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Coloring the Plane

Goal: Color the plane so points at distance 1 get distinct colors.

I vertices are points of R2

I two vertices adjacent if points are at distance 1

Unit distance graph is any subgraph of this graph.
Min number of colors needed is χ(R2).

What’s known?
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(b) The Golomb graph

So χ(R2) ≥ 4
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Coloring the Plane: an Upper Bound

Also, χ(R2) ≤ 7
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Fractional Coloring

Like coloring, but we can color a vertex part red and part blue.

2,4

3,5

1,4

2,5 1,3

2,4,6

1,3,5 2,4,7

1,3,6

2,5,7

1,4,6

3,5,7

Weight wI ∈ [0, 1] for each ind. set I so each vert in sets that sum
to 1; min sum of weights is χf (G ); weights in {0, 1} gives χ(G ).

Prop. χf (G ) ≥ |V (G)|
α(G) .

|V (G )| =
∑
v∈V

∑
I3v

wI =
∑
I∈I

wI |I | ≤ α(G )
∑
I∈I

wI = α(G )χf (G ).

When G is vertex transitive, χf (G ) = |V (G)|
α(G) .
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Fractional Coloring, II

Recall χf (G ) ≥ |V (G )|/α(G ).
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More generally:

I µ : V (G )→ R≥0 is a weight function
I |Vµ(G )| :=

∑
v∈V µ(v) and αµ(G ) := maxI∈I

∑
v∈I µ(v)

I For every µ,

χf (G ) ≥ |Vµ(G )|/αµ(G ).
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A Computational Approach

Goal: Find unit distance H with χf (H) > 3.5.

Idea: Recall χf (spindle) = 3.5. Find graph with many spindles
that interact; at least one colored suboptimally. Core vertices from
triangular lattice;

attach many spindles; solve for best weights.

3 3

4 7 4

3 7 7 3

3 4 3

Core weights above, spindle weights 1, total weight: 51 + 45 = 96.
Max independent set weight: 27.

χf (H) ≥ 96/27 = 32/9 = 3.5555 . . .
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A “By Hand” Approach

Big Idea: Extend same approach to entire plane.

I Core is entire triangular lattice.

I Use all possible spindles in 3 directions.

I Each core vertex: weight 12

I Each spindle vertex: weight 1

I Avoid ∞: consider limit of bigger and bigger cores.

Core vertices: M
Total vertices: M + 9M − o(M)
Total weight: 12M + 9M − o(M) = 21M − o(M)

Lem: Each independent set hits weight at most 6M.
Pf: Next slide.

χf ≥ 21M/(6M) = 7/2 = 3.5
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The Discharging
Given independent set I , discharge weight of I as follows:

(R1) Each core vertex in I gives 1 to each core nbr

(R2) Each spindle vertex in I splits its weight equally between the
core vertices incident to its spindle that are not in I

Final weight on core vertices:

I in I : 12− 6(1) = 6

I 3 nbrs in I : 0 + 3 + 6
2 = 6

I 2 nbrs in I : 0 + 2 + 4
2 + 2 = 6

I 1 nbr in I : 0 + 1 + 2
2 + 4 = 6

I 0 nbrs in I : 0 + 0 + 0
2 + 6 = 6

Now
∑

v∈I µ(v) ≤ 6M, so

χf ≥
21M

6M
= 3.5
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(R2) Each spindle vertex in I splits its weight equally between the
core vertices incident to its spindle that are not in I
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A Hint of a Better Bound

To improve bound:

I Optimize the ratio of core weight and spindle weight

I Average final weights over bigger sets of core vertices

Which subsets to average over?

I Partition core into tiles with verts of I as corners

I Assume I intersects core in maximal independent set

I If not, modify I to hit more weight

Why is this good?

I Averaging over tiles allows better bound on final weight.

I Only 8 shapes of tiles (because I is maximal);
avoids combinatorial explosion.

Now compute the final weight, averaged over each tile.

χf (R2) ≥ 105

29
≈ 3.6207



A Hint of a Better Bound

To improve bound:

I Optimize the ratio of core weight and spindle weight

I Average final weights over bigger sets of core vertices

Which subsets to average over?

I Partition core into tiles with verts of I as corners

I Assume I intersects core in maximal independent set

I If not, modify I to hit more weight

Why is this good?

I Averaging over tiles allows better bound on final weight.

I Only 8 shapes of tiles (because I is maximal);
avoids combinatorial explosion.

Now compute the final weight, averaged over each tile.

χf (R2) ≥ 105

29
≈ 3.6207



A Hint of a Better Bound

To improve bound:

I Optimize the ratio of core weight and spindle weight

I Average final weights over bigger sets of core vertices

Which subsets to average over?

I Partition core into tiles with verts of I as corners

I Assume I intersects core in maximal independent set

I If not, modify I to hit more weight

Why is this good?

I Averaging over tiles allows better bound on final weight.

I Only 8 shapes of tiles (because I is maximal);
avoids combinatorial explosion.

Now compute the final weight, averaged over each tile.

χf (R2) ≥ 105

29
≈ 3.6207



A Hint of a Better Bound

To improve bound:

I Optimize the ratio of core weight and spindle weight

I Average final weights over bigger sets of core vertices

Which subsets to average over?

I Partition core into tiles with verts of I as corners

I Assume I intersects core in maximal independent set

I If not, modify I to hit more weight

Why is this good?

I Averaging over tiles allows better bound on final weight.

I Only 8 shapes of tiles (because I is maximal);
avoids combinatorial explosion.

Now compute the final weight, averaged over each tile.

χf (R2) ≥ 105

29
≈ 3.6207



A Hint of a Better Bound

To improve bound:

I Optimize the ratio of core weight and spindle weight

I Average final weights over bigger sets of core vertices

Which subsets to average over?

I Partition core into tiles with verts of I as corners

I Assume I intersects core in maximal independent set

I If not, modify I to hit more weight

Why is this good?

I Averaging over tiles allows better bound on final weight.

I Only 8 shapes of tiles (because I is maximal);
avoids combinatorial explosion.

Now compute the final weight, averaged over each tile.

χf (R2) ≥ 105

29
≈ 3.6207



A Hint of a Better Bound

To improve bound:

I Optimize the ratio of core weight and spindle weight

I Average final weights over bigger sets of core vertices

Which subsets to average over?

I Partition core into tiles with verts of I as corners

I Assume I intersects core in maximal independent set

I If not, modify I to hit more weight

Why is this good?

I Averaging over tiles allows better bound on final weight.

I Only 8 shapes of tiles (because I is maximal);
avoids combinatorial explosion.

Now compute the final weight, averaged over each tile.

χf (R2) ≥ 105

29
≈ 3.6207



A Hint of a Better Bound

To improve bound:

I Optimize the ratio of core weight and spindle weight

I Average final weights over bigger sets of core vertices

Which subsets to average over?

I Partition core into tiles with verts of I as corners

I Assume I intersects core in maximal independent set

I If not, modify I to hit more weight

Why is this good?

I Averaging over tiles allows better bound on final weight.

I Only 8 shapes of tiles (because I is maximal);
avoids combinatorial explosion.

Now compute the final weight, averaged over each tile.

χf (R2) ≥ 105

29
≈ 3.6207



A Hint of a Better Bound

To improve bound:

I Optimize the ratio of core weight and spindle weight

I Average final weights over bigger sets of core vertices

Which subsets to average over?

I Partition core into tiles with verts of I as corners

I Assume I intersects core in maximal independent set

I If not, modify I to hit more weight

Why is this good?

I Averaging over tiles allows better bound on final weight.

I Only 8 shapes of tiles (because I is maximal);

avoids combinatorial explosion.

Now compute the final weight, averaged over each tile.

χf (R2) ≥ 105

29
≈ 3.6207



A Hint of a Better Bound

To improve bound:

I Optimize the ratio of core weight and spindle weight

I Average final weights over bigger sets of core vertices

Which subsets to average over?

I Partition core into tiles with verts of I as corners

I Assume I intersects core in maximal independent set

I If not, modify I to hit more weight

Why is this good?

I Averaging over tiles allows better bound on final weight.

I Only 8 shapes of tiles (because I is maximal);
avoids combinatorial explosion.

Now compute the final weight, averaged over each tile.

χf (R2) ≥ 105

29
≈ 3.6207



A Hint of a Better Bound

To improve bound:

I Optimize the ratio of core weight and spindle weight

I Average final weights over bigger sets of core vertices

Which subsets to average over?

I Partition core into tiles with verts of I as corners

I Assume I intersects core in maximal independent set

I If not, modify I to hit more weight

Why is this good?

I Averaging over tiles allows better bound on final weight.

I Only 8 shapes of tiles (because I is maximal);
avoids combinatorial explosion.

Now compute the final weight, averaged over each tile.

χf (R2) ≥ 105

29
≈ 3.6207



A Hint of a Better Bound

To improve bound:

I Optimize the ratio of core weight and spindle weight

I Average final weights over bigger sets of core vertices

Which subsets to average over?

I Partition core into tiles with verts of I as corners

I Assume I intersects core in maximal independent set

I If not, modify I to hit more weight

Why is this good?

I Averaging over tiles allows better bound on final weight.

I Only 8 shapes of tiles (because I is maximal);
avoids combinatorial explosion.

Now compute the final weight, averaged over each tile.

χf (R2) ≥ 105

29
≈ 3.6207



A Tiling for a Better Bound



Summary

I 4 ≤ χ(R2) ≤ 7; bounds unchanged since 50s

I Lower bounds for χf (R2) come from unit distance graphs
I Moser spindle shows χf (R2) ≥ 3.5
I Main tool: χf ≥ |V (G )|/α(G ) Weighted:
χf ≥ |Vµ(G )|/αµ(G )

I Fisher–Ullman proved χf (R2) ≥ 3.555 . . .
I Core from triangular lattice
I Attach many spindles (all with weight 1)
I Max. weight sum so no ind. set hits more than 27 (solve LP)
I Now χf (R2) ≥ 96/27 = 32/9 = 3.555 . . .
I Bigger cores give χf ≥ 3.6008

I By hand: consider entire triangular lattice (via limits)
I Core with M vertices: total weight 21M
I Max independent set hits weight 6M (via discharging)
I This proves χf (R2) ≥ (21M)/(6M) = 3.5
I Average over larger subsets of vertices: χf (R2) ≥ 3.6206 . . .
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