Rosenfeld Counting: Proper Conflict-free Coloring of Graphs with Large Maximum Degree

> Daniel W. Cranston Virginia Commonwealth University dcranston@vcu.edu

> > Joint with Chun-Hung Liu

CanaDAM 20 May 20205

Ex: A 3-coloring of P_8 with a square and a square-free 3-coloring. $2 \cdot 1 \cdot 2 \cdot 3 \cdot 1 \cdot 2 \cdot 3 \cdot 1$ $1 \cdot 2 \cdot 3 \cdot 1 \cdot 2 \cdot 1 \cdot 3 \cdot 1$

Ex: A 3-coloring of P_8 with a square and a square-free 3-coloring. $2 \cdot 1 \cdot 2 \cdot 3 \cdot 1 \cdot 2 \cdot 3 \cdot 1$ $1 \cdot 2 \cdot 3 \cdot 1 \cdot 2 \cdot 1 \cdot 3 \cdot 1$

Fact: Thue found a square-free 3-coloring of the infinite path.

Ex: A 3-coloring of P_8 with a square and a square-free 3-coloring. $2 \cdot 1 \cdot 2 \cdot 3 \cdot 1 \cdot 2 \cdot 3 \cdot 1$ $1 \cdot 2 \cdot 3 \cdot 1 \cdot 2 \cdot 1 \cdot 3 \cdot 1$

Fact: Thue found a square-free 3-coloring of the infinite path. **Defn:** A coloring is **nonrepetitive** if each path is square-free.

Ex: A 3-coloring of P_8 with a square and a square-free 3-coloring. $2 \cdot 1 \cdot 2 \cdot 3 \cdot 1 \cdot 2 \cdot 3 \cdot 1$ $1 \cdot 2 \cdot 3 \cdot 1 \cdot 2 \cdot 1 \cdot 3 \cdot 1$

Fact: Thue found a square-free 3-coloring of the infinite path. **Defn:** A coloring is **nonrepetitive** if each path is square-free.

Conj: For each 3-assignment *L* to the verts of P_n , there is a nonrepetitive *L*-coloring φ (with $\varphi(v) \in L(v)$ for all *v*).

Ex: A 3-coloring of P_8 with a square and a square-free 3-coloring. $2 \cdot 1 \cdot 2 \cdot 3 \cdot 1 \cdot 2 \cdot 3 \cdot 1$ $1 \cdot 2 \cdot 3 \cdot 1 \cdot 2 \cdot 1 \cdot 3 \cdot 1$

Fact: Thue found a square-free 3-coloring of the infinite path. **Defn:** A coloring is **nonrepetitive** if each path is square-free.

Conj: For each 3-assignment *L* to the verts of P_n , there is a nonrepetitive *L*-coloring φ (with $\varphi(v) \in L(v)$ for all *v*).

Lem: Let *L* be a 4-assignment to $V(P_n)$. For each $i \ge 1$, let C_i be set of nonrepetitive *L*-colorings of first *i* verts of P_n . For all i < n,

 $|\mathcal{C}_{i+1}| \geq 2|\mathcal{C}_i|.$

Ex: A 3-coloring of P_8 with a square and a square-free 3-coloring. $2 \cdot 1 \cdot 2 \cdot 3 \cdot 1 \cdot 2 \cdot 3 \cdot 1$ $1 \cdot 2 \cdot 3 \cdot 1 \cdot 2 \cdot 3 \cdot 1$

Fact: Thue found a square-free 3-coloring of the infinite path. **Defn:** A coloring is **nonrepetitive** if each path is square-free.

Conj: For each 3-assignment *L* to the verts of P_n , there is a nonrepetitive *L*-coloring φ (with $\varphi(v) \in L(v)$ for all *v*).

Lem: Let *L* be a 4-assignment to $V(P_n)$. For each $i \ge 1$, let C_i be set of nonrepetitive *L*-colorings of first *i* verts of P_n . For all i < n,

 $|\mathcal{C}_{i+1}| \geq 2|\mathcal{C}_i|.$

Since $|C_1| = 4$, path P_n has more than 2^n nonrepetitive *L*-colorings.

Lem: Let *L* be a 4-assignment to $V(P_n)$. For each $i \ge 1$, let C_i be set of nonrepetitive *L*-colorings of first *i* verts of P_n . For all i < n,

 $|\mathcal{C}_{i+1}| \geq 2|\mathcal{C}_i|.$

Lem: Let *L* be a 4-assignment to $V(P_n)$. For each $i \ge 1$, let C_i be set of nonrepetitive *L*-colorings of first *i* verts of P_n . For all i < n,

 $|\mathcal{C}_{i+1}| \geq 2|\mathcal{C}_i|.$

Pf: Induction on *i*. Let \mathcal{F} be the set of *L*-colorings of v_1, \ldots, v_{i+1} that are nonrepetitive on v_1, \ldots, v_i but have a square with v_{i+1} .

Lem: Let *L* be a 4-assignment to $V(P_n)$. For each $i \ge 1$, let C_i be set of nonrepetitive *L*-colorings of first *i* verts of P_n . For all i < n,

$|\mathcal{C}_{i+1}| \geq 2|\mathcal{C}_i|.$

Pf: Induction on *i*. Let \mathcal{F} be the set of *L*-colorings of v_1, \ldots, v_{i+1} that are nonrepetitive on v_1, \ldots, v_i but have a square with v_{i+1} . Clearly, $|\mathcal{C}_{i+1}| = 4|\mathcal{C}_i| - |\mathcal{F}|$. Let \mathcal{F}_j be subset of \mathcal{F} with a square of length 2j. So $\mathcal{F} = \bigcup_{j \ge 1} \mathcal{F}_j$.

Lem: Let *L* be a 4-assignment to $V(P_n)$. For each $i \ge 1$, let C_i be set of nonrepetitive *L*-colorings of first *i* verts of P_n . For all i < n,

$|\mathcal{C}_{i+1}| \geq 2|\mathcal{C}_i|.$

Pf: Induction on *i*. Let \mathcal{F} be the set of *L*-colorings of v_1, \ldots, v_{i+1} that are nonrepetitive on v_1, \ldots, v_i but have a square with v_{i+1} . Clearly, $|\mathcal{C}_{i+1}| = 4|\mathcal{C}_i| - |\mathcal{F}|$. Let \mathcal{F}_j be subset of \mathcal{F} with a square of length 2j. So $\mathcal{F} = \bigcup_{j \ge 1} \mathcal{F}_j$.

Each $\varphi \in \mathcal{F}_j$ restricts to a nonrepetitive *L*-coloring φ' of v_1, \ldots, v_{i+1-j} .

Lem: Let *L* be a 4-assignment to $V(P_n)$. For each $i \ge 1$, let C_i be set of nonrepetitive *L*-colorings of first *i* verts of P_n . For all i < n,

$|\mathcal{C}_{i+1}| \geq 2|\mathcal{C}_i|.$

Pf: Induction on *i*. Let \mathcal{F} be the set of *L*-colorings of v_1, \ldots, v_{i+1} that are nonrepetitive on v_1, \ldots, v_i but have a square with v_{i+1} . Clearly, $|\mathcal{C}_{i+1}| = 4|\mathcal{C}_i| - |\mathcal{F}|$. Let \mathcal{F}_j be subset of \mathcal{F} with a square of length 2j. So $\mathcal{F} = \bigcup_{j \ge 1} \mathcal{F}_j$.

Each $\varphi \in \mathcal{F}_j$ restricts to a nonrepetitive *L*-coloring φ' of v_1, \ldots, v_{i+1-j} . And φ' uniquely determines φ .

Lem: Let *L* be a 4-assignment to $V(P_n)$. For each $i \ge 1$, let C_i be set of nonrepetitive *L*-colorings of first *i* verts of P_n . For all i < n,

$|\mathcal{C}_{i+1}| \geq 2|\mathcal{C}_i|.$

Pf: Induction on *i*. Let \mathcal{F} be the set of *L*-colorings of v_1, \ldots, v_{i+1} that are nonrepetitive on v_1, \ldots, v_i but have a square with v_{i+1} . Clearly, $|\mathcal{C}_{i+1}| = 4|\mathcal{C}_i| - |\mathcal{F}|$. Let \mathcal{F}_j be subset of \mathcal{F} with a square of length 2j. So $\mathcal{F} = \bigcup_{j \ge 1} \mathcal{F}_j$.

Each $\varphi \in \mathcal{F}_j$ restricts to a nonrepetitive *L*-coloring φ' of v_1, \ldots, v_{i+1-j} . And φ' uniquely determines φ . So $|\mathcal{F}_j| \leq |\mathcal{C}_{i+1-j}|$.

Lem: Let *L* be a 4-assignment to $V(P_n)$. For each $i \ge 1$, let C_i be set of nonrepetitive *L*-colorings of first *i* verts of P_n . For all i < n,

$|\mathcal{C}_{i+1}| \geq 2|\mathcal{C}_i|.$

Pf: Induction on *i*. Let \mathcal{F} be the set of *L*-colorings of v_1, \ldots, v_{i+1} that are nonrepetitive on v_1, \ldots, v_i but have a square with v_{i+1} . Clearly, $|\mathcal{C}_{i+1}| = 4|\mathcal{C}_i| - |\mathcal{F}|$. Let \mathcal{F}_j be subset of \mathcal{F} with a square of length 2j. So $\mathcal{F} = \bigcup_{j \ge 1} \mathcal{F}_j$.

Each $\varphi \in \mathcal{F}_j$ restricts to a nonrepetitive *L*-coloring φ' of v_1, \ldots, v_{i+1-j} . And φ' uniquely determines φ . So $|\mathcal{F}_j| \leq |\mathcal{C}_{i+1-j}|$. By induction, $|\mathcal{C}_{i+1-j}| \leq 2^{-j+1}|\mathcal{C}_i|$, for each $j \geq 1$.

Lem: Let *L* be a 4-assignment to $V(P_n)$. For each $i \ge 1$, let C_i be set of nonrepetitive *L*-colorings of first *i* verts of P_n . For all i < n,

$|\mathcal{C}_{i+1}| \geq 2|\mathcal{C}_i|.$

Pf: Induction on *i*. Let \mathcal{F} be the set of *L*-colorings of v_1, \ldots, v_{i+1} that are nonrepetitive on v_1, \ldots, v_i but have a square with v_{i+1} . Clearly, $|\mathcal{C}_{i+1}| = 4|\mathcal{C}_i| - |\mathcal{F}|$. Let \mathcal{F}_j be subset of \mathcal{F} with a square of length 2j. So $\mathcal{F} = \bigcup_{j \ge 1} \mathcal{F}_j$.

Each $\varphi \in \mathcal{F}_j$ restricts to a nonrepetitive *L*-coloring φ' of v_1, \ldots, v_{i+1-j} . And φ' uniquely determines φ . So $|\mathcal{F}_j| \leq |\mathcal{C}_{i+1-j}|$. By induction, $|\mathcal{C}_{i+1-j}| \leq 2^{-j+1}|\mathcal{C}_i|$, for each $j \geq 1$. Thus,

$$|\mathcal{C}_{i+1}| = 4|\mathcal{C}_i| - |\mathcal{F}|$$

Lem: Let *L* be a 4-assignment to $V(P_n)$. For each $i \ge 1$, let C_i be set of nonrepetitive *L*-colorings of first *i* verts of P_n . For all i < n,

$|\mathcal{C}_{i+1}| \geq 2|\mathcal{C}_i|.$

Pf: Induction on *i*. Let \mathcal{F} be the set of *L*-colorings of v_1, \ldots, v_{i+1} that are nonrepetitive on v_1, \ldots, v_i but have a square with v_{i+1} . Clearly, $|\mathcal{C}_{i+1}| = 4|\mathcal{C}_i| - |\mathcal{F}|$. Let \mathcal{F}_j be subset of \mathcal{F} with a square of length 2j. So $\mathcal{F} = \bigcup_{j \ge 1} \mathcal{F}_j$.

Each $\varphi \in \mathcal{F}_j$ restricts to a nonrepetitive *L*-coloring φ' of v_1, \ldots, v_{i+1-j} . And φ' uniquely determines φ . So $|\mathcal{F}_j| \leq |\mathcal{C}_{i+1-j}|$. By induction, $|\mathcal{C}_{i+1-j}| \leq 2^{-j+1} |\mathcal{C}_i|$, for each $j \geq 1$. Thus,

 $|\mathcal{C}_{i+1}| = 4|\mathcal{C}_i| - |\mathcal{F}| \ge 4|\mathcal{C}_i| - \sum |\mathcal{F}_j|$

Lem: Let *L* be a 4-assignment to $V(P_n)$. For each $i \ge 1$, let C_i be set of nonrepetitive *L*-colorings of first *i* verts of P_n . For all i < n,

$|\mathcal{C}_{i+1}| \geq 2|\mathcal{C}_i|.$

Pf: Induction on *i*. Let \mathcal{F} be the set of *L*-colorings of v_1, \ldots, v_{i+1} that are nonrepetitive on v_1, \ldots, v_i but have a square with v_{i+1} . Clearly, $|\mathcal{C}_{i+1}| = 4|\mathcal{C}_i| - |\mathcal{F}|$. Let \mathcal{F}_j be subset of \mathcal{F} with a square of length 2j. So $\mathcal{F} = \bigcup_{j \ge 1} \mathcal{F}_j$.

Each $\varphi \in \mathcal{F}_j$ restricts to a nonrepetitive *L*-coloring φ' of v_1, \ldots, v_{i+1-j} . And φ' uniquely determines φ . So $|\mathcal{F}_j| \leq |\mathcal{C}_{i+1-j}|$. By induction, $|\mathcal{C}_{i+1-j}| \leq 2^{-j+1} |\mathcal{C}_i|$, for each $j \geq 1$. Thus,

$$egin{aligned} |\mathcal{C}_{i+1}| &= 4|\mathcal{C}_i| - |\mathcal{F}| \geq 4|\mathcal{C}_i| - \sum |\mathcal{F}_j| \ &\geq 4|\mathcal{C}_i| - \sum |\mathcal{C}_{i+1-j}| \end{aligned}$$

Lem: Let *L* be a 4-assignment to $V(P_n)$. For each $i \ge 1$, let C_i be set of nonrepetitive *L*-colorings of first *i* verts of P_n . For all i < n,

$|\mathcal{C}_{i+1}| \geq 2|\mathcal{C}_i|.$

Pf: Induction on *i*. Let \mathcal{F} be the set of *L*-colorings of v_1, \ldots, v_{i+1} that are nonrepetitive on v_1, \ldots, v_i but have a square with v_{i+1} . Clearly, $|\mathcal{C}_{i+1}| = 4|\mathcal{C}_i| - |\mathcal{F}|$. Let \mathcal{F}_j be subset of \mathcal{F} with a square of length 2j. So $\mathcal{F} = \bigcup_{j \ge 1} \mathcal{F}_j$.

Each $\varphi \in \mathcal{F}_j$ restricts to a nonrepetitive *L*-coloring φ' of v_1, \ldots, v_{i+1-j} . And φ' uniquely determines φ . So $|\mathcal{F}_j| \leq |\mathcal{C}_{i+1-j}|$. By induction, $|\mathcal{C}_{i+1-j}| \leq 2^{-j+1} |\mathcal{C}_i|$, for each $j \geq 1$. Thus,

$$egin{aligned} |\mathcal{C}_{i+1}| &= 4|\mathcal{C}_i| - |\mathcal{F}| \geq 4|\mathcal{C}_i| - \sum |\mathcal{F}_j| \ &\geq 4|\mathcal{C}_i| - \sum |\mathcal{C}_{i+1-j}| \ &\geq 4|\mathcal{C}_i| - \sum 2^{-j+1}|\mathcal{C}_i| \end{aligned}$$

Lem: Let *L* be a 4-assignment to $V(P_n)$. For each $i \ge 1$, let C_i be set of nonrepetitive *L*-colorings of first *i* verts of P_n . For all i < n,

$|\mathcal{C}_{i+1}| \geq 2|\mathcal{C}_i|.$

Pf: Induction on *i*. Let \mathcal{F} be the set of *L*-colorings of v_1, \ldots, v_{i+1} that are nonrepetitive on v_1, \ldots, v_i but have a square with v_{i+1} . Clearly, $|\mathcal{C}_{i+1}| = 4|\mathcal{C}_i| - |\mathcal{F}|$. Let \mathcal{F}_j be subset of \mathcal{F} with a square of length 2j. So $\mathcal{F} = \bigcup_{j \ge 1} \mathcal{F}_j$.

Each $\varphi \in \mathcal{F}_j$ restricts to a nonrepetitive *L*-coloring φ' of v_1, \ldots, v_{i+1-j} . And φ' uniquely determines φ . So $|\mathcal{F}_j| \leq |\mathcal{C}_{i+1-j}|$. By induction, $|\mathcal{C}_{i+1-j}| \leq 2^{-j+1} |\mathcal{C}_i|$, for each $j \geq 1$. Thus,

$$\begin{split} |\mathcal{C}_{i+1}| &= 4|\mathcal{C}_i| - |\mathcal{F}| \geq 4|\mathcal{C}_i| - \sum |\mathcal{F}_j| \\ &\geq 4|\mathcal{C}_i| - \sum |\mathcal{C}_{i+1-j}| \\ &\geq 4|\mathcal{C}_i| - \sum 2^{-j+1}|\mathcal{C}_i| \geq 2|\mathcal{C}_i|. \end{split}$$

Defn: A proper coloring of G is conflict-free if every non-isolated vertex of G has some color appearing exactly once on its open neighborhood.

Defn: A proper coloring of *G* is conflict-free if every non-isolated vertex of *G* has some color appearing exactly once on its open neighborhood.

Conj: [CPS] $\chi_{pcf}(G) \leq \Delta + 1$ for all connected G with $\Delta \geq 3$.

Defn: A proper coloring of G is conflict-free if every non-isolated vertex of G has some color appearing exactly once on its open neighborhood.

Conj: [CPS] $\chi_{pcf}(G) \leq \Delta + 1$ for all connected G with $\Delta \geq 3$.

Thm: Fix a positive integer $\Delta \ge 6.5 \cdot 10^7$, fix a real number β with $\Delta \ge \beta \ge 0.6550826\Delta$, and let $a := \left\lceil \Delta + \beta + \sqrt{\Delta} \right\rceil$.

Defn: A proper coloring of G is conflict-free if every non-isolated vertex of G has some color appearing exactly once on its open neighborhood.

Conj: [CPS] $\chi_{pcf}(G) \leq \Delta + 1$ for all connected G with $\Delta \geq 3$.

Thm: Fix a positive integer $\Delta \ge 6.5 \cdot 10^7$, fix a real number β with $\Delta \ge \beta \ge 0.6550826\Delta$, and let $a := \left[\Delta + \beta + \sqrt{\Delta}\right]$. If *G* has max degree at most Δ and *L* is an *a*-assignment for *G*, then there are at least $\beta^{|V(G)|}$ proper conflict-free *L*-colorings of *G*.

Defn: A proper coloring of G is conflict-free if every non-isolated vertex of G has some color appearing exactly once on its open neighborhood.

Conj: [CPS] $\chi_{pcf}(G) \leq \Delta + 1$ for all connected G with $\Delta \geq 3$.

Thm: Fix a positive integer $\Delta \geq 6.5 \cdot 10^7$, fix a real number β with $\Delta \geq \beta \geq 0.6550826\Delta$, and let $a := \left\lceil \Delta + \beta + \sqrt{\Delta} \right\rceil$. If *G* has max degree at most Δ and *L* is an *a*-assignment for *G*, then there are at least $\beta^{|V(G)|}$ proper conflict-free *L*-colorings of *G*. Analogous statements hold when $\Delta \geq 4000$ and $\Delta \geq \beta \geq 0.\overline{6}\Delta$ and when $\Delta \geq 750$ and $\Delta \geq \beta \geq 0.8\Delta$.

Defn: A proper coloring of *G* is conflict-free if every non-isolated vertex of *G* has some color appearing exactly once on its open neighborhood.

Conj: [CPS] $\chi_{pcf}(G) \leq \Delta + 1$ for all connected G with $\Delta \geq 3$.

Thm: Fix a positive integer $\Delta \ge 6.5 \cdot 10^7$, fix a real number β with $\Delta \ge \beta \ge 0.6550826\Delta$, and let $a := \left\lceil \Delta + \beta + \sqrt{\Delta} \right\rceil$. If *G* has max degree at most Δ and *L* is an *a*-assignment for *G*, then there are at least $\beta^{|V(G)|}$ proper conflict-free *L*-colorings of *G*. Analogous statements hold when $\Delta \ge 4000$ and $\Delta \ge \beta \ge 0.6\Delta$ and when $\Delta \ge 750$ and $\Delta \ge \beta \ge 0.8\Delta$.

Cor: So $\chi^{\ell}_{pcf}(G) \leq 1.6551\Delta(1+o(1)).$

Defn: A proper coloring of *G* is conflict-free if every non-isolated vertex of *G* has some color appearing exactly once on its open neighborhood.

Conj: [CPS] $\chi_{pcf}(G) \leq \Delta + 1$ for all connected G with $\Delta \geq 3$.

Thm: Fix a positive integer $\Delta \ge 6.5 \cdot 10^7$, fix a real number β with $\Delta \ge \beta \ge 0.6550826\Delta$, and let $a := \left\lceil \Delta + \beta + \sqrt{\Delta} \right\rceil$. If *G* has max degree at most Δ and *L* is an *a*-assignment for *G*, then there are at least $\beta^{|V(G)|}$ proper conflict-free *L*-colorings of *G*. Analogous statements hold when $\Delta \ge 4000$ and $\Delta \ge \beta \ge 0.\overline{6}\Delta$ and when $\Delta \ge 750$ and $\Delta \ge \beta \ge 0.8\Delta$.

Cor: So $\chi^{\ell}_{pcf}(G) \leq 1.6551\Delta(1+o(1)).$

Rem: Liu and Reed showed that $\chi_{pcf}(G) \leq \Delta(1 + o(1))$.

Defn: A proper coloring of *G* is conflict-free if every non-isolated vertex of *G* has some color appearing exactly once on its open neighborhood.

Conj: [CPS] $\chi_{pcf}(G) \leq \Delta + 1$ for all connected G with $\Delta \geq 3$.

Thm: Fix a positive integer $\Delta \ge 6.5 \cdot 10^7$, fix a real number β with $\Delta \ge \beta \ge 0.6550826\Delta$, and let $a := \left\lceil \Delta + \beta + \sqrt{\Delta} \right\rceil$. If *G* has max degree at most Δ and *L* is an *a*-assignment for *G*, then there are at least $\beta^{|V(G)|}$ proper conflict-free *L*-colorings of *G*. Analogous statements hold when $\Delta \ge 4000$ and $\Delta \ge \beta \ge 0.\overline{6}\Delta$ and when $\Delta \ge 750$ and $\Delta \ge \beta \ge 0.8\Delta$. **Cor:** So $\chi^{\ell}_{nef}(G) \le 1.6551\Delta(1 + o(1))$.

Rem: Liu and Reed showed that $\chi_{pcf}(G) \leq \Delta(1 + o(1))$. This bound is stronger than ours, but much less general.

Defn: For an integer t, a graph G, and a hypergraph \mathcal{H} with $V(\mathcal{H}) = V(G)$, a coloring φ is a proper *t*-conflict-free coloring of (G, \mathcal{H}) if φ is a proper coloring of G such that for every $f \in E(\mathcal{H})$, some color is used k times by φ on f for some $k \in \{1, \ldots, t\}$.

Defn: For an integer t, a graph G, and a hypergraph \mathcal{H} with $V(\mathcal{H}) = V(G)$, a coloring φ is a proper *t*-conflict-free coloring of (G, \mathcal{H}) if φ is a proper coloring of G such that for every $f \in E(\mathcal{H})$, some color is used k times by φ on f for some $k \in \{1, \ldots, t\}$. **Defn:** Fix $t, i, d \in \mathbb{Z}^+$.

Defn: For an integer t, a graph G, and a hypergraph \mathcal{H} with $V(\mathcal{H}) = V(G)$, a coloring φ is a proper *t*-conflict-free coloring of (G, \mathcal{H}) if φ is a proper coloring of G such that for every $f \in E(\mathcal{H})$, some color is used k times by φ on f for some $k \in \{1, \ldots, t\}$. **Defn:** Fix $t, i, d \in \mathbb{Z}^+$. The *t*-associated Stirling number of second kind, $S_t(d, i)$, is the number of partitions of the set $\{1, \ldots, d\}$ into i parts, each of size at least t.

Defn: For an integer t, a graph G, and a hypergraph \mathcal{H} with $V(\mathcal{H}) = V(G)$, a coloring φ is a proper *t*-conflict-free coloring of (G, \mathcal{H}) if φ is a proper coloring of G such that for every $f \in E(\mathcal{H})$, some color is used k times by φ on f for some $k \in \{1, \ldots, t\}$. **Defn:** Fix $t, i, d \in \mathbb{Z}^+$. The *t*-associated Stirling number of second kind, $S_t(d, i)$, is the number of partitions of the set $\{1, \ldots, d\}$ into i parts, each of size at least t. E.g. $S_2(2i, i) = (2i)!/(i!2^i)$.

Defn: For an integer t, a graph G, and a hypergraph \mathcal{H} with $V(\mathcal{H}) = V(G)$, a coloring φ is a proper *t*-conflict-free coloring of (G, \mathcal{H}) if φ is a proper coloring of G such that for every $f \in E(\mathcal{H})$, some color is used k times by φ on f for some $k \in \{1, \ldots, t\}$. **Defn:** Fix $t, i, d \in \mathbb{Z}^+$. The *t*-associated Stirling number of second kind, $S_t(d, i)$, is the number of partitions of the set $\{1, \ldots, d\}$ into i parts, each of size at least t. E.g. $S_2(2i, i) = (2i)!/(i!2^i)$.

Key Lem: Fix G, \mathcal{H} , t as above. Let β be a real number. If a is a real number such that

$$a \geq \Delta(G) + eta + \sum_{f \in E(\mathcal{H}), f
i
u} \sum_{i=1}^{\lfloor |f|/(t+1)
floor} S_{t+1}(|f|, i) \cdot eta^{i-|f|+1}$$

for every $v \in V(G)$, then for every *a*-assignment *L* of *G*, there are at least $\beta^{|V(G)|}$ proper *t*-conflict-free *L*-colorings of (G, \mathcal{H}) .

Bounding $S_2(d, i)$

Bounding $S_2(d, i)$ Helper Lem: Fix $i, d \in \mathbb{Z}^+$ with $d \ge 110$. If $0.3d \le i \le d/2$, then $S_2(d, i) \le 8i(0.6251d)^{d-i}$. Bounding $S_2(d, i)$ Helper Lem: Fix $i, d \in \mathbb{Z}^+$ with $d \ge 110$. If $0.3d \le i \le d/2$, then $S_2(d, i) \le 8i(0.6251d)^{d-i}$.

Lem: Fix $d, R \in \mathbb{Z}^+$ with $110 \le d \le R$. If $\epsilon, c, \beta \in \mathbb{R}^+$ s.t. $0.6251 \le \epsilon < 1, \ 0.3 \le c < \epsilon/2, \ \epsilon R \le \beta \le R$, and $d \ge f(c, \epsilon, R)$, then

$$\sum_{i=1}^{d/2} S_2(d,i)\beta^{i-d+1} \le R^{-1/2}.$$

Bounding $S_2(d, i)$ Helper Lem: Fix $i, d \in \mathbb{Z}^+$ with $d \ge 110$. If $0.3d \le i \le d/2$, then $S_2(d, i) \le 8i(0.6251d)^{d-i}$.

Lem: Fix $d, R \in \mathbb{Z}^+$ with $110 \le d \le R$. If $\epsilon, c, \beta \in \mathbb{R}^+$ s.t. $0.6251 \le \epsilon < 1, 0.3 \le c < \epsilon/2, \epsilon R \le \beta \le R$, and $d \ge f(c, \epsilon, R)$, then

$$\sum_{i=1}^{d/2} S_2(d,i)\beta^{i-d+1} \leq R^{-1/2}.$$

Pf Sketch:

Lem: Fix $d, R \in \mathbb{Z}^+$ with $110 \le d \le R$. If $\epsilon, c, \beta \in \mathbb{R}^+$ s.t. $0.6251 \le \epsilon < 1$, $0.3 \le c < \epsilon/2$, $\epsilon R \le \beta \le R$, and $d \ge f(c, \epsilon, R)$, then

$$\sum_{i=1}^{d/2} S_2(d,i)\beta^{i-d+1} \le R^{-1/2}.$$

$$\sum_{i=1}^{cd} S_2(d,i)\beta^{i-d+1} \leq \sum_{i=1}^{cd} \binom{d}{i} i^{d-i} 2^{-i}\beta^{i-d+1}$$

Lem: Fix $d, R \in \mathbb{Z}^+$ with $110 \le d \le R$. If $\epsilon, c, \beta \in \mathbb{R}^+$ s.t. $0.6251 \le \epsilon < 1$, $0.3 \le c < \epsilon/2$, $\epsilon R \le \beta \le R$, and $d \ge f(c, \epsilon, R)$, then

$$\sum_{i=1}^{d/2} S_2(d,i)\beta^{i-d+1} \le R^{-1/2}.$$

$$\sum_{i=1}^{cd} S_2(d,i)\beta^{i-d+1} \le \sum_{i=1}^{cd} \binom{d}{i} i^{d-i} 2^{-i} \beta^{i-d+1} \le \ldots \le \frac{1}{2} R^{-1/2}$$

Lem: Fix $d, R \in \mathbb{Z}^+$ with $110 \le d \le R$. If $\epsilon, c, \beta \in \mathbb{R}^+$ s.t. $0.6251 \le \epsilon < 1$, $0.3 \le c < \epsilon/2$, $\epsilon R \le \beta \le R$, and $d \ge f(c, \epsilon, R)$, then

$$\sum_{i=1}^{d/2} S_2(d,i)\beta^{i-d+1} \leq R^{-1/2}.$$

$$\sum_{i=1}^{cd} S_2(d,i)\beta^{i-d+1} \le \sum_{i=1}^{cd} \binom{d}{i} i^{d-i} 2^{-i} \beta^{i-d+1} \le \dots \le \frac{1}{2} R^{-1/2}$$
$$\sum_{i=cd}^{d/2} S_2(d,i)\beta^{i-d+1} \le \sum_{i=cd}^{d/2} 8i(0.6251d)^{d-i} \beta^{i-d+1}$$

Lem: Fix $d, R \in \mathbb{Z}^+$ with $110 \le d \le R$. If $\epsilon, c, \beta \in \mathbb{R}^+$ s.t. $0.6251 \le \epsilon < 1$, $0.3 \le c < \epsilon/2$, $\epsilon R \le \beta \le R$, and $d \ge f(c, \epsilon, R)$, then

$$\sum_{i=1}^{d/2} S_2(d,i)\beta^{i-d+1} \leq R^{-1/2}.$$

$$\sum_{i=1}^{cd} S_2(d,i)\beta^{i-d+1} \le \sum_{i=1}^{cd} \binom{d}{i} i^{d-i} 2^{-i} \beta^{i-d+1} \le \dots \le \frac{1}{2} R^{-1/2}$$
$$\sum_{i=cd}^{d/2} S_2(d,i)\beta^{i-d+1} \le \sum_{i=cd}^{d/2} 8i(0.6251d)^{d-i} \beta^{i-d+1} \le \dots \le \frac{1}{2} R^{-1/2}$$

Rosenfeld Counting

Rosenfeld Counting

Nonrepetitive 4-list-coloring of paths

- Rosenfeld Counting
 - Nonrepetitive 4-list-coloring of paths
 - Color iteratively

- Rosenfeld Counting
 - Nonrepetitive 4-list-coloring of paths
 - Color iteratively
 - # partial colorings exponential in subgraph

- Rosenfeld Counting
 - Nonrepetitive 4-list-coloring of paths
 - Color iteratively
 - # partial colorings exponential in subgraph
 - ► Bad colorings → good colorings of subgraph

- Rosenfeld Counting
 - Nonrepetitive 4-list-coloring of paths
 - Color iteratively
 - # partial colorings exponential in subgraph
 - $\blacktriangleright \text{ Bad colorings} \rightarrow \text{good colorings of subgraph}$
 - Exponentially many good colorings remain

- Rosenfeld Counting
 - Nonrepetitive 4-list-coloring of paths
 - Color iteratively
 - # partial colorings exponential in subgraph
 - $\blacktriangleright \text{ Bad colorings} \rightarrow \text{good colorings of subgraph}$
 - Exponentially many good colorings remain

- Rosenfeld Counting
 - Nonrepetitive 4-list-coloring of paths
 - Color iteratively
 - # partial colorings exponential in subgraph
 - $\blacktriangleright \text{ Bad colorings} \rightarrow \text{good colorings of subgraph}$
 - Exponentially many good colorings remain

Proper Conflict-free Coloring

• CPS conjectured $\chi_{pcf}(G) \leq \Delta + 1$

- Rosenfeld Counting
 - Nonrepetitive 4-list-coloring of paths
 - Color iteratively
 - # partial colorings exponential in subgraph
 - ▶ Bad colorings \rightarrow good colorings of subgraph
 - Exponentially many good colorings remain

- CPS conjectured $\chi_{pcf}(G) \leq \Delta + 1$
- We proved $\chi^{\ell}_{pcf}(G) \leq 1.6551\Delta(1+o(1))$

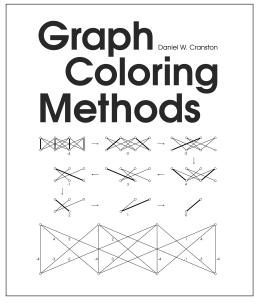
- Rosenfeld Counting
 - Nonrepetitive 4-list-coloring of paths
 - Color iteratively
 - # partial colorings exponential in subgraph
 - ▶ Bad colorings \rightarrow good colorings of subgraph
 - Exponentially many good colorings remain

- CPS conjectured $\chi_{pcf}(G) \leq \Delta + 1$
- We proved $\chi^{\ell}_{pcf}(G) \leq 1.6551\Delta(1+o(1))$
- Corollary of general hypergraph framework

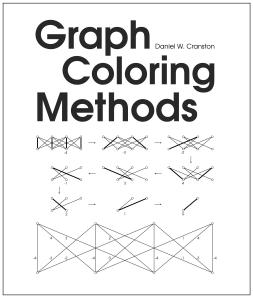
- Rosenfeld Counting
 - Nonrepetitive 4-list-coloring of paths
 - Color iteratively
 - # partial colorings exponential in subgraph
 - ▶ Bad colorings \rightarrow good colorings of subgraph
 - Exponentially many good colorings remain

- CPS conjectured $\chi_{pcf}(G) \leq \Delta + 1$
- We proved $\chi^{\ell}_{pcf}(G) \leq 1.6551\Delta(1+o(1))$
- Corollary of general hypergraph framework
- Key step is bounding $S_2(d, i)$

Learn More about Rosenfeld Counting



Learn More about Rosenfeld Counting



https://graphcoloringmethods.com

- Rosenfeld Counting
 - Nonrepetitive 4-list-coloring of paths
 - Color iteratively
 - # partial colorings exponential in subgraph
 - ▶ Bad colorings \rightarrow good colorings of subgraph
 - Exponentially many good colorings remain

- CPS conjectured $\chi_{pcf}(G) \leq \Delta + 1$
- We proved $\chi^{\ell}_{pcf}(G) \leq 1.6551\Delta(1+o(1))$
- Corollary of General hypergraph framework
- ► Key step is bounding S₂(d, i)

- Rosenfeld Counting
 - Nonrepetitive 4-list-coloring of paths
 - Color iteratively
 - # partial colorings exponential in subgraph
 - ▶ Bad colorings \rightarrow good colorings of subgraph
 - Exponentially many good colorings remain

- CPS conjectured $\chi_{pcf}(G) \leq \Delta + 1$
- We proved $\chi^{\ell}_{pcf}(G) \leq 1.6551\Delta(1+o(1))$
- Corollary of General hypergraph framework
- ► Key step is bounding S₂(d, i)
- Graph Coloring Methods
 - Graduate Textbook (450 pages)

- Rosenfeld Counting
 - Nonrepetitive 4-list-coloring of paths
 - Color iteratively
 - # partial colorings exponential in subgraph
 - ▶ Bad colorings \rightarrow good colorings of subgraph
 - Exponentially many good colorings remain

- CPS conjectured $\chi_{pcf}(G) \leq \Delta + 1$
- We proved $\chi^{\ell}_{pcf}(G) \leq 1.6551\Delta(1+o(1))$
- Corollary of General hypergraph framework
- ► Key step is bounding S₂(d, i)
- Graph Coloring Methods
 - Graduate Textbook (450 pages)
 - Chapter on Rosenfeld Counting

- Rosenfeld Counting
 - Nonrepetitive 4-list-coloring of paths
 - Color iteratively
 - # partial colorings exponential in subgraph
 - ▶ Bad colorings \rightarrow good colorings of subgraph
 - Exponentially many good colorings remain

- CPS conjectured $\chi_{pcf}(G) \leq \Delta + 1$
- We proved $\chi^{\ell}_{pcf}(G) \leq 1.6551\Delta(1+o(1))$
- Corollary of General hypergraph framework
- ► Key step is bounding S₂(d, i)
- Graph Coloring Methods
 - Graduate Textbook (450 pages)
 - Chapter on Rosenfeld Counting
 - 11 other chapters (each on 1 method)

- Rosenfeld Counting
 - Nonrepetitive 4-list-coloring of paths
 - Color iteratively
 - # partial colorings exponential in subgraph
 - ▶ Bad colorings \rightarrow good colorings of subgraph
 - Exponentially many good colorings remain

- CPS conjectured $\chi_{pcf}(G) \leq \Delta + 1$
- We proved $\chi^{\ell}_{pcf}(G) \leq 1.6551\Delta(1+o(1))$
- Corollary of General hypergraph framework
- ► Key step is bounding S₂(d, i)
- Graph Coloring Methods
 - Graduate Textbook (450 pages)
 - Chapter on Rosenfeld Counting
 - 11 other chapters (each on 1 method)
 - Free at graphcoloringmethods.com

