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The 4 Color Problem

I Can we 4-color the regions of every map?

–Guthrie (1852)
I ...grew to be the second most famous unsolved problem in

mathematics after Fermat’s last theorem. –Devlin (2005)

I Same as coloring vertices of planar dual graph.
I Can we properly 4-color the vertices of every planar graph?
I Finally, answered in 1976 by Appel and Haken: Yes!
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Department of Mathematics 
University of Illinois at Urbana-Champaign 

 
Professor Paul T. Bateman, who served as Head of the Department of Mathematics at the 
University of Illinois at Urbana-Champaign from 1965-1980, is the person who set up the 
"2^11213 - 1" and the "Four colors suffice" postmarks.   
 
The Department of Mathematics at Illinois used the prime postmark from the middle 
1960's (soon after Don Gillies in the Computer Science Department at the University of 
Illinois discovered that Mersenne prime) until 1976, when Wolfgang Haken and Kenneth 
Appel proved the Four Color Theorem and the department's postmark was replaced by 
one that read, "Four Colors Suffice." 
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http://mathworld.wolfram.com/MersennePrime.html 
http://www.absoluteastronomy.com/topics/Four_color_theorem 
http://www.maa.org/reviews/fourcolors.html 
 

I Proof uses computers. / Later proofs also use computers.
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The 5 Color Theorem

Fact 1: Every n-vertex triangulation has 3n − 6 edges.
Cor: K5 is non-planar. (Since 3(5)− 6 = 9 < 10 =

(5
2

)
.)

Thm: Every planar graph G is 5-colorable.

w1 w2

−
→
−
→
←
−

w1/w2

Pf: Add edges to get a triangulation. Now∑
v∈V d(v) = 2|E | = 2(3n − 6) < 6n.

So some vertex v is a 5−-vertex. When v is
a 4−-vertex, we 5-color G − v by induction,
then color v . Now, since K5 is non-planar,
v has non-adjacent neighbors w1 and w2.
Contract vw1 and vw2; 5-color by induction.
This gives 5-coloring of G − v . Now extend
to v , since w1 and w2 have same color. �

Cor: Every planar graph G has α(G ) ≥ 1
5n.
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Between 4 Color Theorem and 5 Color Theorem

4CT is hard and 5CT is easy. What’s in between?

I Erdös–Vizing Conj.: Every n-vertex planar G has α(G ) ≥ 1
4n.

I Two-fold coloring: color vertex “half red and half blue”
I 5CT implies that 10 colors suffice
I 4CT implies that 8 colors suffice
I 9

2CT will show that 9 colors suffice.

Def: The Kneser graph Kn:k has as
vertices the k-element subsets of
{1, . . . , n}. Vertices are adjacent
whenever their sets are disjoint. 2 5

2 4 1 4

1 3

3 5
3 4

1 5 2 3

4 5

1 2

Want f : V (G )→ V (Kn:k) where
f (u)f (v) ∈ E (Kn:k) if uv ∈ E (G ).

We’ll show that planar graphs have a map to K9:2.
G is k-colorable iff G has homomorphism to Kk .
Generalizes “coloring” to “coloring with graphs”.



Between 4 Color Theorem and 5 Color Theorem

4CT is hard and 5CT is easy. What’s in between?

I Erdös–Vizing Conj.: Every n-vertex planar G has α(G ) ≥ 1
4n.

I Two-fold coloring: color vertex “half red and half blue”
I 5CT implies that 10 colors suffice
I 4CT implies that 8 colors suffice
I 9

2CT will show that 9 colors suffice.

Def: The Kneser graph Kn:k has as
vertices the k-element subsets of
{1, . . . , n}. Vertices are adjacent
whenever their sets are disjoint. 2 5

2 4 1 4

1 3

3 5
3 4

1 5 2 3

4 5

1 2

Want f : V (G )→ V (Kn:k) where
f (u)f (v) ∈ E (Kn:k) if uv ∈ E (G ).

We’ll show that planar graphs have a map to K9:2.
G is k-colorable iff G has homomorphism to Kk .
Generalizes “coloring” to “coloring with graphs”.



Between 4 Color Theorem and 5 Color Theorem

4CT is hard and 5CT is easy. What’s in between?

I Erdös–Vizing Conj.: Every n-vertex planar G has α(G ) ≥ 1
4n.

I Two-fold coloring: color vertex “half red and half blue”
I 5CT implies that 10 colors suffice
I 4CT implies that 8 colors suffice
I 9

2CT will show that 9 colors suffice.

Def: The Kneser graph Kn:k has as
vertices the k-element subsets of
{1, . . . , n}. Vertices are adjacent
whenever their sets are disjoint. 2 5

2 4 1 4

1 3

3 5
3 4

1 5 2 3

4 5

1 2

Want f : V (G )→ V (Kn:k) where
f (u)f (v) ∈ E (Kn:k) if uv ∈ E (G ).

We’ll show that planar graphs have a map to K9:2.
G is k-colorable iff G has homomorphism to Kk .
Generalizes “coloring” to “coloring with graphs”.



Between 4 Color Theorem and 5 Color Theorem

4CT is hard and 5CT is easy. What’s in between?

I Erdös–Vizing Conj.: Every n-vertex planar G has α(G ) ≥ 1
4n.

I Two-fold coloring: color vertex “half red and half blue”

I 5CT implies that 10 colors suffice
I 4CT implies that 8 colors suffice
I 9

2CT will show that 9 colors suffice.

Def: The Kneser graph Kn:k has as
vertices the k-element subsets of
{1, . . . , n}. Vertices are adjacent
whenever their sets are disjoint. 2 5

2 4 1 4

1 3

3 5
3 4

1 5 2 3

4 5

1 2

Want f : V (G )→ V (Kn:k) where
f (u)f (v) ∈ E (Kn:k) if uv ∈ E (G ).

We’ll show that planar graphs have a map to K9:2.
G is k-colorable iff G has homomorphism to Kk .
Generalizes “coloring” to “coloring with graphs”.



Between 4 Color Theorem and 5 Color Theorem

4CT is hard and 5CT is easy. What’s in between?

I Erdös–Vizing Conj.: Every n-vertex planar G has α(G ) ≥ 1
4n.

I Two-fold coloring: color vertex “half red and half blue”
I 5CT implies that 10 colors suffice

I 4CT implies that 8 colors suffice
I 9

2CT will show that 9 colors suffice.

Def: The Kneser graph Kn:k has as
vertices the k-element subsets of
{1, . . . , n}. Vertices are adjacent
whenever their sets are disjoint. 2 5

2 4 1 4

1 3

3 5
3 4

1 5 2 3

4 5

1 2

Want f : V (G )→ V (Kn:k) where
f (u)f (v) ∈ E (Kn:k) if uv ∈ E (G ).

We’ll show that planar graphs have a map to K9:2.
G is k-colorable iff G has homomorphism to Kk .
Generalizes “coloring” to “coloring with graphs”.



Between 4 Color Theorem and 5 Color Theorem

4CT is hard and 5CT is easy. What’s in between?

I Erdös–Vizing Conj.: Every n-vertex planar G has α(G ) ≥ 1
4n.

I Two-fold coloring: color vertex “half red and half blue”
I 5CT implies that 10 colors suffice
I 4CT implies that 8 colors suffice

I 9
2CT will show that 9 colors suffice.

Def: The Kneser graph Kn:k has as
vertices the k-element subsets of
{1, . . . , n}. Vertices are adjacent
whenever their sets are disjoint. 2 5

2 4 1 4

1 3

3 5
3 4

1 5 2 3

4 5

1 2

Want f : V (G )→ V (Kn:k) where
f (u)f (v) ∈ E (Kn:k) if uv ∈ E (G ).

We’ll show that planar graphs have a map to K9:2.
G is k-colorable iff G has homomorphism to Kk .
Generalizes “coloring” to “coloring with graphs”.



Between 4 Color Theorem and 5 Color Theorem

4CT is hard and 5CT is easy. What’s in between?

I Erdös–Vizing Conj.: Every n-vertex planar G has α(G ) ≥ 1
4n.

I Two-fold coloring: color vertex “half red and half blue”
I 5CT implies that 10 colors suffice
I 4CT implies that 8 colors suffice
I 9

2CT will show that 9 colors suffice.

Def: The Kneser graph Kn:k has as
vertices the k-element subsets of
{1, . . . , n}. Vertices are adjacent
whenever their sets are disjoint. 2 5

2 4 1 4

1 3

3 5
3 4

1 5 2 3

4 5

1 2

Want f : V (G )→ V (Kn:k) where
f (u)f (v) ∈ E (Kn:k) if uv ∈ E (G ).

We’ll show that planar graphs have a map to K9:2.
G is k-colorable iff G has homomorphism to Kk .
Generalizes “coloring” to “coloring with graphs”.



Between 4 Color Theorem and 5 Color Theorem

4CT is hard and 5CT is easy. What’s in between?

I Erdös–Vizing Conj.: Every n-vertex planar G has α(G ) ≥ 1
4n.

I Two-fold coloring: color vertex “half red and half blue”
I 5CT implies that 10 colors suffice
I 4CT implies that 8 colors suffice
I 9

2CT will show that 9 colors suffice.

Def: The Kneser graph Kn:k has as
vertices the k-element subsets of
{1, . . . , n}. Vertices are adjacent
whenever their sets are disjoint.

2 5

2 4 1 4

1 3

3 5
3 4

1 5 2 3

4 5

1 2

Want f : V (G )→ V (Kn:k) where
f (u)f (v) ∈ E (Kn:k) if uv ∈ E (G ).

We’ll show that planar graphs have a map to K9:2.
G is k-colorable iff G has homomorphism to Kk .
Generalizes “coloring” to “coloring with graphs”.



Between 4 Color Theorem and 5 Color Theorem

4CT is hard and 5CT is easy. What’s in between?

I Erdös–Vizing Conj.: Every n-vertex planar G has α(G ) ≥ 1
4n.

I Two-fold coloring: color vertex “half red and half blue”
I 5CT implies that 10 colors suffice
I 4CT implies that 8 colors suffice
I 9

2CT will show that 9 colors suffice.

Def: The Kneser graph Kn:k has as
vertices the k-element subsets of
{1, . . . , n}. Vertices are adjacent
whenever their sets are disjoint. 2 5

2 4 1 4

1 3

3 5
3 4

1 5 2 3

4 5

1 2

Want f : V (G )→ V (Kn:k) where
f (u)f (v) ∈ E (Kn:k) if uv ∈ E (G ).

We’ll show that planar graphs have a map to K9:2.
G is k-colorable iff G has homomorphism to Kk .
Generalizes “coloring” to “coloring with graphs”.



Between 4 Color Theorem and 5 Color Theorem

4CT is hard and 5CT is easy. What’s in between?

I Erdös–Vizing Conj.: Every n-vertex planar G has α(G ) ≥ 1
4n.

I Two-fold coloring: color vertex “half red and half blue”
I 5CT implies that 10 colors suffice
I 4CT implies that 8 colors suffice
I 9

2CT will show that 9 colors suffice.

Def: The Kneser graph Kn:k has as
vertices the k-element subsets of
{1, . . . , n}. Vertices are adjacent
whenever their sets are disjoint. 2 5

2 4 1 4

1 3

3 5
3 4

1 5 2 3

4 5

1 2

Want f : V (G )→ V (Kn:k) where
f (u)f (v) ∈ E (Kn:k) if uv ∈ E (G ).

We’ll show that planar graphs have a map to K9:2.
G is k-colorable iff G has homomorphism to Kk .
Generalizes “coloring” to “coloring with graphs”.



Between 4 Color Theorem and 5 Color Theorem

4CT is hard and 5CT is easy. What’s in between?

I Erdös–Vizing Conj.: Every n-vertex planar G has α(G ) ≥ 1
4n.

I Two-fold coloring: color vertex “half red and half blue”
I 5CT implies that 10 colors suffice
I 4CT implies that 8 colors suffice
I 9

2CT will show that 9 colors suffice.

Def: The Kneser graph Kn:k has as
vertices the k-element subsets of
{1, . . . , n}. Vertices are adjacent
whenever their sets are disjoint. 2 5

2 4 1 4

1 3

3 5
3 4

1 5 2 3

4 5

1 2

Want f : V (G )→ V (Kn:k) where
f (u)f (v) ∈ E (Kn:k) if uv ∈ E (G ).

We’ll show that planar graphs have a map to K9:2.

G is k-colorable iff G has homomorphism to Kk .
Generalizes “coloring” to “coloring with graphs”.



Between 4 Color Theorem and 5 Color Theorem

4CT is hard and 5CT is easy. What’s in between?

I Erdös–Vizing Conj.: Every n-vertex planar G has α(G ) ≥ 1
4n.

I Two-fold coloring: color vertex “half red and half blue”
I 5CT implies that 10 colors suffice
I 4CT implies that 8 colors suffice
I 9

2CT will show that 9 colors suffice.

Def: The Kneser graph Kn:k has as
vertices the k-element subsets of
{1, . . . , n}. Vertices are adjacent
whenever their sets are disjoint. 2 5

2 4 1 4

1 3

3 5
3 4

1 5 2 3

4 5

1 2

Want f : V (G )→ V (Kn:k) where
f (u)f (v) ∈ E (Kn:k) if uv ∈ E (G ).

We’ll show that planar graphs have a map to K9:2.
G is k-colorable iff G has homomorphism to Kk .

Generalizes “coloring” to “coloring with graphs”.



Between 4 Color Theorem and 5 Color Theorem

4CT is hard and 5CT is easy. What’s in between?

I Erdös–Vizing Conj.: Every n-vertex planar G has α(G ) ≥ 1
4n.

I Two-fold coloring: color vertex “half red and half blue”
I 5CT implies that 10 colors suffice
I 4CT implies that 8 colors suffice
I 9

2CT will show that 9 colors suffice.

Def: The Kneser graph Kn:k has as
vertices the k-element subsets of
{1, . . . , n}. Vertices are adjacent
whenever their sets are disjoint. 2 5

2 4 1 4

1 3

3 5
3 4

1 5 2 3

4 5

1 2

Want f : V (G )→ V (Kn:k) where
f (u)f (v) ∈ E (Kn:k) if uv ∈ E (G ).

We’ll show that planar graphs have a map to K9:2.
G is k-colorable iff G has homomorphism to Kk .
Generalizes “coloring” to “coloring with graphs”.



9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to K9:2.
Pf: Induction on n, like 5CT. If we can’t do induction, then G :

1. has minimum degree 5

2. has no separating triangle

3. can’t have “too many 6−-vertices near each other”
(13 cases, grouped into 3 lemmas by degree of central vertex)
if so, then contract some non-adjacent pairs of neighbors;
color smaller graph by induction, then extend to G

Finally, use discharging method (counting argument)
to show that every planar graph fails (1), (2), or (3).
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Too many 6−-vertices near each other

Key Fact: Denote the center vertex of K1,3 by v and the other
vertices by u1, u2, u3. If v has 5 allowable colors and each ui has
3 allowable colors, then we can color each vertex with 2 colors,
such that no color appears on both ends of an edge.

Pf: Give v a color available for at most one ui , say u1. 2(5) > 3(3)
Now give v another color not available for u1. Now color each ui .

v
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A

A

B

D

D

Rem: Reducible configuration proofs use only this Key Fact.
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Independence Number

Thm [Albertson ’76]: If G is a plane triangulation with minimum
degree 5 and no separating triangle, then G contains a good kite:

5 6−

Cor: Every n-vertex planar graph has indep. number at least 2
9n.

Rem: We improve this bound to indep. number at least 3
13n.

Pf of Thm: Suppose such a triangulation G has no good kite.
Give each v charge ch(v) = d(v)− 6. Now redistribute charge;
call new charge ch∗(v). Show ch∗(v) ≥ 0 for all v . However,∑

v∈V d(v)− 6 = 2|E | − 6|V | = 2(3|V | − 6)− 6|V | = −12, so:

−12 =
∑
v∈V

ch(v) =
∑
v∈V

ch∗(v) ≥ 0 Contradiction!
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All Vertices are Happy

Discharging Rules

(R1) Each 6-vertex gives each 5-nbr 1
5 .

(R2) Each 7+-vertex gives each 6-nbr 1
10 and each 5-nbr 1

3 .

d(v) ≥ 9: d(v)− 6− d(v)(13) = 2
3(d(v)− 9) ≥ 0.

d(v) = 8: 8− 6− 4(13)− 4( 1
10) > 0.

d(v) = 7: Can give charge 7− 6 = 1.
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Summary

I Coloring planar graphs
I 5CT is easy, 4CT is hard; What’s in between?
I Two-fold coloring: vertex is half red, half blue
I Erdös–Vizing Conjecture: α(G ) ≥ 1

4n

I Planar graphs are 9
2 -colorable (homomorphism to K9:2)

I induction on n, like 5CT; multiple possible induction steps
I no 4−-verts, no separating 3-cycle, few 6−-verts near others
I most induction steps use Key Fact for coloring K1,3

I use discharging (counting) to prove no counterexample exists

I Albertson proved α(G ) ≥ 2
9n

I we strengthened to α(G ) ≥ 3
13n

I proof uses same ideas as 9
2 -coloring proof

I only know proof that α(G ) ≥ 1
4n is by 4CT

I Thanks to R. Thomas and UIUC math for pictures in intro!
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I proof uses same ideas as 9
2 -coloring proof

I only know proof that α(G ) ≥ 1
4n is by 4CT

I Thanks to R. Thomas and UIUC math for pictures in intro!
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