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with A > § > 0.6550826A, and let a:= | A+ 3+ VA]. If G
has max degree at most A and L is an a-assignment for G, then
there are at least 5/Y(%)| proper conflict-free [-colorings of G.
Analogous statements hold when A > 4000 and A > 3 > 0.6A
and when A > 750 and A > 3 > 0.8A.

Cor: So x5.¢(G) < 1.6551A(1 + o(1)).

Rem: Liu and Reed showed that x,r(G) < A(1+ o(1)).
This bound is stronger than ours, but much less general.
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Defn: For an integer t, a graph G, and a hypergraph H with
V(H) = V(G), a coloring ¢ is a proper t-conflict-free coloring of
(G, H) if p is a proper coloring of G such that for every f € E(H),
some color is used k times by ¢ on f for some k € {1,..., t}.

Defn: Fix t,i,d € Z". The t-associated Stirling number of second
kind, S:(d, 1), is the number of partitions of the set {1,. - d} into
i parts, each of size at least t. E.g. S»(2i,1) = (2i)!/(i2").

Key Lem: Fix G, H, t as above. Let 3 be a real number. If ais a
real number such that

LIFl/(t+1)] '
a>A(G)+ B+ Z Z Seaa (|, i) - g+
FEE(H).fov  i=1

for every v € V/(G), then for every a-assignment L of G, there are
at least 3!V(©)l proper t-conflict-free L-colorings of (G, H).
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