Planar graphs are 9/2-colorable and have big independent sets

> Daniel W. Cranston Virginia Commonwealth University dcranston@vcu.edu

Joint with Landon Rabern Slides available on my webpage

Math Department Colloquium George Washington 6 February 2015

 \triangleright Can we 4-color the regions of every map?

 \triangleright Can we 4-color the regions of every map? -Guthrie (1852)

- \triangleright Can we 4-color the regions of every map? -Guthrie (1852)
- \blacktriangleright ...grew to be the second most famous unsolved problem in mathematics

- \triangleright Can we 4-color the regions of every map? -Guthrie (1852)
- \blacktriangleright ...grew to be the second most famous unsolved problem in mathematics after Fermat's last theorem.

- \triangleright Can we 4-color the regions of every map? -Guthrie (1852)
- \blacktriangleright ...grew to be the second most famous unsolved problem in mathematics after Fermat's last theorem. –Devlin (2005)

- \triangleright Can we 4-color the regions of every map? -Guthrie (1852)
- \blacktriangleright ...grew to be the second most famous unsolved problem in mathematics after Fermat's last theorem. –Devlin (2005)

- \triangleright Can we 4-color the regions of every map? $-Guthrie$ (1852)
- \blacktriangleright ...grew to be the second most famous unsolved problem in mathematics after Fermat's last theorem. –Devlin (2005)

 \triangleright Same as coloring vertices of planar dual graph.

- \triangleright Can we 4-color the regions of every map? $-Guthrie$ (1852)
- \blacktriangleright ...grew to be the second most famous unsolved problem in mathematics after Fermat's last theorem. –Devlin (2005)

- \triangleright Same as coloring vertices of planar dual graph.
- \triangleright Can we properly 4-color the vertices of every planar graph?

- \triangleright Can we 4-color the regions of every map? $-Guthrie$ (1852)
- \blacktriangleright ...grew to be the second most famous unsolved problem in mathematics after Fermat's last theorem. –Devlin (2005)

- \triangleright Same as coloring vertices of planar dual graph.
- \triangleright Can we properly 4-color the vertices of every planar graph?
- \triangleright Finally, answered in 1976 by Appel and Haken: Yes!

- ▶ Can we 4-color the regions of every map? -Guthrie (1852)
- ▶ …grew to be the second most famous unsolved problem in mathematics after Fermat's last theorem. —Devlin (2005)

- \triangleright Same as coloring vertices of planar dual graph.
- \triangleright Can we properly 4-color the vertices of every planar graph?
- \triangleright Finally, answered in 1976 by Appel and Haken: Yes!

- ▶ Can we 4-color the regions of every map? -Guthrie (1852)
- ▶ …grew to be the second most famous unsolved problem in mathematics after Fermat's last theorem. —Devlin (2005)

- \triangleright Same as coloring vertices of planar dual graph.
- \triangleright Can we properly 4-color the vertices of every planar graph?
- \triangleright Finally, answered in 1976 by Appel and Haken: Yes!

 \blacktriangleright Proof uses computers.

- ▶ Can we 4-color the regions of every map? -Guthrie (1852)
- ▶ …grew to be the second most famous unsolved problem in mathematics after Fermat's last theorem. —Devlin (2005)

- \triangleright Same as coloring vertices of planar dual graph.
- \triangleright Can we properly 4-color the vertices of every planar graph?
- \triangleright Finally, answered in 1976 by Appel and Haken: Yes!

 \blacktriangleright Proof uses computers. \odot

- ▶ Can we 4-color the regions of every map? -Guthrie (1852)
- ▶ …grew to be the second most famous unsolved problem in mathematics after Fermat's last theorem. —Devlin (2005)

- \triangleright Same as coloring vertices of planar dual graph.
- \triangleright Can we properly 4-color the vertices of every planar graph?
- \triangleright Finally, answered in 1976 by Appel and Haken: Yes!

 \triangleright Proof uses computers. \odot Later proofs also use computers.

Fact 1: Every *n*-vertex triangulation has $3n - 6$ edges.

Fact 1: Every *n*-vertex triangulation has $3n - 6$ edges. **Cor:** K_5 is non-planar. (Since 3(5) $-$ 6 $= 9 < 10 = {5 \choose 2}$ $_{2}^{5}).$

Fact 1: Every *n*-vertex triangulation has $3n - 6$ edges. **Cor:** K_5 is non-planar. (Since 3(5) $-$ 6 $= 9 < 10 = {5 \choose 2}$ $_{2}^{5}).$

Thm: Every planar graph \overline{G} is 5-colorable.

Fact 1: Every *n*-vertex triangulation has $3n - 6$ edges. **Cor:** K_5 is non-planar. (Since 3(5) $-$ 6 $= 9 < 10 = {5 \choose 2}$ $_{2}^{5}).$

Thm: Every planar graph \overline{G} is 5-colorable.

Pf: Add edges to get a triangulation.

Fact 1: Every *n*-vertex triangulation has $3n - 6$ edges. **Cor:** K_5 is non-planar. (Since 3(5) $-$ 6 $= 9 < 10 = {5 \choose 2}$ $_{2}^{5}).$

Thm: Every planar graph \overline{G} is 5-colorable.

 $\sum_{v \in V} d(v) = 2|E| = 2(3n-6) < 6n$. Pf: Add edges to get a triangulation. Now

Fact 1: Every *n*-vertex triangulation has $3n - 6$ edges. **Cor:** K_5 is non-planar. (Since 3(5) $-$ 6 $= 9 < 10 = {5 \choose 2}$ $_{2}^{5}).$

Thm: Every planar graph \overline{G} is 5-colorable.

 $\sum_{v \in V} d(v) = 2|E| = 2(3n-6) < 6n$. Pf: Add edges to get a triangulation. Now So some vertex v is a 5^- -vertex.

Fact 1: Every *n*-vertex triangulation has $3n - 6$ edges. **Cor:** K_5 is non-planar. (Since 3(5) $-$ 6 $= 9 < 10 = {5 \choose 2}$ $_{2}^{5}).$

Thm: Every planar graph \overline{G} is 5-colorable.

 $\sum_{v \in V} d(v) = 2|E| = 2(3n-6) < 6n$. Pf: Add edges to get a triangulation. Now So some vertex v is a 5⁻-vertex. When v is a 4⁻-vertex, we 5-color $G - v$ by induction, then color v.

Fact 1: Every *n*-vertex triangulation has $3n - 6$ edges. **Cor:** K_5 is non-planar. (Since 3(5) $-$ 6 $= 9 < 10 = {5 \choose 2}$ $_{2}^{5}).$

Thm: Every planar graph \overline{G} is 5-colorable.

 $\sum_{v \in V} d(v) = 2|E| = 2(3n-6) < 6n$. Pf: Add edges to get a triangulation. Now So some vertex v is a 5⁻-vertex. When v is a 4⁻-vertex, we 5-color $G - v$ by induction, then color v. Now, since K_5 is non-planar, v has non-adjacent neighbors w_1 and w_2 .

Fact 1: Every *n*-vertex triangulation has $3n - 6$ edges. **Cor:** K_5 is non-planar. (Since 3(5) $-$ 6 $= 9 < 10 = {5 \choose 2}$ $_{2}^{5}).$

Thm: Every planar graph \overline{G} is 5-colorable.

 $\sum_{v \in V} d(v) = 2|E| = 2(3n-6) < 6n$. **Pf:** Add edges to get a triangulation. Now So some vertex v is a 5⁻-vertex. When v is a 4⁻-vertex, we 5-color $G - v$ by induction, then color v. Now, since K_5 is non-planar, v has non-adjacent neighbors w_1 and w_2 . Contract vw_1 and vw_2 ;

Fact 1: Every *n*-vertex triangulation has $3n - 6$ edges. **Cor:** K_5 is non-planar. (Since 3(5) $-$ 6 $= 9 < 10 = {5 \choose 2}$ $_{2}^{5}).$

Thm: Every planar graph \overline{G} is 5-colorable.

 $\sum_{v \in V} d(v) = 2|E| = 2(3n-6) < 6n$. **Pf:** Add edges to get a triangulation. Now So some vertex v is a 5⁻-vertex. When v is a 4⁻-vertex, we 5-color $G - v$ by induction, then color v. Now, since K_5 is non-planar, v has non-adjacent neighbors w_1 and w_2 . Contract vw_1 and vw_2 ; 5-color by induction.

Fact 1: Every *n*-vertex triangulation has $3n - 6$ edges. **Cor:** K_5 is non-planar. (Since 3(5) $-$ 6 $= 9 < 10 = {5 \choose 2}$ $_{2}^{5}).$

Thm: Every planar graph \overline{G} is 5-colorable.

 $\sum_{v \in V} d(v) = 2|E| = 2(3n-6) < 6n$. **Pf:** Add edges to get a triangulation. Now So some vertex v is a 5⁻-vertex. When v is a 4⁻-vertex, we 5-color $G - v$ by induction, then color v. Now, since K_5 is non-planar, v has non-adjacent neighbors w_1 and w_2 . Contract vw_1 and vw_2 ; 5-color by induction. This gives 5-coloring of $G - v$.

Fact 1: Every *n*-vertex triangulation has $3n - 6$ edges. **Cor:** K_5 is non-planar. (Since 3(5) $-$ 6 $= 9 < 10 = {5 \choose 2}$ $_{2}^{5}).$

Thm: Every planar graph \overline{G} is 5-colorable.

 $\sum_{v \in V} d(v) = 2|E| = 2(3n-6) < 6n$. **Pf:** Add edges to get a triangulation. Now So some vertex v is a 5⁻-vertex. When v is a 4⁻-vertex, we 5-color $G - v$ by induction, then color v. Now, since K_5 is non-planar, v has non-adjacent neighbors w_1 and w_2 . Contract vw_1 and vw_2 ; 5-color by induction. This gives 5-coloring of $G - v$. Now extend to v, since w_1 and w_2 have same color.

Fact 1: Every *n*-vertex triangulation has $3n - 6$ edges. **Cor:** K_5 is non-planar. (Since 3(5) $-$ 6 $= 9 < 10 = {5 \choose 2}$ $_{2}^{5}).$

Thm: Every planar graph \overline{G} is 5-colorable.

 $\sum_{v \in V} d(v) = 2|E| = 2(3n-6) < 6n$. **Pf:** Add edges to get a triangulation. Now So some vertex v is a 5⁻-vertex. When v is a 4⁻-vertex, we 5-color $G - v$ by induction, then color v. Now, since K_5 is non-planar, v has non-adjacent neighbors w_1 and w_2 . Contract vw_1 and vw_2 ; 5-color by induction. This gives 5-coloring of $G - v$. Now extend to v, since w_1 and w_2 have same color.

Fact 1: Every *n*-vertex triangulation has $3n - 6$ edges. **Cor:** K_5 is non-planar. (Since 3(5) $-$ 6 $= 9 < 10 = {5 \choose 2}$ $_{2}^{5}).$

Thm: Every planar graph \overline{G} is 5-colorable.

 $\sum_{v \in V} d(v) = 2|E| = 2(3n-6) < 6n$. **Pf:** Add edges to get a triangulation. Now So some vertex v is a 5⁻-vertex. When v is a 4⁻-vertex, we 5-color $G - v$ by induction, then color v. Now, since K_5 is non-planar, v has non-adjacent neighbors w_1 and w_2 . Contract vw_1 and vw_2 ; 5-color by induction. This gives 5-coloring of $G - v$. Now extend to v, since w_1 and w_2 have same color.

Cor: Every planar graph G has $\alpha(G) \geq \frac{1}{5}$ $rac{1}{5}n$.

4CT is hard and 5CT is easy. What's in between?

► Erdös–Vizing Conj.: Every *n*-vertex planar G has $\alpha(G) \geq \frac{1}{4}$ $rac{1}{4}n$.

- ► Erdös–Vizing Conj.: Every *n*-vertex planar G has $\alpha(G) \geq \frac{1}{4}$ $rac{1}{4}n$.
- \triangleright Two-fold coloring: color vertex "half red and half blue"

- ► Erdös–Vizing Conj.: Every *n*-vertex planar G has $\alpha(G) \geq \frac{1}{4}$ $rac{1}{4}n$.
- \blacktriangleright Two-fold coloring: color vertex "half red and half blue"
	- \triangleright 5CT implies that 10 colors suffice

- ► Erdös–Vizing Conj.: Every *n*-vertex planar G has $\alpha(G) \geq \frac{1}{4}$ $rac{1}{4}n$.
- \triangleright Two-fold coloring: color vertex "half red and half blue"
	- \triangleright 5CT implies that 10 colors suffice
	- \triangleright 4CT implies that 8 colors suffice

- ► Erdös–Vizing Conj.: Every *n*-vertex planar G has $\alpha(G) \geq \frac{1}{4}$ $rac{1}{4}n$.
- \triangleright Two-fold coloring: color vertex "half red and half blue"
	- \triangleright 5CT implies that 10 colors suffice
	- \triangleright 4CT implies that 8 colors suffice
	- \blacktriangleright $\frac{9}{2}$ CT will show that 9 colors suffice.
4CT is hard and 5CT is easy. What's in between?

- ► Erdös–Vizing Conj.: Every *n*-vertex planar G has $\alpha(G) \geq \frac{1}{4}$ $rac{1}{4}n$.
- \triangleright Two-fold coloring: color vertex "half red and half blue"
	- \triangleright 5CT implies that 10 colors suffice
	- \triangleright 4CT implies that 8 colors suffice
	- \blacktriangleright $\frac{9}{2}$ CT will show that 9 colors suffice.

Def: The Kneser graph $K_{n,k}$ has as vertices the k -element subsets of $\{1, \ldots, n\}$. Vertices are adjacent whenever their sets are disjoint.

4CT is hard and 5CT is easy. What's in between?

- ► Erdös–Vizing Conj.: Every *n*-vertex planar G has $\alpha(G) \geq \frac{1}{4}$ $rac{1}{4}n$.
- \triangleright Two-fold coloring: color vertex "half red and half blue"
	- \triangleright 5CT implies that 10 colors suffice
	- \triangleright 4CT implies that 8 colors suffice
	- \blacktriangleright $\frac{9}{2}$ CT will show that 9 colors suffice.

Def: The Kneser graph $K_{n,k}$ has as vertices the k -element subsets of $\{1, \ldots, n\}$. Vertices are adjacent whenever their sets are disjoint.

4CT is hard and 5CT is easy. What's in between?

- ► Erdös–Vizing Conj.: Every *n*-vertex planar G has $\alpha(G) \geq \frac{1}{4}$ $rac{1}{4}n$.
- \triangleright Two-fold coloring: color vertex "half red and half blue"
	- \triangleright 5CT implies that 10 colors suffice
	- \triangleright 4CT implies that 8 colors suffice
	- \blacktriangleright $\frac{9}{2}$ CT will show that 9 colors suffice.

Def: The Kneser graph $K_{n,k}$ has as vertices the k -element subsets of $\{1, \ldots, n\}$. Vertices are adjacent whenever their sets are disjoint.

Want $f: V(G) \rightarrow V(K_{n:k})$ where $f(u)f(v) \in E(K_{n:k})$ if $uv \in E(G)$.

4CT is hard and 5CT is easy. What's in between?

- ► Erdös–Vizing Conj.: Every *n*-vertex planar G has $\alpha(G) \geq \frac{1}{4}$ $rac{1}{4}n$.
- \triangleright Two-fold coloring: color vertex "half red and half blue"
	- \triangleright 5CT implies that 10 colors suffice
	- \triangleright 4CT implies that 8 colors suffice
	- \blacktriangleright $\frac{9}{2}$ CT will show that 9 colors suffice.

Def: The Kneser graph $K_{n,k}$ has as vertices the k -element subsets of $\{1, \ldots, n\}$. Vertices are adjacent whenever their sets are disjoint.

Want $f: V(G) \to V(K_{n:k})$ where $f(u)f(v) \in E(K_{n:k})$ if $uv \in E(G)$.

We'll show that planar graphs have a map to $K_{9.2}$.

4CT is hard and 5CT is easy. What's in between?

- ► Erdös–Vizing Conj.: Every *n*-vertex planar G has $\alpha(G) \geq \frac{1}{4}$ $rac{1}{4}n$.
- \triangleright Two-fold coloring: color vertex "half red and half blue"
	- \triangleright 5CT implies that 10 colors suffice
	- \triangleright 4CT implies that 8 colors suffice
	- \blacktriangleright $\frac{9}{2}$ CT will show that 9 colors suffice.

Def: The Kneser graph $K_{n,k}$ has as vertices the k -element subsets of $\{1, \ldots, n\}$. Vertices are adjacent whenever their sets are disjoint.

Want $f: V(G) \to V(K_{n:k})$ where $f(u)f(v) \in E(K_{n:k})$ if $uv \in E(G)$.

We'll show that planar graphs have a map to $K_{9.2}$. G is k-colorable iff G has homomorphism to K_k .

4CT is hard and 5CT is easy. What's in between?

- ► Erdös–Vizing Conj.: Every *n*-vertex planar G has $\alpha(G) \geq \frac{1}{4}$ $rac{1}{4}n$.
- \triangleright Two-fold coloring: color vertex "half red and half blue"
	- \triangleright 5CT implies that 10 colors suffice
	- \triangleright 4CT implies that 8 colors suffice
	- \blacktriangleright $\frac{9}{2}$ CT will show that 9 colors suffice.

Def: The Kneser graph $K_{n,k}$ has as vertices the k -element subsets of $\{1, \ldots, n\}$. Vertices are adjacent whenever their sets are disjoint.

Want $f: V(G) \to V(K_{n:k})$ where $f(u)f(v) \in E(K_{n:k})$ if $uv \in E(G)$.

We'll show that planar graphs have a map to $K_{9.2}$. G is k-colorable iff G has homomorphism to K_k . Generalizes "coloring" to "coloring with graphs".

Thm: Every planar graph has a homomorphism to $K_{9:2}$.

Thm: Every planar graph has a homomorphism to $K_{9:2}$. Pf:

Thm: Every planar graph has a homomorphism to $K_{9:2}$. **Pf:** Induction on n , like 5CT. If we can't do induction, then G :

1. has minimum degree 5

Thm: Every planar graph has a homomorphism to $K_{9:2}$. **Pf:** Induction on n , like 5CT. If we can't do induction, then G :

- 1. has minimum degree 5
- 2. has no separating triangle

Thm: Every planar graph has a homomorphism to $K_{9.2}$.

- **Pf:** Induction on n, like 5CT. If we can't do induction, then G :
	- 1. has minimum degree 5
	- 2. has no separating triangle
	- 3. can't have "too many 6^- -vertices near each other" (13 cases, grouped into 3 lemmas by degree of central vertex)

Thm: Every planar graph has a homomorphism to $K_{9.2}$.

- **Pf:** Induction on n, like 5CT. If we can't do induction, then G :
	- 1. has minimum degree 5
	- 2. has no separating triangle
	- 3. can't have "too many 6^- -vertices near each other" (13 cases, grouped into 3 lemmas by degree of central vertex) if so, then contract some non-adjacent pairs of neighbors; color smaller graph by induction, then extend to G

Thm: Every planar graph has a homomorphism to $K_{9.2}$.

Pf: Induction on n, like 5CT. If we can't do induction, then G :

- 1. has minimum degree 5
- 2. has no separating triangle
- 3. can't have "too many 6^- -vertices near each other" (13 cases, grouped into 3 lemmas by degree of central vertex) if so, then contract some non-adjacent pairs of neighbors; color smaller graph by induction, then extend to G

Finally, use discharging method (counting argument) to show that every planar graph fails (1) , (2) , or (3) .

Key Fact: Denote the center vertex of $K_{1,3}$ by v and the other vertices by u_1, u_2, u_3 .

Key Fact: Denote the center vertex of $K_{1,3}$ by v and the other vertices by u_1, u_2, u_3 . If v has 5 allowable colors and each u_i has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.

Key Fact: Denote the center vertex of $K_{1,3}$ by v and the other vertices by u_1, u_2, u_3 . If v has 5 allowable colors and each u_i has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.

Pf: Give v a color available for at most one u_i , say u_1 .

Key Fact: Denote the center vertex of $K_{1,3}$ by v and the other vertices by u_1, u_2, u_3 . If v has 5 allowable colors and each u_i has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.

Pf: Give v a color available for at most one u_i , say u_1 . 2(5) $> 3(3)$

Key Fact: Denote the center vertex of $K_{1,3}$ by v and the other vertices by u_1, u_2, u_3 . If v has 5 allowable colors and each u_i has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.

Key Fact: Denote the center vertex of $K_{1,3}$ by v and the other vertices by u_1, u_2, u_3 . If v has 5 allowable colors and each u_i has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.

Key Fact: Denote the center vertex of $K_{1,3}$ by v and the other vertices by u_1, u_2, u_3 . If v has 5 allowable colors and each u_i has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.

Key Fact: Denote the center vertex of $K_{1,3}$ by v and the other vertices by u_1, u_2, u_3 . If v has 5 allowable colors and each u_i has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.

Key Fact: Denote the center vertex of $K_{1,3}$ by v and the other vertices by u_1, u_2, u_3 . If v has 5 allowable colors and each u_i has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.

Rem: Reducible configuration proofs use only this Key Fact.

Thm [Albertson '76]: If G is a plane triangulation with minimum degree 5 and no separating triangle, then G contains a good kite:

Thm [Albertson '76]: If G is a plane triangulation with minimum degree 5 and no separating triangle, then G contains a good kite:

Thm [Albertson '76]: If G is a plane triangulation with minimum degree 5 and no separating triangle, then G contains a good kite:

Cor: Every *n*-vertex planar graph has indep. number at least $\frac{2}{9}n$.

Thm [Albertson '76]: If G is a plane triangulation with minimum degree 5 and no separating triangle, then G contains a good kite:

Cor: Every *n*-vertex planar graph has indep. number at least $\frac{2}{9}n$. **Rem:** We improve this bound to indep. number at least $\frac{3}{13}n$.

Thm [Albertson '76]: If G is a plane triangulation with minimum degree 5 and no separating triangle, then G contains a good kite:

Cor: Every *n*-vertex planar graph has indep. number at least $\frac{2}{9}n$. **Rem:** We improve this bound to indep. number at least $\frac{3}{13}n$. **Pf of Thm:** Suppose such a triangulation \overline{G} has no good kite.

Thm [Albertson '76]: If G is a plane triangulation with minimum degree 5 and no separating triangle, then G contains a good kite:

Cor: Every *n*-vertex planar graph has indep. number at least $\frac{2}{9}n$. **Rem:** We improve this bound to indep. number at least $\frac{3}{13}n$. **Pf of Thm:** Suppose such a triangulation G has no good kite. Give each v charge $ch(v) = d(v) - 6$.

Thm [Albertson '76]: If G is a plane triangulation with minimum degree 5 and no separating triangle, then G contains a good kite:

Cor: Every *n*-vertex planar graph has indep. number at least $\frac{2}{9}n$. **Rem:** We improve this bound to indep. number at least $\frac{3}{13}n$. **Pf of Thm:** Suppose such a triangulation \overline{G} has no good kite. Give each v charge $ch(v) = d(v) - 6$. Now redistribute charge; call new charge $ch^*(v)$.

Thm [Albertson '76]: If G is a plane triangulation with minimum degree 5 and no separating triangle, then G contains a good kite:

Cor: Every *n*-vertex planar graph has indep. number at least $\frac{2}{9}n$. **Rem:** We improve this bound to indep. number at least $\frac{3}{13}n$. **Pf of Thm:** Suppose such a triangulation \overline{G} has no good kite. Give each v charge $ch(v) = d(v) - 6$. Now redistribute charge; call new charge $ch^*(v)$. Show $ch^*(v) \geq 0$ for all v.

Thm [Albertson '76]: If G is a plane triangulation with minimum degree 5 and no separating triangle, then G contains a good kite:

Cor: Every *n*-vertex planar graph has indep. number at least $\frac{2}{9}n$. **Rem:** We improve this bound to indep. number at least $\frac{3}{13}n$. **Pf of Thm:** Suppose such a triangulation \overline{G} has no good kite. Give each v charge $ch(v) = d(v) - 6$. Now redistribute charge; call new charge $ch^*(v)$. Show $ch^*(v) \geq 0$ for all v. However, $\sum_{v \in V} d(v) - 6 = 2|E| - 6|V|$

Thm [Albertson '76]: If G is a plane triangulation with minimum degree 5 and no separating triangle, then G contains a good kite:

Cor: Every *n*-vertex planar graph has indep. number at least $\frac{2}{9}n$. **Rem:** We improve this bound to indep. number at least $\frac{3}{13}n$. **Pf of Thm:** Suppose such a triangulation \overline{G} has no good kite. Give each v charge $ch(v) = d(v) - 6$. Now redistribute charge; call new charge $ch^*(v)$. Show $ch^*(v) \geq 0$ for all v. However, $\sum_{v \in V} d(v) - 6 = 2|E| - 6|V| = 2(3|V| - 6) - 6|V|$

Thm [Albertson '76]: If G is a plane triangulation with minimum degree 5 and no separating triangle, then G contains a good kite:

Cor: Every *n*-vertex planar graph has indep. number at least $\frac{2}{9}n$. **Rem:** We improve this bound to indep. number at least $\frac{3}{13}n$. **Pf of Thm:** Suppose such a triangulation \overline{G} has no good kite. Give each v charge $ch(v) = d(v) - 6$. Now redistribute charge; call new charge $ch^*(v)$. Show $ch^*(v) \geq 0$ for all v. However, $\sum_{v \in V} d(v) - 6 = 2|E| - 6|V| = 2(3|V| - 6) - 6|V| = -12$, so:
Independence Number

Thm [Albertson '76]: If G is a plane triangulation with minimum degree 5 and no separating triangle, then G contains a good kite:

Cor: Every *n*-vertex planar graph has indep. number at least $\frac{2}{9}n$. **Rem:** We improve this bound to indep. number at least $\frac{3}{13}n$. **Pf of Thm:** Suppose such a triangulation \overline{G} has no good kite. Give each v charge $ch(v) = d(v) - 6$. Now redistribute charge; call new charge $ch^*(v)$. Show $ch^*(v) \geq 0$ for all v. However, $\sum_{v \in V} d(v) - 6 = 2|E| - 6|V| = 2(3|V| - 6) - 6|V| = -12$, so:

$$
-12 = \sum_{v \in V} ch(v) = \sum_{v \in V} ch^*(v) \ge 0
$$

Independence Number

Thm [Albertson '76]: If G is a plane triangulation with minimum degree 5 and no separating triangle, then G contains a good kite:

Cor: Every *n*-vertex planar graph has indep. number at least $\frac{2}{9}n$. **Rem:** We improve this bound to indep. number at least $\frac{3}{13}n$. **Pf of Thm:** Suppose such a triangulation \overline{G} has no good kite. Give each v charge $ch(v) = d(v) - 6$. Now redistribute charge; call new charge $ch^*(v)$. Show $ch^*(v) \geq 0$ for all v. However, $\sum_{v \in V} d(v) - 6 = 2|E| - 6|V| = 2(3|V| - 6) - 6|V| = -12$, so: $-12 = \sum ch(v) = \sum ch^*(v) \ge 0$ Contradiction!

$$
-\sum_{v\in V} cn(v) - \sum_{v\in V} cn(v) \ge 0
$$

Discharging Rules

 $(R1)$ Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

Discharging Rules

 $(R1)$ Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

Discharging Rules

 $(R1)$ Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

(R2) Each 7^+ -vertex gives each 6-nbr $\frac{1}{10}$ and each 5-nbr $\frac{1}{3}$.

 $d(v) \geq 9$:

Discharging Rules

 $(R1)$ Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

(R2) Each 7^+ -vertex gives each 6-nbr $\frac{1}{10}$ and each 5-nbr $\frac{1}{3}$.

 $d(v) \geq 9$: $d(v) - 6 - d(v)(\frac{1}{3}) = \frac{2}{3}(d(v) - 9) \geq 0$.

Discharging Rules

 $(R1)$ Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

(R2) Each 7^+ -vertex gives each 6-nbr $\frac{1}{10}$ and each 5-nbr $\frac{1}{3}$.

 $d(v) \geq 9$: $d(v) - 6 - d(v)(\frac{1}{3}) = \frac{2}{3}(d(v) - 9) \geq 0$. $d(v) = 8$:

Discharging Rules

 $(R1)$ Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

$$
d(v) \ge 9: d(v) - 6 - d(v)(\frac{1}{3}) = \frac{2}{3}(d(v) - 9) \ge 0.
$$

$$
d(v) = 8: 8 - 6 - 4(\frac{1}{3}) - 4(\frac{1}{10}) > 0.
$$

Discharging Rules

 $(R1)$ Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

$$
d(v) \ge 9: d(v) - 6 - d(v)(\frac{1}{3}) = \frac{2}{3}(d(v) - 9) \ge 0.
$$

$$
d(v) = 8: 8 - 6 - 4(\frac{1}{3}) - 4(\frac{1}{10}) > 0.
$$

$$
d(v) = 7:
$$

Discharging Rules

 $(R1)$ Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

$$
d(v) \ge 9: d(v) - 6 - d(v)(\frac{1}{3}) = \frac{2}{3}(d(v) - 9) \ge 0.
$$

\n
$$
d(v) = 8: 8 - 6 - 4(\frac{1}{3}) - 4(\frac{1}{10}) > 0.
$$

\n
$$
d(v) = 7: Can give charge 7 - 6 = 1.
$$

Discharging Rules

 $(R1)$ Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

$$
d(v) \ge 9: d(v) - 6 - d(v)(\frac{1}{3}) = \frac{2}{3}(d(v) - 9) \ge 0.
$$

\n
$$
d(v) = 8: 8 - 6 - 4(\frac{1}{3}) - 4(\frac{1}{10}) > 0.
$$

\n
$$
d(v) = 7: Can give charge 7 - 6 = 1.
$$

Discharging Rules

 $(R1)$ Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

$$
d(v) \ge 9: d(v) - 6 - d(v)(\frac{1}{3}) = \frac{2}{3}(d(v) - 9) \ge 0.
$$

$$
d(v) = 8: 8 - 6 - 4(\frac{1}{3}) - 4(\frac{1}{10}) > 0.
$$

$$
d(v) = 7: \text{ Can give charge } 7 - 6 = 1.
$$

Discharging Rules

 $(R1)$ Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

$$
d(v) \ge 9: d(v) - 6 - d(v)(\frac{1}{3}) = \frac{2}{3}(d(v) - 9) \ge 0.
$$

\n
$$
d(v) = 8: 8 - 6 - 4(\frac{1}{3}) - 4(\frac{1}{10}) > 0.
$$

\n
$$
d(v) = 7: Can give charge 7 - 6 = 1.
$$

Discharging Rules

 $(R1)$ Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

$$
d(v) \ge 9: d(v) - 6 - d(v)(\frac{1}{3}) = \frac{2}{3}(d(v) - 9) \ge 0.
$$

\n
$$
d(v) = 8: 8 - 6 - 4(\frac{1}{3}) - 4(\frac{1}{10}) > 0.
$$

\n
$$
d(v) = 7: Can give charge 7 - 6 = 1.
$$

Discharging Rules

 $(R1)$ Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

$$
d(v) \ge 9: d(v) - 6 - d(v)(\frac{1}{3}) = \frac{2}{3}(d(v) - 9) \ge 0.
$$

\n
$$
d(v) = 8: 8 - 6 - 4(\frac{1}{3}) - 4(\frac{1}{10}) > 0.
$$

\n
$$
d(v) = 7: Can give charge 7 - 6 = 1.
$$

Discharging Rules

 $(R1)$ Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

$$
d(v) \ge 9: d(v) - 6 - d(v)(\frac{1}{3}) = \frac{2}{3}(d(v) - 9) \ge 0.
$$

\n
$$
d(v) = 8: 8 - 6 - 4(\frac{1}{3}) - 4(\frac{1}{10}) > 0.
$$

\n
$$
d(v) = 7: Can give charge 7 - 6 = 1.
$$

Discharging Rules

 $(R1)$ Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

$$
d(v) \ge 9: d(v) - 6 - d(v)(\frac{1}{3}) = \frac{2}{3}(d(v) - 9) \ge 0.
$$

\n
$$
d(v) = 8: 8 - 6 - 4(\frac{1}{3}) - 4(\frac{1}{10}) > 0.
$$

\n
$$
d(v) = 7: Can give charge 7 - 6 = 1.
$$

Discharging Rules

 $(R1)$ Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

$$
d(v) \ge 9: d(v) - 6 - d(v)(\frac{1}{3}) = \frac{2}{3}(d(v) - 9) \ge 0.
$$

\n
$$
d(v) = 8: 8 - 6 - 4(\frac{1}{3}) - 4(\frac{1}{10}) > 0.
$$

\n
$$
d(v) = 7: Can give charge 7 - 6 = 1.
$$

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

(R2) Each 7^+ -vertex gives each 6-nbr $\frac{1}{10}$ and each 5-nbr $\frac{1}{3}$.

 $d(v) = 6$:

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

(R2) Each 7^+ -vertex gives each 6-nbr $\frac{1}{10}$ and each 5-nbr $\frac{1}{3}$.

 $d(v) = 6$: Can give net charge $6 - 6 = 0.$

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

(R2) Each 7^+ -vertex gives each 6-nbr $\frac{1}{10}$ and each 5-nbr $\frac{1}{3}$.

 $d(v) = 5$:

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

(R2) Each 7^+ -vertex gives each 6-nbr $\frac{1}{10}$ and each 5-nbr $\frac{1}{3}$.

 $d(v) = 5$: Must get net charge $6 - 5 = 1$

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

 $d(v) = 5$: Must get net charge $6 - 5 = 1$

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

 $d(v) = 5$: Must get net charge $6 - 5 = 1.$

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

(R2) Each 7^+ -vertex gives each 6-nbr $\frac{1}{10}$ and each 5-nbr $\frac{1}{3}$.

 $6⁺$

 $d(v) = 5$: Must get net charge $6 - 5 = 1$

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

(R2) Each 7^+ -vertex gives each 6-nbr $\frac{1}{10}$ and each 5-nbr $\frac{1}{3}$.

 $d(v) = 5$: Must get net charge $6 - 5 = 1$

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

All Vertices are Happy (continued)

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

(R2) Each 7^+ -vertex gives each 6-nbr $\frac{1}{10}$ and each 5-nbr $\frac{1}{3}$.

All Vertices are Happy (continued)

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

(R2) Each 7^+ -vertex gives each 6-nbr $\frac{1}{10}$ and each 5-nbr $\frac{1}{3}$.

 \blacktriangleright Coloring planar graphs

- \blacktriangleright Coloring planar graphs
	- \triangleright 5CT is easy, 4CT is hard

- \blacktriangleright Coloring planar graphs
	- \triangleright 5CT is easy, 4CT is hard; What's in between?

- \blacktriangleright Coloring planar graphs
	- \triangleright 5CT is easy, 4CT is hard; What's in between?
	- \triangleright Two-fold coloring: vertex is half red, half blue

- \blacktriangleright Coloring planar graphs
	- \triangleright 5CT is easy, 4CT is hard; What's in between?
	- \triangleright Two-fold coloring: vertex is half red, half blue
	- ► Erdös–Vizing Conjecture: $\alpha(G) \geq \frac{1}{4}n$

- \triangleright Coloring planar graphs
	- \triangleright 5CT is easy, 4CT is hard; What's in between?
	- \triangleright Two-fold coloring: vertex is half red, half blue
	- ► Erdös–Vizing Conjecture: $\alpha(G) \geq \frac{1}{4}n$
- ► Planar graphs are $\frac{9}{2}$ -colorable (homomorphism to $K_{9:2}$)

- \triangleright Coloring planar graphs
	- \triangleright 5CT is easy, 4CT is hard; What's in between?
	- \triangleright Two-fold coloring: vertex is half red, half blue
	- ► Erdös–Vizing Conjecture: $\alpha(G) \geq \frac{1}{4}n$
- ► Planar graphs are $\frac{9}{2}$ -colorable (homomorphism to $K_{9:2}$)
	- induction on n , like 5CT

- \triangleright Coloring planar graphs
	- \triangleright 5CT is easy, 4CT is hard; What's in between?
	- \triangleright Two-fold coloring: vertex is half red, half blue
	- ► Erdös–Vizing Conjecture: $\alpha(G) \geq \frac{1}{4}n$
- ► Planar graphs are $\frac{9}{2}$ -colorable (homomorphism to $K_{9:2}$)
	- induction on n , like 5CT; multiple possible induction steps

- \triangleright Coloring planar graphs
	- \triangleright 5CT is easy, 4CT is hard; What's in between?
	- \triangleright Two-fold coloring: vertex is half red, half blue
	- ► Erdös–Vizing Conjecture: $\alpha(G) \geq \frac{1}{4}n$
- ► Planar graphs are $\frac{9}{2}$ -colorable (homomorphism to $K_{9:2}$)
	- induction on n , like 5CT; multiple possible induction steps
	- ► no 4⁻-verts, no separating 3-cycle, few 6⁻-verts near others

- \triangleright Coloring planar graphs
	- \triangleright 5CT is easy, 4CT is hard; What's in between?
	- \triangleright Two-fold coloring: vertex is half red, half blue
	- ► Erdös–Vizing Conjecture: $\alpha(G) \geq \frac{1}{4}n$
- ► Planar graphs are $\frac{9}{2}$ -colorable (homomorphism to $K_{9:2}$)
	- induction on n , like 5CT; multiple possible induction steps
	- ► no 4⁻-verts, no separating 3-cycle, few 6⁻-verts near others
	- **In** most induction steps use Key Fact for coloring $K_{1,3}$

- \triangleright Coloring planar graphs
	- \triangleright 5CT is easy, 4CT is hard; What's in between?
	- \triangleright Two-fold coloring: vertex is half red, half blue
	- ► Erdös–Vizing Conjecture: $\alpha(G) \geq \frac{1}{4}n$
- ► Planar graphs are $\frac{9}{2}$ -colorable (homomorphism to $K_{9:2}$)
	- induction on n , like 5CT; multiple possible induction steps
	- ► no 4⁻-verts, no separating 3-cycle, few 6⁻-verts near others
	- **In** most induction steps use Key Fact for coloring $K_{1,3}$
	- \triangleright use discharging (counting) to prove no counterexample exists

- \triangleright Coloring planar graphs
	- \triangleright 5CT is easy, 4CT is hard; What's in between?
	- \triangleright Two-fold coloring: vertex is half red, half blue
	- ► Erdös–Vizing Conjecture: $\alpha(G) \geq \frac{1}{4}n$
- ► Planar graphs are $\frac{9}{2}$ -colorable (homomorphism to $K_{9:2}$)
	- induction on n , like 5CT; multiple possible induction steps
	- ► no 4⁻-verts, no separating 3-cycle, few 6⁻-verts near others
	- **In** most induction steps use Key Fact for coloring $K_{1,3}$
	- \triangleright use discharging (counting) to prove no counterexample exists
- Albertson proved $\alpha(G) \geq \frac{2}{9}$ $rac{2}{9}n$

- \triangleright Coloring planar graphs
	- \triangleright 5CT is easy, 4CT is hard; What's in between?
	- \triangleright Two-fold coloring: vertex is half red, half blue
	- ► Erdös–Vizing Conjecture: $\alpha(G) \geq \frac{1}{4}n$
- ► Planar graphs are $\frac{9}{2}$ -colorable (homomorphism to $K_{9:2}$)
	- induction on n , like 5CT; multiple possible induction steps
	- ► no 4⁻-verts, no separating 3-cycle, few 6⁻-verts near others
	- **In** most induction steps use Key Fact for coloring $K_{1,3}$
	- \triangleright use discharging (counting) to prove no counterexample exists
- Albertson proved $\alpha(G) \geq \frac{2}{9}$ $rac{2}{9}n$
	- \blacktriangleright we strengthened to $\alpha(\mathsf{G})\geq \frac{3}{13}n$

- \triangleright Coloring planar graphs
	- \triangleright 5CT is easy, 4CT is hard; What's in between?
	- \triangleright Two-fold coloring: vertex is half red, half blue
	- ► Erdös–Vizing Conjecture: $\alpha(G) \geq \frac{1}{4}n$
- ► Planar graphs are $\frac{9}{2}$ -colorable (homomorphism to $K_{9:2}$)
	- induction on n , like 5CT; multiple possible induction steps
	- ► no 4⁻-verts, no separating 3-cycle, few 6⁻-verts near others
	- **In** most induction steps use Key Fact for coloring $K_{1,3}$
	- \triangleright use discharging (counting) to prove no counterexample exists
- Albertson proved $\alpha(G) \geq \frac{2}{9}$ $rac{2}{9}n$
	- ► we strengthened to $\alpha(G) \geq \frac{3}{13}n$
	- riangleright proof uses same ideas as $\frac{9}{2}$ -coloring proof

- \triangleright Coloring planar graphs
	- \triangleright 5CT is easy, 4CT is hard; What's in between?
	- \triangleright Two-fold coloring: vertex is half red, half blue
	- ► Erdös–Vizing Conjecture: $\alpha(G) \geq \frac{1}{4}n$
- ► Planar graphs are $\frac{9}{2}$ -colorable (homomorphism to $K_{9:2}$)
	- induction on n , like 5CT; multiple possible induction steps
	- ► no 4⁻-verts, no separating 3-cycle, few 6⁻-verts near others
	- **In** most induction steps use Key Fact for coloring $K_{1,3}$
	- \triangleright use discharging (counting) to prove no counterexample exists
- Albertson proved $\alpha(G) \geq \frac{2}{9}$ $rac{2}{9}n$
	- ► we strengthened to $\alpha(G) \geq \frac{3}{13}n$
	- proof uses same ideas as $\frac{9}{2}$ -coloring proof
	- \blacktriangleright only know proof that $\alpha(\bar{\mathsf{G}}) \geq \frac{1}{4}n$ is by 4CT

- \triangleright Coloring planar graphs
	- \triangleright 5CT is easy, 4CT is hard; What's in between?
	- \triangleright Two-fold coloring: vertex is half red, half blue
	- ► Erdös–Vizing Conjecture: $\alpha(G) \geq \frac{1}{4}n$
- ► Planar graphs are $\frac{9}{2}$ -colorable (homomorphism to $K_{9:2}$)
	- induction on n , like 5CT; multiple possible induction steps
	- ► no 4⁻-verts, no separating 3-cycle, few 6⁻-verts near others
	- **In** most induction steps use Key Fact for coloring $K_{1,3}$
	- \triangleright use discharging (counting) to prove no counterexample exists
- Albertson proved $\alpha(G) \geq \frac{2}{9}$ $rac{2}{9}n$
	- ► we strengthened to $\alpha(G) \geq \frac{3}{13}n$
	- proof uses same ideas as $\frac{9}{2}$ -coloring proof
	- \blacktriangleright only know proof that $\alpha(\bar{\mathsf{G}}) \geq \frac{1}{4}n$ is by 4CT

 \triangleright Thanks to R. Thomas and UIUC math for pictures in intro!