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Coloring the Plane

Goal: Color the plane so points at distance 1 get distinct colors.
> vertices are points of R?
> two vertices adjacent if points are at distance 1

Unit distance graph is any subgraph of this graph.
Min number of colors needed is y(R?).

What’s known?

(a) The Moser spindle (b) The Golomb graph

So X(]R2) >4
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Coloring the Plane: an Upper Bound
Also, X(Rz) <7
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Fractional Coloring
Like coloring, but we can color a vertex part red and part blue.
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xr(Gs) = 3 xr(G) =

Weight w; € [0, 1] for each ind. set / so each vert in sets that sum
to 1; min sum of weights is x7(G); weights in {0,1} gives x(G).
Prop. 1/(G) > ).

=Y > w =) wll<a(6)> w =a(G)xr(G).

veV I5v 1eT ez

When G is vertex transitive, y¢(G) = =G
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Fractional Coloring, Il
Recall x¢(G) > [V(G)|/a(G).

More generally:
» 112 V(G) — R=% is a weight function
> [Vu(G) =2 ey ulv) and a,u(G) := maxjez 3 ) u(v)
» For every 1,

x#(6) 2 [Viu(G)[/au(6).
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A Computational Approach

Goal: Find unit distance H with ¢(H) > 3.5.

Idea: Recall xf(spindle) = 3.5. Find graph with many spindles
that interact; at least one colored suboptimally. Core vertices from
triangular lattice; attach many spindles; solve for best weights.

Core weights above, spindle weights 1, total weight: 51 + 45 = 96.
Max independent set weight: 27.

x¢(H) > 96/27 = 32/9 = 3.5555.. ..
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Bigger Cores

Spindle weight 1 gives Spindle weight 2 gives
xr > 128 ~ 35744 xr > 31 ~3.5839
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Spindle weight 3 gives xr > 1478312 ~ 3.6008



A “By Hand" Approach



A “By Hand” Approach

Big Idea: Extend same approach to entire plane.



A “By Hand” Approach

Big Idea: Extend same approach to entire plane.

» Core is entire triangular lattice.



A “By Hand” Approach

Big Idea: Extend same approach to entire plane.
» Core is entire triangular lattice.

» Use all possible spindles in 3 directions.



A “By Hand” Approach

Big Idea: Extend same approach to entire plane.
» Core is entire triangular lattice.
» Use all possible spindles in 3 directions.

» Each core vertex: weight 12



A “By Hand” Approach

Big Idea: Extend same approach to entire plane.
» Core is entire triangular lattice.
» Use all possible spindles in 3 directions.
» Each core vertex: weight 12

» Each spindle vertex: weight 1



A “By Hand” Approach

Big Idea: Extend same approach to entire plane.
» Core is entire triangular lattice.
» Use all possible spindles in 3 directions.
» Each core vertex: weight 12
» Each spindle vertex: weight 1

» Avoid oco: consider limit of bigger and bigger cores.



A “By Hand” Approach

Big Idea: Extend same approach to entire plane.
» Core is entire triangular lattice.
» Use all possible spindles in 3 directions.
» Each core vertex: weight 12
» Each spindle vertex: weight 1

» Avoid oco: consider limit of bigger and bigger cores.

Core vertices: M



A “By Hand” Approach

Big Idea: Extend same approach to entire plane.

» Core is entire triangular lattice.

v

Use all possible spindles in 3 directions.

v

Each core vertex: weight 12

v

Each spindle vertex: weight 1

v

Avoid oo: consider limit of bigger and bigger cores.

Core vertices: M
Total vertices: M + 9M — o(M)



A “By Hand” Approach

Big Idea: Extend same approach to entire plane.

» Core is entire triangular lattice.

v

Use all possible spindles in 3 directions.

v

Each core vertex: weight 12

v

Each spindle vertex: weight 1

v

Avoid oo: consider limit of bigger and bigger cores.

Core vertices: M
Total vertices: M + 9M — o(M)
Total weight: 12M +9M — o(M) = 21M — o( M)



A “By Hand” Approach

Big Idea: Extend same approach to entire plane.

» Core is entire triangular lattice.

v

Use all possible spindles in 3 directions.

v

Each core vertex: weight 12

v

Each spindle vertex: weight 1

v

Avoid oo: consider limit of bigger and bigger cores.

Core vertices: M
Total vertices: M + 9M — o(M)
Total weight: 12M +9M — o(M) = 21M — o( M)

Lem: Each independent set hits weight at most 6.



A “By Hand” Approach

Big Idea: Extend same approach to entire plane.
» Core is entire triangular lattice.
» Use all possible spindles in 3 directions.
» Each core vertex: weight 12
» Each spindle vertex: weight 1

» Avoid oco: consider limit of bigger and bigger cores.

Core vertices: M
Total vertices: M + 9M — o(M)
Total weight: 12M +9M — o(M) = 21M — o( M)

Lem: Each independent set hits weight at most 6.
Pf: Next slide.



A “By Hand” Approach

Big Idea: Extend same approach to entire plane.
» Core is entire triangular lattice.
» Use all possible spindles in 3 directions.
» Each core vertex: weight 12
» Each spindle vertex: weight 1

» Avoid oco: consider limit of bigger and bigger cores.

Core vertices: M
Total vertices: M + 9M — o(M)
Total weight: 12M +9M — o(M) = 21M — o( M)

Lem: Each independent set hits weight at most 6.
Pf: Next slide.

Xf > 21M/(6M)=7/2 =35
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Given independent set /, discharge weight of / as follows:
(R1) Each core vertex in / gives 1 to each core nbr
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Xf 2
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A Hint of a Better Bound

To improve bound:
» Optimize the ratio of core weight and spindle weight
» Average final weights over bigger sets of core vertices

Which subsets to average over?
» Partition core into tiles with verts of | as corners
» Assume / intersects core in maximal independent set
> If not, modify / to hit more weight
Why is this good?
» Averaging over tiles allows better bound on final weight.
» Only 8 shapes of tiles (because / is maximal);
avoids combinatorial explosion.

Now compute the final weight, averaged over each tile.

105
xr(R?) > Sy 36207



A Tiling for a Better Bound
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By hand: consider entire triangular lattice (via limits)

Core with M vertices: total weight 21M

Max independent set hits weight 6 (via discharging)

This proves \¢(R?) > (21M)/(6M) = 3.5

Average over larger subsets of vertices: yr(R?) > 3.6206. ..
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