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Can we 4-color the regions of every map? —Guthrie (1852)
...grew to be the second most famous unsolved problem in
mathematics after Fermat's last theorem. —Devlin (2005)

s

Same as coloring vertices of planar dual graph.
Can we properly 4-color the vertices of every planar graph?
Finally, answered in 1976 by Appel and Haken: Yes!

Proof uses computers. ® Later proofs also use computers.
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Fact 1: Every n-vertex triangulation has 3n — 6 edges.
Cor: Ks is non-planar. (Since 3(5) — 6 =9 < 10 = (3).)

Thm: Every planar graph G is 5-colorable.

Pf: Add edges to get a triangulation. Now

Sev d(v) =2|E| =2(3n—6) < 6n. " e
So some vertex v is a 5 -vertex. When v is

a 4~ -vertex, we 5-color G — v by induction,

then color v. Now, since K5 is non-planar, |
v has non-adjacent neighbors w; and ws. 1
Contract vw; and vws; 5-color by induction.

This gives 5-coloring of G — v. Now extend

to v, since w; and w» have same color. W wy/w,

Cor: Every planar graph G has o(G) > %n.
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» Erdos-Vizing Conj.: Every n-vertex planar G has o(G) > %n.
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We'll show that planar graphs have a map to Kj.».
G is k-colorable iff G has homomorphism to K.
Generalizes “coloring” to “coloring with graphs”.



9/2-coloring planar graphs



9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to Kg.».



9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to Kg.».
Pf:



9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to Kg.».
Pf: Induction on n, like 5CT. If we can’t do induction, then G:

1. has minimum degree 5



9/2-coloring planar graphs
Thm: Every planar graph has a homomorphism to Kg.».
Pf: Induction on n, like 5CT. If we can’t do induction, then G:
1. has minimum degree 5

2. has no separating triangle



9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to Kg.».
Pf: Induction on n, like 5CT. If we can’t do induction, then G:
1. has minimum degree 5

2. has no separating triangle

3. can't have “too many 6 -vertices near each other”
(13 cases, grouped into 3 lemmas by degree of central vertex)



9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to Kg.».
Pf: Induction on n, like 5CT. If we can’t do induction, then G:

1. has minimum degree 5
2. has no separating triangle
3. can't have “too many 6 -vertices near each other”
(13 cases, grouped into 3 lemmas by degree of central vertex)

if so, then contract some non-adjacent pairs of neighbors;
color smaller graph by induction, then extend to G



9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to Kg.».
Pf: Induction on n, like 5CT. If we can’t do induction, then G:

1. has minimum degree 5
2. has no separating triangle
. can’t have “too many 6 -vertices near each other”
(13 cases, grouped into 3 lemmas by degree of central vertex)

if so, then contract some non-adjacent pairs of neighbors;
color smaller graph by induction, then extend to G

Finally, use discharging method (counting argument)
to show that every planar graph fails (1), (2), or (3).



Too many 6 -vertices near each other



Too many 6 -vertices near each other

Key Fact: Denote the center vertex of Ki 3 by v and the other
vertices by vy, up, us.



Too many 6 -vertices near each other

Key Fact: Denote the center vertex of Ki 3 by v and the other
vertices by vy, up, u3. If v has 5 allowable colors and each u; has
3 allowable colors, then we can color each vertex with 2 colors,
such that no color appears on both ends of an edge.



Too many 6 -vertices near each other

Key Fact: Denote the center vertex of Ki 3 by v and the other
vertices by vy, up, u3. If v has 5 allowable colors and each u; has
3 allowable colors, then we can color each vertex with 2 colors,
such that no color appears on both ends of an edge.

Pf: Give v a color available for at most one v}, say uy.



Too many 6 -vertices near each other

Key Fact: Denote the center vertex of Ki 3 by v and the other
vertices by vy, up, u3. If v has 5 allowable colors and each u; has
3 allowable colors, then we can color each vertex with 2 colors,
such that no color appears on both ends of an edge.

Pf: Give v a color available for at most one vu;, say u1. 2(5) > 3(3)



Too many 6 -vertices near each other

Key Fact: Denote the center vertex of Ki 3 by v and the other
vertices by vy, up, u3. If v has 5 allowable colors and each u; has
3 allowable colors, then we can color each vertex with 2 colors,
such that no color appears on both ends of an edge.

Pf: Give v a color available for at most one vu;, say u1. 2(5) > 3(3)
Now give v another color not available for u;.



Too many 6 -vertices near each other

Key Fact: Denote the center vertex of Ki 3 by v and the other
vertices by vy, up, u3. If v has 5 allowable colors and each u; has
3 allowable colors, then we can color each vertex with 2 colors,
such that no color appears on both ends of an edge.

Pf: Give v a color available for at most one vu;, say u1. 2(5) > 3(3)
Now give v another color not available for ;. Now color each u;.



Too many 6 -vertices near each other

Key Fact: Denote the center vertex of Ki 3 by v and the other
vertices by vy, up, u3. If v has 5 allowable colors and each u; has
3 allowable colors, then we can color each vertex with 2 colors,
such that no color appears on both ends of an edge.

Pf: Give v a color available for at most one vu;, say u1. 2(5) > 3(3)
Now give v another color not available for ;. Now color each u;.




Too many 6 -vertices near each other

Key Fact: Denote the center vertex of Ki 3 by v and the other
vertices by vy, up, u3. If v has 5 allowable colors and each u; has
3 allowable colors, then we can color each vertex with 2 colors,
such that no color appears on both ends of an edge.

Pf: Give v a color available for at most one vu;, say u1. 2(5) > 3(3)
Now give v another color not available for ;. Now color each u;.




Too many 6 -vertices near each other

Key Fact: Denote the center vertex of Ki 3 by v and the other
vertices by vy, up, u3. If v has 5 allowable colors and each u; has
3 allowable colors, then we can color each vertex with 2 colors,
such that no color appears on both ends of an edge.

Pf: Give v a color available for at most one vu;, say u1. 2(5) > 3(3)
Now give v another color not available for ;. Now color each u;.

Rem: Reducible configuration proofs use only this Key Fact.
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Thm [Albertson '76]: If G is a plane triangulation with minimum
degree 5 and no separating triangle, then G contains a good kite:

Cor: Every n-vertex planar graph has indep. number at least %n.
Rem: We improve this bound to indep. number at least %n.

Pf of Thm: Suppose such a triangulation G has no good kite.
Give each v charge ch(v) = d(v) — 6. Now redistribute charge;
call new charge ch*(v). Show ch*(v) > 0 for all v. However,

Y oveyd(v) —6=2E[-6|V|=2(3|V|-6)—6|V| = —-12, so:

—-12 = Z ch(v) = Z ch*(v) > 0 Contradiction!

veV vev



All Vertices are Happy



All Vertices are Happy

Discharging Rules
(R1) Each 6-vertex gives each 5-nbr +.



All Vertices are Happy

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr +.

R2) Each 7" -vertex gives each 6-nbr - and each 5-nbr %.
10 3



All Vertices are Happy

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr +.

R2) Each 7" -vertex gives each 6-nbr - and each 5-nbr %.
10 3

d(v) > 9:



All Vertices are Happy

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr +.

R2) Each 7" -vertex gives each 6-nbr - and each 5-nbr %.
10 3

d(v)>9: d(v) —6— d(v)(%) = %(d(v) -9)>0.



All Vertices are Happy

Discharging Rules
(R1) Each 6-vertex gives each 5-nbr +.
(R2) Each 7' -vertex gives each 6-nbr -5 and each 5-nbr 3.



All Vertices are Happy

Discharging Rules
(R1) Each 6-vertex gives each 5-nbr +.
(R2) Each 7' -vertex gives each 6-nbr -5 and each 5-nbr 3.

d(v) >9: d(v) —6—d(v)(3) = 3(d(v) — 9) > 0.
d(v) =8: 8—6—4(1) —4(55) > 0.



All Vertices are Happy

Discharging Rules
(R1) Each 6-vertex gives each 5-nbr +.
(R2) Each 7' -vertex gives each 6-nbr -5 and each 5-nbr 3.

d(v) >9: d(v) —6—d(v)(3) = 3(d(v) — 9) > 0.
d(v) =8: 8—6—4(1) —4(55) > 0.
d(v)=T1:



All Vertices are Happy

Discharging Rules
(R1) Each 6-vertex gives each 5-nbr +.
(R2) Each 7' -vertex gives each 6-nbr -5 and each 5-nbr 3.

d(v) >9: d(v) —6—d(v)(3) = 3(d(v) — 9) > 0.
d(v) =8: 8—6—4(1) —4(55) > 0.
d(v) = 7: Can give charge 7 — 6 = 1.



All Vertices are Happy

Discharging Rules
(R1) Each 6-vertex gives each 5-nbr +.
(R2) Each 7' -vertex gives each 6-nbr -5 and each 5-nbr 3.

d(v)
d(v)
d(v)

>9: d(v)—6— d(v)(%) = %(d(v) —-9)>0.
8: 8—6—4(3) —4(%) > 0.
7:

Can give charge 7 — 6 = 1.

(v




All Vertices are Happy

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr +.

R2) Each 7" -vertex gives each 6-nbr - and each 5-nbr %.
10 3

d(v)>9: d(v) —6— d(v)(%) = %(d(v) -9)>0.
d(v) =8: 8—6—4(1) —4(55) > 0.
d(v) = 7: Can give charge 7 — 6 = 1.




All Vertices are Happy

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr +.

R2) Each 7" -vertex gives each 6-nbr - and each 5-nbr %.
10 3

9: d(v) —6— d(v)(%) = %(d(v) -9)>0.
8: 8—6—4(3) —4(%) > 0.
7




All Vertices are Happy

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr +.

R2) Each 7" -vertex gives each 6-nbr - and each 5-nbr %.
10 3

d(v)>9: d(v) —6— d(v)(%) — %(d(v) —9) > 0.
d(v)=8:8—-6— 4(%) — 4(%) > 0.
) = 7: Can give charge 7 — 6 = 1.

d(v




All Vertices are Happy

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr +.

R2) Each 7" -vertex gives each 6-nbr - and each 5-nbr %.
10 3

d(v) —9) > 0.




All Vertices are Happy

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr +.

R2) Each 7" -vertex gives each 6-nbr - and each 5-nbr %.
10 3

d(v) —9) > 0.




All Vertices are Happy

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr +.

R2) Each 7" -vertex gives each 6-nbr - and each 5-nbr %.
10 3

d(v)>9: d(v) —6— d(v)(%) — %(d(v) —9) > 0.
d(v)=8:8—-6— 4(%) — 4(%) > 0.
) = 7: Can give charge 7 — 6 = 1.

d(v




All Vertices are Happy

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr +.

R2) Each 7" -vertex gives each 6-nbr - and each 5-nbr %.
10 3

d(v)>9: d(v) —6— d(v)(%) — %(d(v) —9) > 0.
d(v)=8:8—-6— 4(%) — 4(%) > 0.
) = 7: Can give charge 7 — 6 = 1.

d(v




All Vertices are Happy (continued)



All Vertices are Happy (continued)

Discharging Rules
(R1) Each 6-vertex gives each 5-nbr %
(R2) Each 7"-vertex gives each 6-nbr -5 and each 5-nbr 3.



All Vertices are Happy (continued)

Discharging Rules
(R1) Each 6-vertex gives each 5-nbr %
(R2) Each 7"-vertex gives each 6-nbr -5 and each 5-nbr 3.

d(v) =6:



All Vertices are Happy (continued)

Discharging Rules
(R1) Each 6-vertex gives each 5-nbr %
(R2) Each 7"-vertex gives each 6-nbr -5 and each 5-nbr 3.

d(v) =6:
Can give

net charge
6—-6=0.



All Vertices are Happy (continued)

Discharging Rules
(R1) Each 6-vertex gives each 5-nbr %
(R2) Each 7"-vertex gives each 6-nbr -5 and each 5-nbr 3.

d(v) =6:
Can give

net charge
6—-6=0.




All Vertices are Happy (continued)

Discharging Rules
(R1) Each 6-vertex gives each 5-nbr %
(R2) Each 7"-vertex gives each 6-nbr -5 and each 5-nbr 3.

d(v) =6:
Can give

net charge
6—-6=0.




All Vertices are Happy (continued)

Discharging Rules
(R1) Each 6-vertex gives each 5-nbr %
(R2) Each 7"-vertex gives each 6-nbr -5 and each 5-nbr 3.

d(v) =6:
Can give

net charge
6—-6=0.




All Vertices are Happy (continued)

Discharging Rules
(R1) Each 6-vertex gives each 5-nbr %
(R2) Each 7"-vertex gives each 6-nbr -5 and each 5-nbr 3.

d(v) =6:
Can give

net charge
6—-6=0.




All Vertices are Happy (continued)

Discharging Rules
(R1) Each 6-vertex gives each 5-nbr %
(R2) Each 7"-vertex gives each 6-nbr -5 and each 5-nbr 3.

d(v) =6:
Can give

net charge
6—-6=0.




All Vertices are Happy (continued)

Discharging Rules
(R1) Each 6-vertex gives each 5-nbr %
(R2) Each 7"-vertex gives each 6-nbr -5 and each 5-nbr 3.

d(v) =6:
Can give

net charge
6—-6=0.




All Vertices are Happy (continued)

Discharging Rules
(R1) Each 6-vertex gives each 5-nbr %
(R2) Each 7"-vertex gives each 6-nbr -5 and each 5-nbr 3.

d(v) =6:
Can give

net charge
6—-6=0.




All Vertices are Happy (continued)

Discharging Rules
(R1) Each 6-vertex gives each 5-nbr %
(R2) Each 7"-vertex gives each 6-nbr -5 and each 5-nbr 3.

d(v) =6:
Can give

net charge
6—-6=0.

d(v) =5:
Must get

net charge
6—-5=1



All Vertices are Happy (continued)

Discharging Rules
(R1) Each 6-vertex gives each 5-nbr %
(R2) Each 7"-vertex gives each 6-nbr -5 and each 5-nbr 3.

d(v) =6:
Can give

net charge
6—-6=0.

d(v) =5:
Must get

net charge
6—-5=1




All Vertices are Happy (continued)

Discharging Rules
(R1) Each 6-vertex gives each 5-nbr %
(R2) Each 7"-vertex gives each 6-nbr -5 and each 5-nbr 3.

d(v) =6:
Can give

net charge
6—-6=0.

d(v) =5:
Must get

net charge
6—-5=1




All Vertices are Happy (continued)

Discharging Rules
(R1) Each 6-vertex gives each 5-nbr %
(R2) Each 7"-vertex gives each 6-nbr -5 and each 5-nbr 3.

d(v) =6:
Can give

net charge
6—-6=0.

d(v) =5:
Must get

net charge
6—-5=1




All Vertices are Happy (continued)

Discharging Rules
(R1) Each 6-vertex gives each 5-nbr %
(R2) Each 7"-vertex gives each 6-nbr -5 and each 5-nbr 3.

d(v) =6:
Can give

net charge
6—-6=0.

d(v) =5:
Must get

net charge
6—-5=1




All Vertices are Happy (continued)

Discharging Rules
(R1) Each 6-vertex gives each 5-nbr %
(R2) Each 7"-vertex gives each 6-nbr -5 and each 5-nbr 3.

d(v) = 6: ©, (5%

et 5 o e

i TS B0 B
0 2(2) ~ ()

1 1
5 — 2(5p)

d(v) = 5: (67) 5 @
Most g @g.%@ @:5@ @3‘%@
net charge

D2 ODEENOZG

et charge 440



All Vertices are Happy (continued)

Discharging Rules
(R1) Each 6-vertex gives each 5-nbr %
(R2) Each 7"-vertex gives each 6-nbr -5 and each 5-nbr 3.

d(v) = 6: ©, (5%

et 5 o e

i TS B0 B
0 2(2) ~ ()

1 1
5 — 2(5p)

d(v) = 5: (67) 5 @
Most g @g.%@ @:5@ @3‘%@
net charge

D2 ODEENOZG

et charge 440

5(3) 2(3) +2(3) 3(3)



All Vertices are Happy (continued)

Discharging Rules
(R1) Each 6-vertex gives each 5-nbr %
(R2) Each 7"-vertex gives each 6-nbr -5 and each 5-nbr 3.

d(v) = 6: ©, (5%

et 5 o e

i TS B0 B
0 2(2) ~ ()

1 1
5 — 2(5p)

d(v) = 5: (67) 5 @
Most g @g.%@ @:5@ @3‘%@
net charge

D2 ODEENOZG

et charge 440

5(3) 2(3) +2(3) 3(3)



Summary



Summary

» Coloring planar graphs



Summary

» Coloring planar graphs
» 5CT is easy, 4CT is hard



Summary

» Coloring planar graphs
» 5CT is easy, 4CT is hard; What's in between?



Summary

» Coloring planar graphs

» 5CT is easy, 4CT is hard; What's in between?
» Two-fold coloring: vertex is half red, half blue



Summary

» Coloring planar graphs
» 5CT is easy, 4CT is hard; What's in between?
» Two-fold coloring: vertex is half red, half blue
> Erdés-Vizing Conjecture: o(G) > %n



Summary

» Coloring planar graphs

» 5CT is easy, 4CT is hard; What's in between?
» Two-fold coloring: vertex is half red, half blue
» Erdds-Vizing Conjecture: o(G) > in

» Planar graphs are g—colorable (homomorphism to Ko.»)



Summary

» Coloring planar graphs

» 5CT is easy, 4CT is hard; What's in between?
» Two-fold coloring: vertex is half red, half blue
» Erdds-Vizing Conjecture: o(G) > in

» Planar graphs are g—colorable (homomorphism to Ko.»)
» induction on n, like 5CT



Summary

» Coloring planar graphs

» 5CT is easy, 4CT is hard; What's in between?
» Two-fold coloring: vertex is half red, half blue
» Erdds-Vizing Conjecture: o(G) > in

» Planar graphs are g—colorable (homomorphism to Ko.»)
» induction on n, like 5CT; multiple possible induction steps



Summary

» Coloring planar graphs

» 5CT is easy, 4CT is hard; What's in between?
» Two-fold coloring: vertex is half red, half blue
» Erdds-Vizing Conjecture: o(G) > in

» Planar graphs are g—colorable (homomorphism to Ko.»)

» induction on n, like 5CT; multiple possible induction steps
> no 47 -verts, no separating 3-cycle, few 6 -verts near others



Summary

» Coloring planar graphs
» 5CT is easy, 4CT is hard; What's in between?
» Two-fold coloring: vertex is half red, half blue
» Erdds-Vizing Conjecture: o(G) > in

» Planar graphs are g—colorable (homomorphism to Ko.»)
» induction on n, like 5CT; multiple possible induction steps
> no 47 -verts, no separating 3-cycle, few 6 -verts near others
» most induction steps use Key Fact for coloring Kj 3



Summary

» Coloring planar graphs

>

5CT is easy, 4CT is hard; What's in between?

» Two-fold coloring: vertex is half red, half blue

>

Erdds-Vizing Conjecture: (G) > in

» Planar graphs are g—colorable (homomorphism to Ko.»)
» induction on n, like 5CT; multiple possible induction steps

v

v

v

no 4~ -verts, no separating 3-cycle, few 6~ -verts near others
most induction steps use Key Fact for coloring Ki 3
use discharging (counting) to prove no counterexample exists



Summary

» Coloring planar graphs
» 5CT is easy, 4CT is hard; What's in between?
» Two-fold coloring: vertex is half red, half blue
» Erdds-Vizing Conjecture: o(G) > in

» Planar graphs are g—colorable (homomorphism to Ko.»)

» induction on n, like 5CT; multiple possible induction steps
no 4~ -verts, no separating 3-cycle, few 6~ -verts near others
most induction steps use Key Fact for coloring Ki 3
use discharging (counting) to prove no counterexample exists

v

v

v

> Albertson proved o(G) >

OIN

n



Summary

» Coloring planar graphs
» 5CT is easy, 4CT is hard; What's in between?
» Two-fold coloring: vertex is half red, half blue
» Erdds-Vizing Conjecture: o(G) > in

» Planar graphs are g—colorable (homomorphism to Ko.»)

» induction on n, like 5CT; multiple possible induction steps
no 4~ -verts, no separating 3-cycle, few 6~ -verts near others
most induction steps use Key Fact for coloring Ki 3
use discharging (counting) to prove no counterexample exists

v

v

v

> Albertson proved a(G) > §n

» we strengthened to a(G) > 2

131



Summary

» Coloring planar graphs
» 5CT is easy, 4CT is hard; What's in between?
» Two-fold coloring: vertex is half red, half blue
» Erdds-Vizing Conjecture: o(G) > in

» Planar graphs are g—colorable (homomorphism to Ko.»)

» induction on n, like 5CT; multiple possible induction steps
no 4~ -verts, no separating 3-cycle, few 6~ -verts near others
most induction steps use Key Fact for coloring Ki 3
use discharging (counting) to prove no counterexample exists

v

v

v

> Albertson proved a(G) > §n



Summary

» Coloring planar graphs
» 5CT is easy, 4CT is hard; What's in between?
» Two-fold coloring: vertex is half red, half blue
» Erdds-Vizing Conjecture: o(G) > in

» Planar graphs are g—colorable (homomorphism to Ko.»)
induction on n, like 5CT; multiple possible induction steps
no 4~ -verts, no separating 3-cycle, few 6~ -verts near others
most induction steps use Key Fact for coloring Ki 3

use discharging (counting) to prove no counterexample exists

vV vy vy

> Albertson proved a(G) > §n
)

» we strengthened to o(G) > %n
% |<1) ing proof
n

» proof uses same ideas as
is by 4CT

1
co
» only know proof that a(G) >



Summary

» Coloring planar graphs
» 5CT is easy, 4CT is hard; What's in between?
» Two-fold coloring: vertex is half red, half blue
» Erdds-Vizing Conjecture: o(G) > in

» Planar graphs are g—colorable (homomorphism to Ko.»)
induction on n, like 5CT; multiple possible induction steps
no 4~ -verts, no separating 3-cycle, few 6~ -verts near others
most induction steps use Key Fact for coloring Ki 3

use discharging (counting) to prove no counterexample exists

vV vy vy

> Albertson proved a(G) > §n
)

3
> 13
9.
2

» we strengthened to (G
» proof uses same ideas as

1
co
» only know proof that a(G) >

n
loring proof
Tnis by 4CT

» Thanks to R. Thomas and UIUC math for pictures in intro!
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