Planar graphs are 9/2-colorable and have big independent sets

Daniel W. Cranston Virginia Commonwealth University dcranston@vcu.edu

Joint with Landon Rabern Slides available on my webpage

Math Department Colloquium George Washington 6 February 2015

Can we 4-color the regions of every map?

► Can we 4-color the regions of every map? –Guthrie (1852)

- ► Can we 4-color the regions of every map? -Guthrie (1852)
- ...grew to be the second most famous unsolved problem in mathematics

- ► Can we 4-color the regions of every map? -Guthrie (1852)
- ...grew to be the second most famous unsolved problem in mathematics after Fermat's last theorem.

- ► Can we 4-color the regions of every map? -Guthrie (1852)
- ...grew to be the second most famous unsolved problem in mathematics after Fermat's last theorem. –Devlin (2005)

- ► Can we 4-color the regions of every map? -Guthrie (1852)
- ...grew to be the second most famous unsolved problem in mathematics after Fermat's last theorem. –Devlin (2005)

- ► Can we 4-color the regions of every map? -Guthrie (1852)
- ...grew to be the second most famous unsolved problem in mathematics after Fermat's last theorem. –Devlin (2005)

Same as coloring vertices of planar dual graph.

- ► Can we 4-color the regions of every map? -Guthrie (1852)
- ...grew to be the second most famous unsolved problem in mathematics after Fermat's last theorem. –Devlin (2005)

- Same as coloring vertices of planar dual graph.
- Can we properly 4-color the vertices of every planar graph?

- ► Can we 4-color the regions of every map? -Guthrie (1852)
- ...grew to be the second most famous unsolved problem in mathematics after Fermat's last theorem. –Devlin (2005)

- Same as coloring vertices of planar dual graph.
- Can we properly 4-color the vertices of every planar graph?
- Finally, answered in 1976 by Appel and Haken: Yes!

- ► Can we 4-color the regions of every map? -Guthrie (1852)
- ...grew to be the second most famous unsolved problem in mathematics after Fermat's last theorem. –Devlin (2005)

- Same as coloring vertices of planar dual graph.
- Can we properly 4-color the vertices of every planar graph?
- Finally, answered in 1976 by Appel and Haken: Yes!

- ► Can we 4-color the regions of every map? -Guthrie (1852)
- ...grew to be the second most famous unsolved problem in mathematics after Fermat's last theorem. –Devlin (2005)

- Same as coloring vertices of planar dual graph.
- Can we properly 4-color the vertices of every planar graph?
- Finally, answered in 1976 by Appel and Haken: Yes!

Proof uses computers.

- ► Can we 4-color the regions of every map? -Guthrie (1852)
- ...grew to be the second most famous unsolved problem in mathematics after Fermat's last theorem. –Devlin (2005)

- Same as coloring vertices of planar dual graph.
- Can we properly 4-color the vertices of every planar graph?
- Finally, answered in 1976 by Appel and Haken: Yes!

Proof uses computers. ②

- ► Can we 4-color the regions of every map? -Guthrie (1852)
- ...grew to be the second most famous unsolved problem in mathematics after Fermat's last theorem. –Devlin (2005)

- Same as coloring vertices of planar dual graph.
- Can we properly 4-color the vertices of every planar graph?
- Finally, answered in 1976 by Appel and Haken: Yes!

▶ Proof uses computers. ☺ Later proofs also use computers.

Fact 1: Every *n*-vertex triangulation has 3n - 6 edges.

Fact 1: Every *n*-vertex triangulation has 3n - 6 edges. **Cor:** K_5 is non-planar. (Since $3(5) - 6 = 9 < 10 = \binom{5}{2}$.)

Fact 1: Every *n*-vertex triangulation has 3n - 6 edges. **Cor:** K_5 is non-planar. (Since $3(5) - 6 = 9 < 10 = \binom{5}{2}$.)

Thm: Every planar graph *G* is 5-colorable.

Fact 1: Every *n*-vertex triangulation has 3n - 6 edges. **Cor:** K_5 is non-planar. (Since $3(5) - 6 = 9 < 10 = \binom{5}{2}$.)

Thm: Every planar graph G is 5-colorable.

Pf: Add edges to get a triangulation.

Fact 1: Every *n*-vertex triangulation has 3n - 6 edges. **Cor:** K_5 is non-planar. (Since $3(5) - 6 = 9 < 10 = \binom{5}{2}$.)

Thm: Every planar graph *G* is 5-colorable.

Pf: Add edges to get a triangulation. Now $\sum_{v \in V} d(v) = 2|E| = 2(3n-6) < 6n$.

Fact 1: Every *n*-vertex triangulation has 3n - 6 edges. **Cor:** K_5 is non-planar. (Since $3(5) - 6 = 9 < 10 = \binom{5}{2}$.)

Thm: Every planar graph *G* is 5-colorable.

Pf: Add edges to get a triangulation. Now $\sum_{v \in V} d(v) = 2|E| = 2(3n-6) < 6n$. So some vertex v is a 5⁻-vertex.

Fact 1: Every *n*-vertex triangulation has 3n - 6 edges. **Cor:** K_5 is non-planar. (Since $3(5) - 6 = 9 < 10 = \binom{5}{2}$.)

Thm: Every planar graph *G* is 5-colorable.

Pf: Add edges to get a triangulation. Now $\sum_{v \in V} d(v) = 2|E| = 2(3n-6) < 6n$. So some vertex v is a 5⁻-vertex. When v is a 4⁻-vertex, we 5-color G - v by induction, then color v.

Fact 1: Every *n*-vertex triangulation has 3n - 6 edges. **Cor:** K_5 is non-planar. (Since $3(5) - 6 = 9 < 10 = \binom{5}{2}$.)

Thm: Every planar graph *G* is 5-colorable.

Pf: Add edges to get a triangulation. Now $\sum_{v \in V} d(v) = 2|E| = 2(3n-6) < 6n$. So some vertex v is a 5⁻-vertex. When v is a 4⁻-vertex, we 5-color G - v by induction, then color v. Now, since K_5 is non-planar, v has non-adjacent neighbors w_1 and w_2 .

Fact 1: Every *n*-vertex triangulation has 3n - 6 edges. **Cor:** K_5 is non-planar. (Since $3(5) - 6 = 9 < 10 = \binom{5}{2}$.)

Thm: Every planar graph *G* is 5-colorable.

Pf: Add edges to get a triangulation. Now $\sum_{v \in V} d(v) = 2|E| = 2(3n-6) < 6n$. So some vertex v is a 5⁻-vertex. When v is a 4⁻-vertex, we 5-color G - v by induction, then color v. Now, since K_5 is non-planar, v has non-adjacent neighbors w_1 and w_2 . Contract vw_1 and vw_2 ;

Fact 1: Every *n*-vertex triangulation has 3n - 6 edges. **Cor:** K_5 is non-planar. (Since $3(5) - 6 = 9 < 10 = \binom{5}{2}$.)

Thm: Every planar graph *G* is 5-colorable.

Pf: Add edges to get a triangulation. Now $\sum_{v \in V} d(v) = 2|E| = 2(3n-6) < 6n$. So some vertex v is a 5⁻-vertex. When v is a 4⁻-vertex, we 5-color G - v by induction, then color v. Now, since K_5 is non-planar, v has non-adjacent neighbors w_1 and w_2 . Contract vw_1 and vw_2 ; 5-color by induction.

Fact 1: Every *n*-vertex triangulation has 3n - 6 edges. **Cor:** K_5 is non-planar. (Since $3(5) - 6 = 9 < 10 = {5 \choose 2}$.)

Thm: Every planar graph *G* is 5-colorable.

Pf: Add edges to get a triangulation. Now $\sum_{v \in V} d(v) = 2|E| = 2(3n-6) < 6n$. So some vertex v is a 5⁻-vertex. When v is a 4⁻-vertex, we 5-color G - v by induction, then color v. Now, since K_5 is non-planar, v has non-adjacent neighbors w_1 and w_2 . Contract vw_1 and vw_2 ; 5-color by induction. This gives 5-coloring of G - v.

Fact 1: Every *n*-vertex triangulation has 3n - 6 edges. **Cor:** K_5 is non-planar. (Since $3(5) - 6 = 9 < 10 = \binom{5}{2}$.)

Thm: Every planar graph *G* is 5-colorable.

Pf: Add edges to get a triangulation. Now $\sum_{v \in V} d(v) = 2|E| = 2(3n-6) < 6n$. So some vertex *v* is a 5⁻-vertex. When *v* is a 4⁻-vertex, we 5-color G - v by induction, then color *v*. Now, since K_5 is non-planar, *v* has non-adjacent neighbors w_1 and w_2 . Contract vw_1 and vw_2 ; 5-color by induction. This gives 5-coloring of G - v. Now extend to *v*, since w_1 and w_2 have same color.

Fact 1: Every *n*-vertex triangulation has 3n - 6 edges. **Cor:** K_5 is non-planar. (Since $3(5) - 6 = 9 < 10 = \binom{5}{2}$.)

Thm: Every planar graph *G* is 5-colorable.

Pf: Add edges to get a triangulation. Now $\sum_{v \in V} d(v) = 2|E| = 2(3n-6) < 6n$. So some vertex v is a 5⁻-vertex. When v is a 4⁻-vertex, we 5-color G - v by induction, then color v. Now, since K_5 is non-planar, v has non-adjacent neighbors w_1 and w_2 . Contract vw_1 and vw_2 ; 5-color by induction. This gives 5-coloring of G - v. Now extend to v, since w_1 and w_2 have same color.

Fact 1: Every *n*-vertex triangulation has 3n - 6 edges. **Cor:** K_5 is non-planar. (Since $3(5) - 6 = 9 < 10 = \binom{5}{2}$.)

Thm: Every planar graph *G* is 5-colorable.

Pf: Add edges to get a triangulation. Now $\sum_{v \in V} d(v) = 2|E| = 2(3n-6) < 6n$. So some vertex *v* is a 5⁻-vertex. When *v* is a 4⁻-vertex, we 5-color G - v by induction, then color *v*. Now, since K_5 is non-planar, *v* has non-adjacent neighbors w_1 and w_2 . Contract vw_1 and vw_2 ; 5-color by induction. This gives 5-coloring of G - v. Now extend to *v*, since w_1 and w_2 have same color.

Cor: Every planar graph G has $\alpha(G) \ge \frac{1}{5}n$.

4CT is hard and 5CT is easy. What's in between?

• Erdös–Vizing Conj.: Every *n*-vertex planar *G* has $\alpha(G) \geq \frac{1}{4}n$.

- Erdös–Vizing Conj.: Every *n*-vertex planar *G* has $\alpha(G) \ge \frac{1}{4}n$.
- Two-fold coloring: color vertex "half red and half blue"

- Erdös–Vizing Conj.: Every *n*-vertex planar *G* has $\alpha(G) \geq \frac{1}{4}n$.
- Two-fold coloring: color vertex "half red and half blue"
 - ▶ 5CT implies that 10 colors suffice

- Erdös–Vizing Conj.: Every *n*-vertex planar *G* has $\alpha(G) \geq \frac{1}{4}n$.
- Two-fold coloring: color vertex "half red and half blue"
 - ▶ 5CT implies that 10 colors suffice
 - 4CT implies that 8 colors suffice

- Erdös–Vizing Conj.: Every *n*-vertex planar *G* has $\alpha(G) \geq \frac{1}{4}n$.
- Two-fold coloring: color vertex "half red and half blue"
 - ▶ 5CT implies that 10 colors suffice
 - 4CT implies that 8 colors suffice
 - $\frac{9}{2}$ CT will show that 9 colors suffice.
4CT is hard and 5CT is easy. What's in between?

- Erdös–Vizing Conj.: Every *n*-vertex planar *G* has $\alpha(G) \ge \frac{1}{4}n$.
- Two-fold coloring: color vertex "half red and half blue"
 - ▶ 5CT implies that 10 colors suffice
 - 4CT implies that 8 colors suffice
 - $\frac{9}{2}$ CT will show that 9 colors suffice.

Def: The Kneser graph $K_{n:k}$ has as vertices the *k*-element subsets of $\{1, \ldots, n\}$. Vertices are adjacent whenever their sets are disjoint.

4CT is hard and 5CT is easy. What's in between?

- Erdös–Vizing Conj.: Every *n*-vertex planar *G* has $\alpha(G) \geq \frac{1}{4}n$.
- Two-fold coloring: color vertex "half red and half blue"
 - 5CT implies that 10 colors suffice
 - 4CT implies that 8 colors suffice
 - $\frac{9}{2}$ CT will show that 9 colors suffice.

Def: The Kneser graph $K_{n:k}$ has as vertices the *k*-element subsets of $\{1, \ldots, n\}$. Vertices are adjacent whenever their sets are disjoint.

4CT is hard and 5CT is easy. What's in between?

- Erdös–Vizing Conj.: Every *n*-vertex planar *G* has $\alpha(G) \ge \frac{1}{4}n$.
- Two-fold coloring: color vertex "half red and half blue"
 - 5CT implies that 10 colors suffice
 - 4CT implies that 8 colors suffice
 - $\frac{9}{2}$ CT will show that 9 colors suffice.

Def: The Kneser graph $K_{n:k}$ has as vertices the *k*-element subsets of $\{1, \ldots, n\}$. Vertices are adjacent whenever their sets are disjoint.

Want $f: V(G) \rightarrow V(K_{n:k})$ where $f(u)f(v) \in E(K_{n:k})$ if $uv \in E(G)$.

4CT is hard and 5CT is easy. What's in between?

- Erdös–Vizing Conj.: Every *n*-vertex planar *G* has $\alpha(G) \geq \frac{1}{4}n$.
- Two-fold coloring: color vertex "half red and half blue"
 - 5CT implies that 10 colors suffice
 - 4CT implies that 8 colors suffice
 - $\frac{9}{2}$ CT will show that 9 colors suffice.

Def: The Kneser graph $K_{n:k}$ has as vertices the *k*-element subsets of $\{1, \ldots, n\}$. Vertices are adjacent whenever their sets are disjoint.

Want $f: V(G) \rightarrow V(K_{n:k})$ where $f(u)f(v) \in E(K_{n:k})$ if $uv \in E(G)$.

We'll show that planar graphs have a map to $K_{9:2}$.

4CT is hard and 5CT is easy. What's in between?

- Erdös–Vizing Conj.: Every *n*-vertex planar *G* has $\alpha(G) \geq \frac{1}{4}n$.
- Two-fold coloring: color vertex "half red and half blue"
 - 5CT implies that 10 colors suffice
 - 4CT implies that 8 colors suffice
 - $\frac{9}{2}$ CT will show that 9 colors suffice.

Def: The Kneser graph $K_{n:k}$ has as vertices the *k*-element subsets of $\{1, \ldots, n\}$. Vertices are adjacent whenever their sets are disjoint.

Want $f: V(G) \rightarrow V(K_{n:k})$ where $f(u)f(v) \in E(K_{n:k})$ if $uv \in E(G)$.

We'll show that planar graphs have a map to $K_{9:2}$. G is k-colorable iff G has homomorphism to K_k .

4CT is hard and 5CT is easy. What's in between?

- Erdös–Vizing Conj.: Every *n*-vertex planar *G* has $\alpha(G) \geq \frac{1}{4}n$.
- Two-fold coloring: color vertex "half red and half blue"
 - 5CT implies that 10 colors suffice
 - 4CT implies that 8 colors suffice
 - $\frac{9}{2}$ CT will show that 9 colors suffice.

Def: The Kneser graph $K_{n:k}$ has as vertices the *k*-element subsets of $\{1, \ldots, n\}$. Vertices are adjacent whenever their sets are disjoint.

Want $f: V(G) \rightarrow V(K_{n:k})$ where $f(u)f(v) \in E(K_{n:k})$ if $uv \in E(G)$.

We'll show that planar graphs have a map to $K_{9:2}$. G is k-colorable iff G has homomorphism to K_k . Generalizes "coloring" to "coloring with graphs".

Thm: Every planar graph has a homomorphism to $K_{9:2}$.

Thm: Every planar graph has a homomorphism to $K_{9:2}$. **Pf:**

Thm: Every planar graph has a homomorphism to $K_{9:2}$. **Pf:** Induction on *n*, like 5CT. If we can't do induction, then *G*:

1. has minimum degree 5

Thm: Every planar graph has a homomorphism to $K_{9:2}$.

Pf: Induction on n, like 5CT. If we can't do induction, then G:

- 1. has minimum degree 5
- 2. has no separating triangle

Thm: Every planar graph has a homomorphism to $K_{9:2}$.

Pf: Induction on n, like 5CT. If we can't do induction, then G:

- 1. has minimum degree 5
- 2. has no separating triangle
- can't have "too many 6⁻-vertices near each other" (13 cases, grouped into 3 lemmas by degree of central vertex)

Thm: Every planar graph has a homomorphism to $K_{9:2}$.

Pf: Induction on n, like 5CT. If we can't do induction, then G:

- 1. has minimum degree 5
- 2. has no separating triangle
- can't have "too many 6⁻-vertices near each other"
 (13 cases, grouped into 3 lemmas by degree of central vertex)
 if so, then contract some non-adjacent pairs of neighbors;
 color smaller graph by induction, then extend to G

Thm: Every planar graph has a homomorphism to $K_{9:2}$.

Pf: Induction on *n*, like 5CT. If we can't do induction, then *G*:

- 1. has minimum degree 5
- 2. has no separating triangle
- can't have "too many 6⁻-vertices near each other"
 (13 cases, grouped into 3 lemmas by degree of central vertex)
 if so, then contract some non-adjacent pairs of neighbors;
 color smaller graph by induction, then extend to G

Finally, use discharging method (counting argument) to show that every planar graph fails (1), (2), or (3).

Too many 6^- -vertices near each other

Key Fact: Denote the center vertex of $K_{1,3}$ by v and the other vertices by u_1, u_2, u_3 .

Key Fact: Denote the center vertex of $K_{1,3}$ by v and the other vertices by u_1, u_2, u_3 . If v has 5 allowable colors and each u_i has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.

Key Fact: Denote the center vertex of $K_{1,3}$ by v and the other vertices by u_1, u_2, u_3 . If v has 5 allowable colors and each u_i has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.

Pf: Give v a color available for at most one u_i , say u_1 .

Key Fact: Denote the center vertex of $K_{1,3}$ by v and the other vertices by u_1, u_2, u_3 . If v has 5 allowable colors and each u_i has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.

Pf: Give v a color available for at most one u_i , say u_1 . 2(5) > 3(3)

Key Fact: Denote the center vertex of $K_{1,3}$ by v and the other vertices by u_1, u_2, u_3 . If v has 5 allowable colors and each u_i has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.

Pf: Give v a color available for at most one u_i , say u_1 . 2(5) > 3(3) Now give v another color not available for u_1 .

Key Fact: Denote the center vertex of $K_{1,3}$ by v and the other vertices by u_1, u_2, u_3 . If v has 5 allowable colors and each u_i has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.

Pf: Give v a color available for at most one u_i , say u_1 . 2(5) > 3(3) Now give v another color not available for u_1 . Now color each u_i .

Key Fact: Denote the center vertex of $K_{1,3}$ by v and the other vertices by u_1, u_2, u_3 . If v has 5 allowable colors and each u_i has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.

Pf: Give v a color available for at most one u_i , say u_1 . 2(5) > 3(3) Now give v another color not available for u_1 . Now color each u_i .

Key Fact: Denote the center vertex of $K_{1,3}$ by v and the other vertices by u_1, u_2, u_3 . If v has 5 allowable colors and each u_i has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.

Pf: Give v a color available for at most one u_i , say u_1 . 2(5) > 3(3) Now give v another color not available for u_1 . Now color each u_i .

Key Fact: Denote the center vertex of $K_{1,3}$ by v and the other vertices by u_1, u_2, u_3 . If v has 5 allowable colors and each u_i has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.

Pf: Give v a color available for at most one u_i , say u_1 . 2(5) > 3(3)Now give v another color not available for u_1 . Now color each u_i .

Rem: Reducible configuration proofs use only this Key Fact.

Thm [Albertson '76]: If G is a plane triangulation with minimum degree 5 and no separating triangle, then G contains a good kite:

Thm [Albertson '76]: If G is a plane triangulation with minimum degree 5 and no separating triangle, then G contains a good kite:

Thm [Albertson '76]: If G is a plane triangulation with minimum degree 5 and no separating triangle, then G contains a good kite:

Cor: Every *n*-vertex planar graph has indep. number at least $\frac{2}{9}n$.

Thm [Albertson '76]: If G is a plane triangulation with minimum degree 5 and no separating triangle, then G contains a good kite:

Cor: Every *n*-vertex planar graph has indep. number at least $\frac{2}{9}n$. **Rem:** We improve this bound to indep. number at least $\frac{3}{13}n$.

Thm [Albertson '76]: If G is a plane triangulation with minimum degree 5 and no separating triangle, then G contains a good kite:

Cor: Every *n*-vertex planar graph has indep. number at least $\frac{2}{9}n$. **Rem:** We improve this bound to indep. number at least $\frac{3}{13}n$. **Pf of Thm:** Suppose such a triangulation *G* has no good kite.

Thm [Albertson '76]: If G is a plane triangulation with minimum degree 5 and no separating triangle, then G contains a good kite:

Cor: Every *n*-vertex planar graph has indep. number at least $\frac{2}{9}n$. **Rem:** We improve this bound to indep. number at least $\frac{3}{13}n$. **Pf of Thm:** Suppose such a triangulation *G* has no good kite. Give each *v* charge ch(v) = d(v) - 6.

Thm [Albertson '76]: If G is a plane triangulation with minimum degree 5 and no separating triangle, then G contains a good kite:

Cor: Every *n*-vertex planar graph has indep. number at least $\frac{2}{9}n$. **Rem:** We improve this bound to indep. number at least $\frac{3}{13}n$. **Pf of Thm:** Suppose such a triangulation *G* has no good kite. Give each *v* charge ch(v) = d(v) - 6. Now redistribute charge; call new charge $ch^*(v)$.

Thm [Albertson '76]: If G is a plane triangulation with minimum degree 5 and no separating triangle, then G contains a good kite:

Cor: Every *n*-vertex planar graph has indep. number at least $\frac{2}{9}n$. **Rem:** We improve this bound to indep. number at least $\frac{3}{13}n$. **Pf of Thm:** Suppose such a triangulation *G* has no good kite. Give each *v* charge ch(v) = d(v) - 6. Now redistribute charge; call new charge $ch^*(v)$. Show $ch^*(v) \ge 0$ for all *v*.

Thm [Albertson '76]: If G is a plane triangulation with minimum degree 5 and no separating triangle, then G contains a good kite:

Cor: Every *n*-vertex planar graph has indep. number at least $\frac{2}{9}n$. **Rem:** We improve this bound to indep. number at least $\frac{3}{13}n$. **Pf of Thm:** Suppose such a triangulation *G* has no good kite. Give each *v* charge ch(v) = d(v) - 6. Now redistribute charge; call new charge $ch^*(v)$. Show $ch^*(v) \ge 0$ for all *v*. However, $\sum_{v \in V} d(v) - 6 = 2|E| - 6|V|$

Thm [Albertson '76]: If G is a plane triangulation with minimum degree 5 and no separating triangle, then G contains a good kite:

Cor: Every *n*-vertex planar graph has indep. number at least $\frac{2}{9}n$. **Rem:** We improve this bound to indep. number at least $\frac{3}{13}n$. **Pf of Thm:** Suppose such a triangulation *G* has no good kite. Give each *v* charge ch(v) = d(v) - 6. Now redistribute charge; call new charge $ch^*(v)$. Show $ch^*(v) \ge 0$ for all *v*. However, $\sum_{v \in V} d(v) - 6 = 2|E| - 6|V| = 2(3|V| - 6) - 6|V|$

Thm [Albertson '76]: If G is a plane triangulation with minimum degree 5 and no separating triangle, then G contains a good kite:

Cor: Every *n*-vertex planar graph has indep. number at least $\frac{2}{9}n$. **Rem:** We improve this bound to indep. number at least $\frac{3}{13}n$. **Pf of Thm:** Suppose such a triangulation *G* has no good kite. Give each *v* charge ch(v) = d(v) - 6. Now redistribute charge; call new charge $ch^*(v)$. Show $ch^*(v) \ge 0$ for all *v*. However, $\sum_{v \in V} d(v) - 6 = 2|E| - 6|V| = 2(3|V| - 6) - 6|V| = -12$, so:
Independence Number

Thm [Albertson '76]: If G is a plane triangulation with minimum degree 5 and no separating triangle, then G contains a good kite:

Cor: Every *n*-vertex planar graph has indep. number at least $\frac{2}{9}n$. **Rem:** We improve this bound to indep. number at least $\frac{3}{13}n$. **Pf of Thm:** Suppose such a triangulation *G* has no good kite. Give each *v* charge ch(v) = d(v) - 6. Now redistribute charge; call new charge $ch^*(v)$. Show $ch^*(v) \ge 0$ for all *v*. However, $\sum_{v \in V} d(v) - 6 = 2|E| - 6|V| = 2(3|V| - 6) - 6|V| = -12$, so: $-12 = \sum ch(v) = \sum ch^*(v) \ge 0$

$$12 = \sum_{v \in V} cn(v) = \sum_{v \in V} cn(v)$$

Independence Number

Thm [Albertson '76]: If G is a plane triangulation with minimum degree 5 and no separating triangle, then G contains a good kite:

Cor: Every *n*-vertex planar graph has indep. number at least $\frac{2}{9}n$. **Rem:** We improve this bound to indep. number at least $\frac{3}{13}n$. **Pf of Thm:** Suppose such a triangulation G has no good kite. Give each v charge ch(v) = d(v) - 6. Now redistribute charge; call new charge $ch^*(v)$. Show $ch^*(v) > 0$ for all v. However, $\sum_{v \in V} d(v) - 6 = 2|E| - 6|V| = 2(3|V| - 6) - 6|V| = -12$, so: $-12 = \sum_{v \in V} ch(v) = \sum_{v \in V} ch^*(v) \ge 0$ Contradiction!

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

(R2) Each 7⁺-vertex gives each 6-nbr $\frac{1}{10}$ and each 5-nbr $\frac{1}{3}$.

 $d(v) \ge 9$:

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

(R2) Each 7⁺-vertex gives each 6-nbr $\frac{1}{10}$ and each 5-nbr $\frac{1}{3}$.

 $d(v) \ge 9$: $d(v) - 6 - d(v)(\frac{1}{3}) = \frac{2}{3}(d(v) - 9) \ge 0$.

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

$$d(v) \ge 9$$
: $d(v) - 6 - d(v)(\frac{1}{3}) = \frac{2}{3}(d(v) - 9) \ge 0$.
 $d(v) = 8$:

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

$$d(v) \ge 9: \ d(v) - 6 - d(v)(\frac{1}{3}) = \frac{2}{3}(d(v) - 9) \ge 0.$$

$$d(v) = 8: \ 8 - 6 - 4(\frac{1}{3}) - 4(\frac{1}{10}) > 0.$$

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

$$\begin{aligned} &d(v) \ge 9: \ d(v) - 6 - d(v)(\frac{1}{3}) = \frac{2}{3}(d(v) - 9) \ge 0. \\ &d(v) = 8: \ 8 - 6 - 4(\frac{1}{3}) - 4(\frac{1}{10}) > 0. \\ &d(v) = 7: \end{aligned}$$

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

$$d(v) \ge 9: \ d(v) - 6 - d(v)(\frac{1}{3}) = \frac{2}{3}(d(v) - 9) \ge 0.$$

$$d(v) = 8: \ 8 - 6 - 4(\frac{1}{3}) - 4(\frac{1}{10}) > 0.$$

$$d(v) = 7: \ \text{Can give charge } 7 - 6 = 1.$$

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

$$d(v) \ge 9: \ d(v) - 6 - d(v)(\frac{1}{3}) = \frac{2}{3}(d(v) - 9) \ge 0.$$

$$d(v) = 8: \ 8 - 6 - 4(\frac{1}{3}) - 4(\frac{1}{10}) > 0.$$

$$d(v) = 7: \ \text{Can give charge } 7 - 6 = 1.$$

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

$$d(v) \ge 9: \ d(v) - 6 - d(v)(\frac{1}{3}) = \frac{2}{3}(d(v) - 9) \ge 0.$$

$$d(v) = 8: \ 8 - 6 - 4(\frac{1}{3}) - 4(\frac{1}{10}) > 0.$$

$$d(v) = 7: \ \text{Can give charge } 7 - 6 = 1.$$

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

$$d(v) \ge 9: \ d(v) - 6 - d(v)(\frac{1}{3}) = \frac{2}{3}(d(v) - 9) \ge 0.$$

$$d(v) = 8: \ 8 - 6 - 4(\frac{1}{3}) - 4(\frac{1}{10}) > 0.$$

$$d(v) = 7: \ \text{Can give charge } 7 - 6 = 1.$$

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

$$d(v) \ge 9: \ d(v) - 6 - d(v)(\frac{1}{3}) = \frac{2}{3}(d(v) - 9) \ge 0.$$

$$d(v) = 8: \ 8 - 6 - 4(\frac{1}{3}) - 4(\frac{1}{10}) > 0.$$

$$d(v) = 7: \ \text{Can give charge } 7 - 6 = 1.$$

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

$$d(v) \ge 9: \ d(v) - 6 - d(v)(\frac{1}{3}) = \frac{2}{3}(d(v) - 9) \ge 0.$$

$$d(v) = 8: \ 8 - 6 - 4(\frac{1}{3}) - 4(\frac{1}{10}) > 0.$$

$$d(v) = 7: \ \text{Can give charge } 7 - 6 = 1.$$

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

$$d(v) \ge 9: \ d(v) - 6 - d(v)(\frac{1}{3}) = \frac{2}{3}(d(v) - 9) \ge 0.$$

$$d(v) = 8: \ 8 - 6 - 4(\frac{1}{3}) - 4(\frac{1}{10}) > 0.$$

$$d(v) = 7: \ \text{Can give charge } 7 - 6 = 1.$$

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

$$d(v) \ge 9: \ d(v) - 6 - d(v)(\frac{1}{3}) = \frac{2}{3}(d(v) - 9) \ge 0.$$

$$d(v) = 8: \ 8 - 6 - 4(\frac{1}{3}) - 4(\frac{1}{10}) > 0.$$

$$d(v) = 7: \ \text{Can give charge } 7 - 6 = 1.$$

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

$$d(v) \ge 9: \ d(v) - 6 - d(v)(\frac{1}{3}) = \frac{2}{3}(d(v) - 9) \ge 0.$$

$$d(v) = 8: \ 8 - 6 - 4(\frac{1}{3}) - 4(\frac{1}{10}) > 0.$$

$$d(v) = 7: \ \text{Can give charge } 7 - 6 = 1.$$

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

(R2) Each 7⁺-vertex gives each 6-nbr $\frac{1}{10}$ and each 5-nbr $\frac{1}{3}$.

d(v) = 6:

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

(R2) Each 7⁺-vertex gives each 6-nbr $\frac{1}{10}$ and each 5-nbr $\frac{1}{3}$.

d(v) = 6: Can give net charge 6 - 6 = 0.

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

(R2) Each 7⁺-vertex gives each 6-nbr $\frac{1}{10}$ and each 5-nbr $\frac{1}{3}$.

d(v) = 5:

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

(R2) Each 7⁺-vertex gives each 6-nbr $\frac{1}{10}$ and each 5-nbr $\frac{1}{3}$.

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

(R2) Each 7⁺-vertex gives each 6-nbr $\frac{1}{10}$ and each 5-nbr $\frac{1}{3}$.

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

(R2) Each 7⁺-vertex gives each 6-nbr $\frac{1}{10}$ and each 5-nbr $\frac{1}{3}$.

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

(R2) Each 7⁺-vertex gives each 6-nbr $\frac{1}{10}$ and each 5-nbr $\frac{1}{3}$.

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

(R2) Each 7⁺-vertex gives each 6-nbr $\frac{1}{10}$ and each 5-nbr $\frac{1}{3}$.

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

All Vertices are Happy (continued)

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

(R2) Each 7⁺-vertex gives each 6-nbr $\frac{1}{10}$ and each 5-nbr $\frac{1}{3}$.

All Vertices are Happy (continued)

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr $\frac{1}{5}$.

(R2) Each 7⁺-vertex gives each 6-nbr $\frac{1}{10}$ and each 5-nbr $\frac{1}{3}$.

Coloring planar graphs

- Coloring planar graphs
 - ► 5CT is easy, 4CT is hard

- Coloring planar graphs
 - ▶ 5CT is easy, 4CT is hard; What's in between?

- Coloring planar graphs
 - ▶ 5CT is easy, 4CT is hard; What's in between?
 - Two-fold coloring: vertex is half red, half blue

- Coloring planar graphs
 - ▶ 5CT is easy, 4CT is hard; What's in between?
 - Two-fold coloring: vertex is half red, half blue
 - Erdös–Vizing Conjecture: $\alpha(G) \geq \frac{1}{4}n$

- Coloring planar graphs
 - ▶ 5CT is easy, 4CT is hard; What's in between?
 - Two-fold coloring: vertex is half red, half blue
 - Erdös–Vizing Conjecture: $\alpha(G) \geq \frac{1}{4}n$
- Planar graphs are $\frac{9}{2}$ -colorable (homomorphism to $K_{9:2}$)

- Coloring planar graphs
 - ▶ 5CT is easy, 4CT is hard; What's in between?
 - Two-fold coloring: vertex is half red, half blue
 - Erdös–Vizing Conjecture: $\alpha(G) \geq \frac{1}{4}n$
- Planar graphs are $\frac{9}{2}$ -colorable (homomorphism to $K_{9:2}$)
 - ▶ induction on *n*, like 5CT

- Coloring planar graphs
 - ▶ 5CT is easy, 4CT is hard; What's in between?
 - Two-fold coloring: vertex is half red, half blue
 - Erdös–Vizing Conjecture: $\alpha(G) \geq \frac{1}{4}n$
- Planar graphs are $\frac{9}{2}$ -colorable (homomorphism to $K_{9:2}$)
 - ▶ induction on *n*, like 5CT; multiple possible induction steps

- Coloring planar graphs
 - ▶ 5CT is easy, 4CT is hard; What's in between?
 - Two-fold coloring: vertex is half red, half blue
 - Erdös–Vizing Conjecture: $\alpha(G) \geq \frac{1}{4}n$
- Planar graphs are $\frac{9}{2}$ -colorable (homomorphism to $K_{9:2}$)
 - induction on n, like 5CT; multiple possible induction steps
 - ▶ no 4⁻-verts, no separating 3-cycle, few 6⁻-verts near others

- Coloring planar graphs
 - ▶ 5CT is easy, 4CT is hard; What's in between?
 - Two-fold coloring: vertex is half red, half blue
 - Erdös–Vizing Conjecture: $\alpha(G) \geq \frac{1}{4}n$
- Planar graphs are $\frac{9}{2}$ -colorable (homomorphism to $K_{9:2}$)
 - ▶ induction on *n*, like 5CT; multiple possible induction steps
 - ▶ no 4⁻-verts, no separating 3-cycle, few 6⁻-verts near others
 - most induction steps use Key Fact for coloring K_{1,3}

- Coloring planar graphs
 - ▶ 5CT is easy, 4CT is hard; What's in between?
 - Two-fold coloring: vertex is half red, half blue
 - Erdös–Vizing Conjecture: $\alpha(G) \geq \frac{1}{4}n$
- Planar graphs are $\frac{9}{2}$ -colorable (homomorphism to $K_{9:2}$)
 - ▶ induction on *n*, like 5CT; multiple possible induction steps
 - ▶ no 4⁻-verts, no separating 3-cycle, few 6⁻-verts near others
 - most induction steps use Key Fact for coloring K_{1,3}
 - use discharging (counting) to prove no counterexample exists

- Coloring planar graphs
 - ▶ 5CT is easy, 4CT is hard; What's in between?
 - Two-fold coloring: vertex is half red, half blue
 - Erdös–Vizing Conjecture: $\alpha(G) \geq \frac{1}{4}n$
- Planar graphs are $\frac{9}{2}$ -colorable (homomorphism to $K_{9:2}$)
 - ▶ induction on *n*, like 5CT; multiple possible induction steps
 - ▶ no 4⁻-verts, no separating 3-cycle, few 6⁻-verts near others
 - most induction steps use Key Fact for coloring K_{1,3}
 - use discharging (counting) to prove no counterexample exists
- Albertson proved $\alpha(G) \geq \frac{2}{9}n$

- Coloring planar graphs
 - ▶ 5CT is easy, 4CT is hard; What's in between?
 - Two-fold coloring: vertex is half red, half blue
 - Erdös–Vizing Conjecture: $\alpha(G) \geq \frac{1}{4}n$
- Planar graphs are $\frac{9}{2}$ -colorable (homomorphism to $K_{9:2}$)
 - ▶ induction on *n*, like 5CT; multiple possible induction steps
 - ▶ no 4⁻-verts, no separating 3-cycle, few 6⁻-verts near others
 - most induction steps use Key Fact for coloring K_{1,3}
 - use discharging (counting) to prove no counterexample exists
- Albertson proved $\alpha(G) \geq \frac{2}{9}n$

• we strengthened to $\alpha(G) \geq \frac{3}{13}n$

- Coloring planar graphs
 - ▶ 5CT is easy, 4CT is hard; What's in between?
 - Two-fold coloring: vertex is half red, half blue
 - Erdös–Vizing Conjecture: $\alpha(G) \geq \frac{1}{4}n$
- Planar graphs are $\frac{9}{2}$ -colorable (homomorphism to $K_{9:2}$)
 - induction on n, like 5CT; multiple possible induction steps
 - ▶ no 4⁻-verts, no separating 3-cycle, few 6⁻-verts near others
 - most induction steps use Key Fact for coloring K_{1,3}
 - use discharging (counting) to prove no counterexample exists
- Albertson proved $\alpha(G) \geq \frac{2}{9}n$
 - we strengthened to $\alpha(G) \geq \frac{3}{13}n$
 - proof uses same ideas as $\frac{9}{2}$ -coloring proof

- Coloring planar graphs
 - ▶ 5CT is easy, 4CT is hard; What's in between?
 - Two-fold coloring: vertex is half red, half blue
 - Erdös–Vizing Conjecture: $\alpha(G) \geq \frac{1}{4}n$
- Planar graphs are $\frac{9}{2}$ -colorable (homomorphism to $K_{9:2}$)
 - ▶ induction on *n*, like 5CT; multiple possible induction steps
 - ▶ no 4⁻-verts, no separating 3-cycle, few 6⁻-verts near others
 - most induction steps use Key Fact for coloring K_{1,3}
 - use discharging (counting) to prove no counterexample exists
- Albertson proved $\alpha(G) \geq \frac{2}{9}n$
 - we strengthened to $\alpha(G) \geq \frac{3}{13}n$
 - proof uses same ideas as $\frac{9}{2}$ -coloring proof
 - only know proof that $\alpha(\bar{G}) \ge \frac{1}{4}n$ is by 4CT

- Coloring planar graphs
 - ▶ 5CT is easy, 4CT is hard; What's in between?
 - Two-fold coloring: vertex is half red, half blue
 - Erdös–Vizing Conjecture: $\alpha(G) \geq \frac{1}{4}n$
- Planar graphs are $\frac{9}{2}$ -colorable (homomorphism to $K_{9:2}$)
 - ▶ induction on *n*, like 5CT; multiple possible induction steps
 - ▶ no 4⁻-verts, no separating 3-cycle, few 6⁻-verts near others
 - most induction steps use Key Fact for coloring K_{1,3}
 - use discharging (counting) to prove no counterexample exists
- Albertson proved $\alpha(G) \geq \frac{2}{9}n$
 - we strengthened to $\alpha(G) \geq \frac{3}{13}n$
 - proof uses same ideas as $\frac{9}{2}$ -coloring proof
 - only know proof that $\alpha(\overline{G}) \ge \frac{1}{4}n$ is by 4CT

> Thanks to R. Thomas and UIUC math for pictures in intro!