. For the hex lattice, in the 4-bootstrap model, a *p*-random set \mathcal{I} percolates with prob. 0. **Pf:** Same as Lem 2, but with \bigotimes in place of \bigotimes .



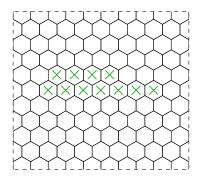
Lem 4: Fix p > 0. For the hex lattice, in the 3-bootstrap model, a *p*-random set \mathcal{I} percolates with prob. > 0.



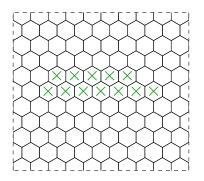
Lem 4: Fix p > 0. For the hex lattice, in the 3-bootstrap model, a *p*-random set \mathcal{I} percolates with prob. > 0.



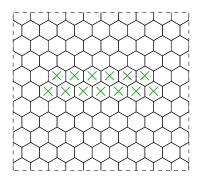
Lem 4: Fix p > 0. For the hex lattice, in the 3-bootstrap model, a *p*-random set \mathcal{I} percolates with prob. > 0.



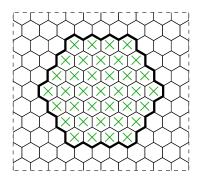
Lem 4: Fix p > 0. For the hex lattice, in the 3-bootstrap model, a *p*-random set \mathcal{I} percolates with prob. > 0.



Lem 4: Fix p > 0. For the hex lattice, in the 3-bootstrap model, a *p*-random set \mathcal{I} percolates with prob. > 0.



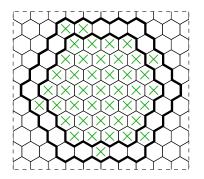
Lem 4: Fix p > 0. For the hex lattice, in the 3-bootstrap model, a *p*-random set \mathcal{I} percolates with prob. > 0.



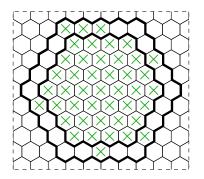
Lem 4: Fix p > 0. For the hex lattice, in the 3-bootstrap model, a *p*-random set \mathcal{I} percolates with prob. > 0.



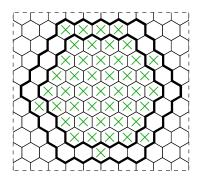
Lem 4: Fix p > 0. For the hex lattice, in the 3-bootstrap model, a *p*-random set \mathcal{I} percolates with prob. > 0.



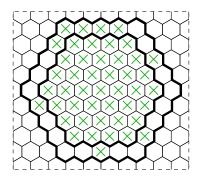
Lem 4: Fix p > 0. For the hex lattice, in the 3-bootstrap model, a *p*-random set \mathcal{I} percolates with prob. > 0.



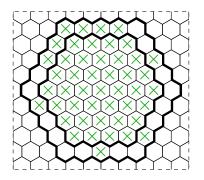
Lem 4: Fix p > 0. For the hex lattice, in the 3-bootstrap model, a *p*-random set \mathcal{I} percolates with prob. > 0.



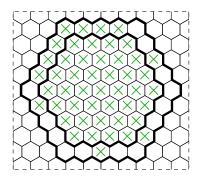
Lem 4: Fix p > 0. For the hex lattice, in the 3-bootstrap model, a *p*-random set \mathcal{I} percolates with prob. > 0.



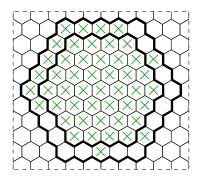
Lem 4: Fix p > 0. For the hex lattice, in the 3-bootstrap model, a *p*-random set \mathcal{I} percolates with prob. > 0.



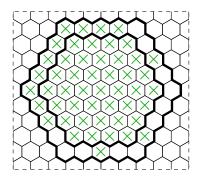
Lem 4: Fix p > 0. For the hex lattice, in the 3-bootstrap model, a *p*-random set \mathcal{I} percolates with prob. > 0.



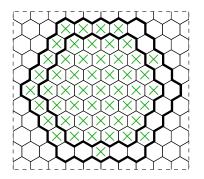
Lem 4: Fix p > 0. For the hex lattice, in the 3-bootstrap model, a *p*-random set \mathcal{I} percolates with prob. > 0.



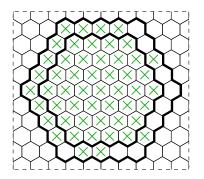
Lem 4: Fix p > 0. For the hex lattice, in the 3-bootstrap model, a *p*-random set \mathcal{I} percolates with prob. > 0.



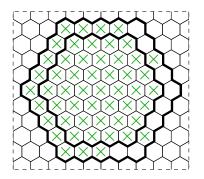
Lem 4: Fix p > 0. For the hex lattice, in the 3-bootstrap model, a *p*-random set \mathcal{I} percolates with prob. > 0.



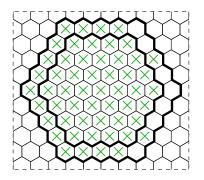
Lem 4: Fix p > 0. For the hex lattice, in the 3-bootstrap model, a *p*-random set \mathcal{I} percolates with prob. > 0.



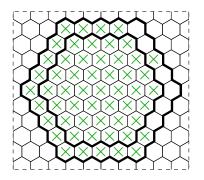
Lem 4: Fix p > 0. For the hex lattice, in the 3-bootstrap model, a *p*-random set \mathcal{I} percolates with prob. > 0.



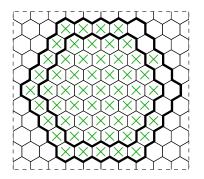
Lem 4: Fix p > 0. For the hex lattice, in the 3-bootstrap model, a *p*-random set \mathcal{I} percolates with prob. > 0.



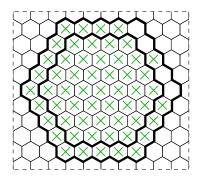
Lem 4: Fix p > 0. For the hex lattice, in the 3-bootstrap model, a *p*-random set \mathcal{I} percolates with prob. > 0.



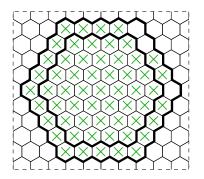
Lem 4: Fix p > 0. For the hex lattice, in the 3-bootstrap model, a *p*-random set \mathcal{I} percolates with prob. > 0.



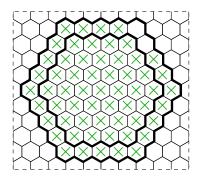
Lem 4: Fix p > 0. For the hex lattice, in the 3-bootstrap model, a *p*-random set \mathcal{I} percolates with prob. > 0.



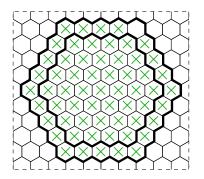
Lem 4: Fix p > 0. For the hex lattice, in the 3-bootstrap model, a *p*-random set \mathcal{I} percolates with prob. > 0.



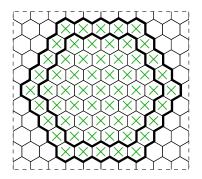
Lem 4: Fix p > 0. For the hex lattice, in the 3-bootstrap model, a *p*-random set \mathcal{I} percolates with prob. > 0.

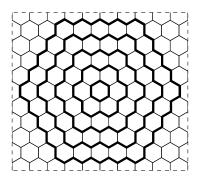


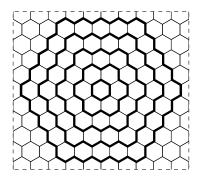
Lem 4: Fix p > 0. For the hex lattice, in the 3-bootstrap model, a *p*-random set \mathcal{I} percolates with prob. > 0.



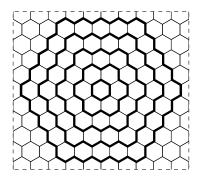
Lem 4: Fix p > 0. For the hex lattice, in the 3-bootstrap model, a *p*-random set \mathcal{I} percolates with prob. > 0.



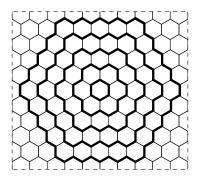




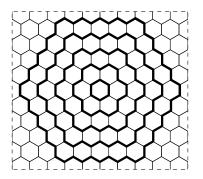
Lem 4: Fix p > 0. For the hex lattice, in the 3-bootstrap model, a *p*-random set \mathcal{I} percolates with prob. > 0. **Pf:** Now Pr[side with *t* hexes is bad] = $(1 - p)^t > 0$,



Lem 4: Fix p > 0. For the hex lattice, in the 3-bootstrap model, a *p*-random set \mathcal{I} percolates with prob. > 0. **Pf:** Now Pr[side with *t* hexes is bad] = $(1 - p)^t > 0$, so Pr[ring with *t* hexes per side is bad] $\leq 6(1 - p)^t$.



Lem 4: Fix p > 0. For the hex lattice, in the 3-bootstrap model, a *p*-random set \mathcal{I} percolates with prob. > 0. **Pf:** Now Pr[side with *t* hexes is bad] = $(1 - p)^t > 0$, so Pr[ring with *t* hexes per side is bad] $\leq 6(1 - p)^t$. Sum for all rings: $S = \sum_{t=j}^{\infty} 6(1 - p)^t = \frac{6(1-p)^j}{p} < 1$ for big *j*.



Lem 4: Fix p > 0. For the hex lattice, in the 3-bootstrap model, a *p*-random set \mathcal{I} percolates with prob. > 0. **Pf:** Now Pr[side with *t* hexes is bad] = $(1 - p)^t > 0$, so Pr[ring with *t* hexes per side is bad] $\leq 6(1 - p)^t$. Sum for all rings: $S = \sum_{t=j}^{\infty} 6(1 - p)^t = \frac{6(1-p)^j}{p} < 1$ for big *j*. Pr[\mathcal{I} percolates] $\geq (1 - S)$ Pr[all small rings good] > 0.

0-1 Laws

Goal: For hex lattice, in 3-bootstrap model, want to show that *p*-random set percolates with prob. 1.

Goal: For hex lattice, in 3-bootstrap model, want to show that *p*-random set percolates with prob. 1. Try to copy proof for triangular lattice, repeating Lem 4 proof infinitely often.

Goal: For hex lattice, in 3-bootstrap model, want to show that *p*-random set percolates with prob. 1. Try to copy proof for triangular lattice, repeating Lem 4 proof infinitely often.

Problem: Events "all big rings are good" will never be independent.

Goal: For hex lattice, in 3-bootstrap model, want to show that *p*-random set percolates with prob. 1. Try to copy proof for triangular lattice, repeating Lem 4 proof infinitely often.

Problem: Events "all big rings are good" will never be independent. But can get arbitrarily close...

Goal: For hex lattice, in 3-bootstrap model, want to show that *p*-random set percolates with prob. 1. Try to copy proof for triangular lattice, repeating Lem 4 proof infinitely often.

Problem: Events "all big rings are good" will never be independent. But can get arbitrarily close... **Solution:** 0-1 Law If an event E is translation invariant, then Pr(E) = 0 or Pr(E) = 1.

Goal: For hex lattice, in 3-bootstrap model, want to show that *p*-random set percolates with prob. 1. Try to copy proof for triangular lattice, repeating Lem 4 proof infinitely often.

Problem: Events "all big rings are good" will never be independent. But can get arbitrarily close... **Solution:** 0-1 Law If an event *E* is translation invariant, then Pr(E) = 0 or Pr(E) = 1.

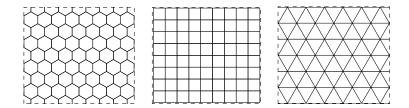
Thm 5: For the hex lattice, in the 3-bootstrap model, a *p*-random set percolates with prob. 1.

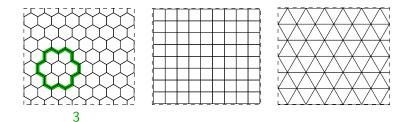
Goal: For hex lattice, in 3-bootstrap model, want to show that *p*-random set percolates with prob. 1. Try to copy proof for triangular lattice, repeating Lem 4 proof infinitely often.

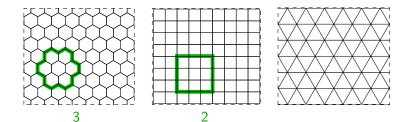
Problem: Events "all big rings are good" will never be independent. But can get arbitrarily close... **Solution:** 0-1 Law If an event *E* is translation invariant, then Pr(E) = 0 or Pr(E) = 1.

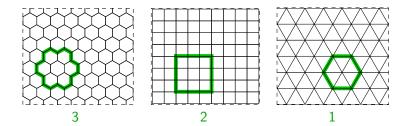
Thm 5: For the hex lattice, in the 3-bootstrap model, a *p*-random set percolates with prob. 1.

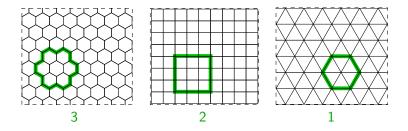
Cor 6: The hex lattice has threshold 3.



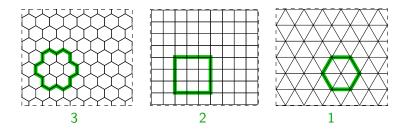






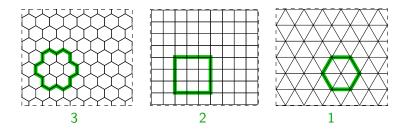


What other graphs to consider?



What other graphs to consider?

Allow more face lengths in same graph

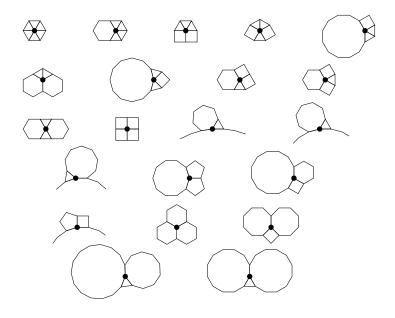


What other graphs to consider?

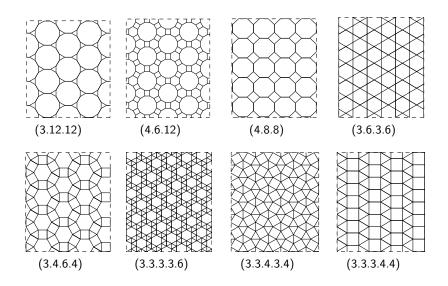
- Allow more face lengths in same graph
- All faces are still regular polygons

How Could Vertices Look?

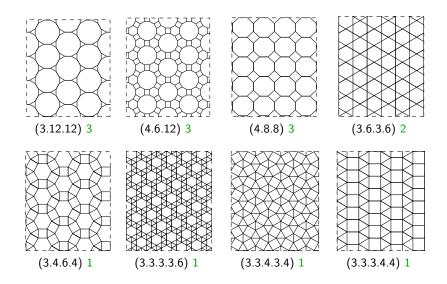
How Could Vertices Look?



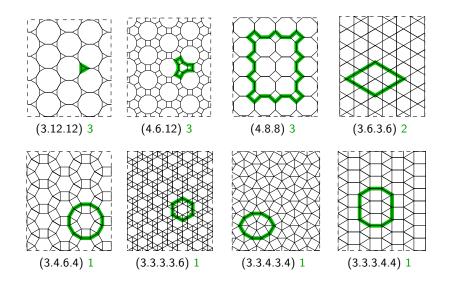
Archimedean Lattices

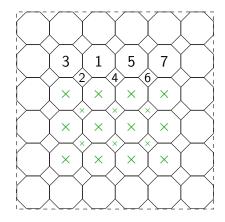


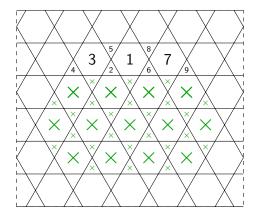
Archimedean Lattices

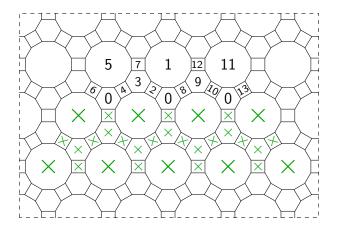


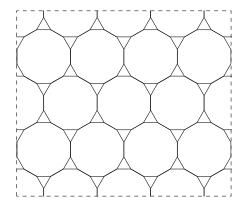
Archimedean Lattices

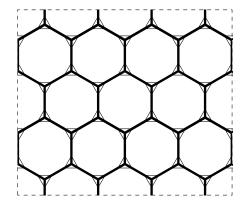












Defn: Let \mathcal{T} be set of all plane tilings such that if $\mathcal{T} \in \mathcal{T}$ and \mathcal{T} has one copy of some vertex type, then \mathcal{T} has infinitely many copies of that type.

Defn: Let \mathcal{T} be set of all plane tilings such that if $\mathcal{T} \in \mathcal{T}$ and \mathcal{T} has one copy of some vertex type, then \mathcal{T} has infinitely many copies of that type.

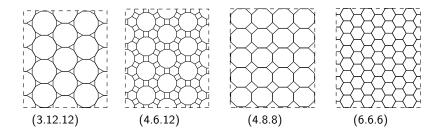
Main Theorem: Every $T \in T$ has threshold at most 3.

Defn: Let \mathcal{T} be set of all plane tilings such that if $\mathcal{T} \in \mathcal{T}$ and \mathcal{T} has one copy of some vertex type, then \mathcal{T} has infinitely many copies of that type.

Main Theorem: Every $T \in T$ has threshold at most 3. The only tilings in T with threshold 3 are the Archimedean Lattices (3.12.12), (4.6.12), (4.8.8), and (6.6.6).

Defn: Let \mathcal{T} be set of all plane tilings such that if $\mathcal{T} \in \mathcal{T}$ and \mathcal{T} has one copy of some vertex type, then \mathcal{T} has infinitely many copies of that type.

Main Theorem: Every $T \in T$ has threshold at most 3. The only tilings in T with threshold 3 are the Archimedean Lattices (3.12.12), (4.6.12), (4.8.8), and (6.6.6).



Defn: Let \mathcal{T} be set of all plane tilings such that if $\mathcal{T} \in \mathcal{T}$ and \mathcal{T} has one copy of some vertex type, then \mathcal{T} has infinitely many copies of that type.

Main Theorem: Every $T \in T$ has threshold at most 3. The only tilings in T with threshold 3 are the Archimedean Lattices (3.12.12), (4.6.12), (4.8.8), and (6.6.6).

