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Nonrepetitive List-coloring of Paths

Ex: A 3-coloring of P8 with a square and a square-free 3-coloring.

2 1 2 3 1 2 3 1 1 2 3 1 2 1 3 1

Fact: Thue found a square-free 3-coloring of the infinite path.

Defn: A coloring is nonrepetitive if each path is square-free.

Conj: For each 3-assignment L to the verts of Pn, there is
a nonrepetitive L-coloring ϕ (with ϕ(v) ∈ L(v) for all v).

Lem: Let L be a 4-assignment to V (Pn). For each i ≥ 1, let Ci be
set of nonrepetitive L-colorings of first i verts of Pn. For all i < n,

|Ci+1| ≥ 2|Ci |.

Since |C1| = 4, path Pn has more than 2n nonrepetitive L-colorings.
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Nonrepetitive List-coloring of Paths (the proof)
Lem: Let L be a 4-assignment to V (Pn). For each i ≥ 1, let Ci be
set of nonrepetitive L-colorings of first i verts of Pn. For all i < n,

|Ci+1| ≥ 2|Ci |.

Pf: Induction on i . Let F be the set of L-colorings of v1, . . . , vi+1

that are nonrepetitive on v1, . . . , vi but have a square with vi+1.
Clearly, |Ci+1| = 4|Ci | − |F|. Let Fj be subset of F with a square
of length 2j . So F = ∪j≥1Fj .

Each ϕ ∈ Fj restricts to a nonrepetitive L-coloring ϕ′ of
v1, . . . , vi+1−j . And ϕ′ uniquely determines ϕ. So |Fj | ≤ |Ci+1−j |.
By induction, |Ci+1−j | ≤ 2−j+1|Ci |, for each j ≥ 1. Thus,

|Ci+1| = 4|Ci | − |F| ≥ 4|Ci | −
∑
|Fj |

≥ 4|Ci | −
∑
|Ci+1−j |

≥ 4|Ci | −
∑

2−j+1|Ci | ≥ 2|Ci |.



Nonrepetitive List-coloring of Paths (the proof)
Lem: Let L be a 4-assignment to V (Pn). For each i ≥ 1, let Ci be
set of nonrepetitive L-colorings of first i verts of Pn. For all i < n,

|Ci+1| ≥ 2|Ci |.

Pf: Induction on i . Let F be the set of L-colorings of v1, . . . , vi+1

that are nonrepetitive on v1, . . . , vi but have a square with vi+1.

Clearly, |Ci+1| = 4|Ci | − |F|. Let Fj be subset of F with a square
of length 2j . So F = ∪j≥1Fj .

Each ϕ ∈ Fj restricts to a nonrepetitive L-coloring ϕ′ of
v1, . . . , vi+1−j . And ϕ′ uniquely determines ϕ. So |Fj | ≤ |Ci+1−j |.
By induction, |Ci+1−j | ≤ 2−j+1|Ci |, for each j ≥ 1. Thus,

|Ci+1| = 4|Ci | − |F| ≥ 4|Ci | −
∑
|Fj |

≥ 4|Ci | −
∑
|Ci+1−j |

≥ 4|Ci | −
∑

2−j+1|Ci | ≥ 2|Ci |.



Nonrepetitive List-coloring of Paths (the proof)
Lem: Let L be a 4-assignment to V (Pn). For each i ≥ 1, let Ci be
set of nonrepetitive L-colorings of first i verts of Pn. For all i < n,

|Ci+1| ≥ 2|Ci |.

Pf: Induction on i . Let F be the set of L-colorings of v1, . . . , vi+1

that are nonrepetitive on v1, . . . , vi but have a square with vi+1.
Clearly, |Ci+1| = 4|Ci | − |F|. Let Fj be subset of F with a square
of length 2j . So F = ∪j≥1Fj .

Each ϕ ∈ Fj restricts to a nonrepetitive L-coloring ϕ′ of
v1, . . . , vi+1−j . And ϕ′ uniquely determines ϕ. So |Fj | ≤ |Ci+1−j |.
By induction, |Ci+1−j | ≤ 2−j+1|Ci |, for each j ≥ 1. Thus,

|Ci+1| = 4|Ci | − |F| ≥ 4|Ci | −
∑
|Fj |

≥ 4|Ci | −
∑
|Ci+1−j |

≥ 4|Ci | −
∑

2−j+1|Ci | ≥ 2|Ci |.



Nonrepetitive List-coloring of Paths (the proof)
Lem: Let L be a 4-assignment to V (Pn). For each i ≥ 1, let Ci be
set of nonrepetitive L-colorings of first i verts of Pn. For all i < n,

|Ci+1| ≥ 2|Ci |.

Pf: Induction on i . Let F be the set of L-colorings of v1, . . . , vi+1

that are nonrepetitive on v1, . . . , vi but have a square with vi+1.
Clearly, |Ci+1| = 4|Ci | − |F|. Let Fj be subset of F with a square
of length 2j . So F = ∪j≥1Fj .

Each ϕ ∈ Fj restricts to a nonrepetitive L-coloring ϕ′ of
v1, . . . , vi+1−j .

And ϕ′ uniquely determines ϕ. So |Fj | ≤ |Ci+1−j |.
By induction, |Ci+1−j | ≤ 2−j+1|Ci |, for each j ≥ 1. Thus,

|Ci+1| = 4|Ci | − |F| ≥ 4|Ci | −
∑
|Fj |

≥ 4|Ci | −
∑
|Ci+1−j |

≥ 4|Ci | −
∑

2−j+1|Ci | ≥ 2|Ci |.



Nonrepetitive List-coloring of Paths (the proof)
Lem: Let L be a 4-assignment to V (Pn). For each i ≥ 1, let Ci be
set of nonrepetitive L-colorings of first i verts of Pn. For all i < n,

|Ci+1| ≥ 2|Ci |.

Pf: Induction on i . Let F be the set of L-colorings of v1, . . . , vi+1

that are nonrepetitive on v1, . . . , vi but have a square with vi+1.
Clearly, |Ci+1| = 4|Ci | − |F|. Let Fj be subset of F with a square
of length 2j . So F = ∪j≥1Fj .

Each ϕ ∈ Fj restricts to a nonrepetitive L-coloring ϕ′ of
v1, . . . , vi+1−j . And ϕ′ uniquely determines ϕ.

So |Fj | ≤ |Ci+1−j |.
By induction, |Ci+1−j | ≤ 2−j+1|Ci |, for each j ≥ 1. Thus,

|Ci+1| = 4|Ci | − |F| ≥ 4|Ci | −
∑
|Fj |

≥ 4|Ci | −
∑
|Ci+1−j |

≥ 4|Ci | −
∑

2−j+1|Ci | ≥ 2|Ci |.



Nonrepetitive List-coloring of Paths (the proof)
Lem: Let L be a 4-assignment to V (Pn). For each i ≥ 1, let Ci be
set of nonrepetitive L-colorings of first i verts of Pn. For all i < n,

|Ci+1| ≥ 2|Ci |.

Pf: Induction on i . Let F be the set of L-colorings of v1, . . . , vi+1

that are nonrepetitive on v1, . . . , vi but have a square with vi+1.
Clearly, |Ci+1| = 4|Ci | − |F|. Let Fj be subset of F with a square
of length 2j . So F = ∪j≥1Fj .

Each ϕ ∈ Fj restricts to a nonrepetitive L-coloring ϕ′ of
v1, . . . , vi+1−j . And ϕ′ uniquely determines ϕ. So |Fj | ≤ |Ci+1−j |.

By induction, |Ci+1−j | ≤ 2−j+1|Ci |, for each j ≥ 1. Thus,

|Ci+1| = 4|Ci | − |F| ≥ 4|Ci | −
∑
|Fj |

≥ 4|Ci | −
∑
|Ci+1−j |

≥ 4|Ci | −
∑

2−j+1|Ci | ≥ 2|Ci |.



Nonrepetitive List-coloring of Paths (the proof)
Lem: Let L be a 4-assignment to V (Pn). For each i ≥ 1, let Ci be
set of nonrepetitive L-colorings of first i verts of Pn. For all i < n,

|Ci+1| ≥ 2|Ci |.

Pf: Induction on i . Let F be the set of L-colorings of v1, . . . , vi+1

that are nonrepetitive on v1, . . . , vi but have a square with vi+1.
Clearly, |Ci+1| = 4|Ci | − |F|. Let Fj be subset of F with a square
of length 2j . So F = ∪j≥1Fj .

Each ϕ ∈ Fj restricts to a nonrepetitive L-coloring ϕ′ of
v1, . . . , vi+1−j . And ϕ′ uniquely determines ϕ. So |Fj | ≤ |Ci+1−j |.
By induction, |Ci+1−j | ≤ 2−j+1|Ci |, for each j ≥ 1.

Thus,

|Ci+1| = 4|Ci | − |F| ≥ 4|Ci | −
∑
|Fj |

≥ 4|Ci | −
∑
|Ci+1−j |

≥ 4|Ci | −
∑

2−j+1|Ci | ≥ 2|Ci |.



Nonrepetitive List-coloring of Paths (the proof)
Lem: Let L be a 4-assignment to V (Pn). For each i ≥ 1, let Ci be
set of nonrepetitive L-colorings of first i verts of Pn. For all i < n,

|Ci+1| ≥ 2|Ci |.

Pf: Induction on i . Let F be the set of L-colorings of v1, . . . , vi+1

that are nonrepetitive on v1, . . . , vi but have a square with vi+1.
Clearly, |Ci+1| = 4|Ci | − |F|. Let Fj be subset of F with a square
of length 2j . So F = ∪j≥1Fj .

Each ϕ ∈ Fj restricts to a nonrepetitive L-coloring ϕ′ of
v1, . . . , vi+1−j . And ϕ′ uniquely determines ϕ. So |Fj | ≤ |Ci+1−j |.
By induction, |Ci+1−j | ≤ 2−j+1|Ci |, for each j ≥ 1. Thus,

|Ci+1| = 4|Ci | − |F|

≥ 4|Ci | −
∑
|Fj |

≥ 4|Ci | −
∑
|Ci+1−j |

≥ 4|Ci | −
∑

2−j+1|Ci | ≥ 2|Ci |.



Nonrepetitive List-coloring of Paths (the proof)
Lem: Let L be a 4-assignment to V (Pn). For each i ≥ 1, let Ci be
set of nonrepetitive L-colorings of first i verts of Pn. For all i < n,

|Ci+1| ≥ 2|Ci |.

Pf: Induction on i . Let F be the set of L-colorings of v1, . . . , vi+1

that are nonrepetitive on v1, . . . , vi but have a square with vi+1.
Clearly, |Ci+1| = 4|Ci | − |F|. Let Fj be subset of F with a square
of length 2j . So F = ∪j≥1Fj .

Each ϕ ∈ Fj restricts to a nonrepetitive L-coloring ϕ′ of
v1, . . . , vi+1−j . And ϕ′ uniquely determines ϕ. So |Fj | ≤ |Ci+1−j |.
By induction, |Ci+1−j | ≤ 2−j+1|Ci |, for each j ≥ 1. Thus,

|Ci+1| = 4|Ci | − |F| ≥ 4|Ci | −
∑
|Fj |

≥ 4|Ci | −
∑
|Ci+1−j |

≥ 4|Ci | −
∑

2−j+1|Ci | ≥ 2|Ci |.



Nonrepetitive List-coloring of Paths (the proof)
Lem: Let L be a 4-assignment to V (Pn). For each i ≥ 1, let Ci be
set of nonrepetitive L-colorings of first i verts of Pn. For all i < n,

|Ci+1| ≥ 2|Ci |.

Pf: Induction on i . Let F be the set of L-colorings of v1, . . . , vi+1

that are nonrepetitive on v1, . . . , vi but have a square with vi+1.
Clearly, |Ci+1| = 4|Ci | − |F|. Let Fj be subset of F with a square
of length 2j . So F = ∪j≥1Fj .

Each ϕ ∈ Fj restricts to a nonrepetitive L-coloring ϕ′ of
v1, . . . , vi+1−j . And ϕ′ uniquely determines ϕ. So |Fj | ≤ |Ci+1−j |.
By induction, |Ci+1−j | ≤ 2−j+1|Ci |, for each j ≥ 1. Thus,

|Ci+1| = 4|Ci | − |F| ≥ 4|Ci | −
∑
|Fj |

≥ 4|Ci | −
∑
|Ci+1−j |

≥ 4|Ci | −
∑

2−j+1|Ci | ≥ 2|Ci |.



Nonrepetitive List-coloring of Paths (the proof)
Lem: Let L be a 4-assignment to V (Pn). For each i ≥ 1, let Ci be
set of nonrepetitive L-colorings of first i verts of Pn. For all i < n,

|Ci+1| ≥ 2|Ci |.

Pf: Induction on i . Let F be the set of L-colorings of v1, . . . , vi+1

that are nonrepetitive on v1, . . . , vi but have a square with vi+1.
Clearly, |Ci+1| = 4|Ci | − |F|. Let Fj be subset of F with a square
of length 2j . So F = ∪j≥1Fj .

Each ϕ ∈ Fj restricts to a nonrepetitive L-coloring ϕ′ of
v1, . . . , vi+1−j . And ϕ′ uniquely determines ϕ. So |Fj | ≤ |Ci+1−j |.
By induction, |Ci+1−j | ≤ 2−j+1|Ci |, for each j ≥ 1. Thus,

|Ci+1| = 4|Ci | − |F| ≥ 4|Ci | −
∑
|Fj |

≥ 4|Ci | −
∑
|Ci+1−j |

≥ 4|Ci | −
∑

2−j+1|Ci |

≥ 2|Ci |.



Nonrepetitive List-coloring of Paths (the proof)
Lem: Let L be a 4-assignment to V (Pn). For each i ≥ 1, let Ci be
set of nonrepetitive L-colorings of first i verts of Pn. For all i < n,

|Ci+1| ≥ 2|Ci |.

Pf: Induction on i . Let F be the set of L-colorings of v1, . . . , vi+1

that are nonrepetitive on v1, . . . , vi but have a square with vi+1.
Clearly, |Ci+1| = 4|Ci | − |F|. Let Fj be subset of F with a square
of length 2j . So F = ∪j≥1Fj .

Each ϕ ∈ Fj restricts to a nonrepetitive L-coloring ϕ′ of
v1, . . . , vi+1−j . And ϕ′ uniquely determines ϕ. So |Fj | ≤ |Ci+1−j |.
By induction, |Ci+1−j | ≤ 2−j+1|Ci |, for each j ≥ 1. Thus,

|Ci+1| = 4|Ci | − |F| ≥ 4|Ci | −
∑
|Fj |

≥ 4|Ci | −
∑
|Ci+1−j |

≥ 4|Ci | −
∑

2−j+1|Ci | ≥ 2|Ci |.



Proper Conflict-free Coloring

Defn: A proper coloring of G is conflict-free
if every non-isolated vertex of G has some color
appearing exactly once on its open neighborhood. 3 4 4

1 2 2

Conj: [CPS] χpcf (G ) ≤ ∆ + 1 for all connected G with ∆ ≥ 3.

Thm: Fix a positive integer ∆ ≥ 6.5 · 107, fix a real number β

with ∆ ≥ β ≥ 0.6550826∆, and let a :=
⌈

∆ + β +
√

∆
⌉

. If G

has max degree at most ∆ and L is an a-assignment for G , then
there are at least β|V (G)| proper conflict-free L-colorings of G .
Analogous statements hold when ∆ ≥ 4000 and ∆ ≥ β ≥ 0.6∆
and when ∆ ≥ 750 and ∆ ≥ β ≥ 0.8∆.

Cor: So χ`
pcf (G ) ≤ 1.6551∆(1 + o(1)).

Rem: Liu and Reed showed that χpcf (G ) ≤ ∆(1 + o(1)).
This bound is stronger than ours, but much less general.
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Key Rosenfeld Counting Lemma

Defn: For an integer t, a graph G , and a hypergraph H with
V (H) = V (G ), a coloring ϕ is a proper t-conflict-free coloring of
(G ,H) if ϕ is a proper coloring of G such that for every f ∈ E (H),
some color is used k times by ϕ on f for some k ∈ {1, . . . , t}.

Defn: Fix t, i , d ∈ Z+. The t-associated Stirling number of second
kind, St(d , i), is the number of partitions of the set {1, . . . , d} into
i parts, each of size at least t. E.g. S2(2i , i) = (2i)!/(i !2i ).

Key Lem: Fix G , H, t as above. Let β be a real number. If a is a
real number such that

a ≥ ∆(G ) + β +
∑

f ∈E(H),f 3v

b|f |/(t+1)c∑
i=1

St+1(|f |, i) · βi−|f |+1

for every v ∈ V (G ), then for every a-assignment L of G , there are
at least β|V (G)| proper t-conflict-free L-colorings of (G ,H).
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Bounding S2(d , i)

Helper Lem: Fix i , d ∈ Z+ with d ≥ 110. If 0.3d ≤ i ≤ d/2, then
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