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Weight w; € [0, 1] for each ind. set / so each vert in sets that sum
to 1; min sum of weights is x¢(G); weights in {0, 1} gives x(G).

t-fold chromatic number, x+(G), is fewest colors to give each
vertex t colors, so adjacent vertices get disjoint sets of colors.
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What is hard?
» Y(G) — xr(G) can be arbitrarily large
» Computing v is NP-hard [Grotschel-Lovasz—Schrijver ‘81]

» Fractional list chromatic number equals fractional chromatic
number: x4(G) = x¢(G) [Alon-Tuza—-Voigt '97]

What is easy?
» Fractional edge coloring: computing x; is in P.
[Edmonds '65, Seymour '79]
» For every ¢ > 0, there exist N such that if x;(G) > N,
then \/(G) < (1 + €)x(G). Later, improved error term.
[Kahn '96] [Scheide '09] [Planthold '13] [Haxell-Kierstead '15]
» Fractional total coloring: \/(G) < A(G) + 2.
[Kilakos—Reed 93]
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A % Color Theorem for Planar Graphs

Question: |s there an “easy” proof that yr < g for planar graphs?
[Scheinerman and Ullman '97]

» 2-fold coloring planar graphs

» 5CT implies that 10 colors suffice
» ACT implies that 8 colors suffice
> %CT will show that 9 colors suffice. [C.—Rabern '15+]

Def: The Kneser graph K;.x has as
vertices the k-element subsets of
{1,...,t}. Vertices are adjacent
whenever their sets are disjoint.

Every planar graph has a
homomorphism to Kog.».
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%—Coloring Planar Graphs

Thm: Every planar graph has a homomorphism to Kg.».
Pf: Assume not. A minimal counterexample G:

1. has minimum degree 5
2. has no separating triangle

3. can't have “too many 6~ -vertices near each other”
if so, then contract some non-adjacent pairs of nbrs;
color smaller graph by induction, then extend to G

Use discharging method to contradict (1), (2), or (3).
» each v gets ch(v) = d(v) —6,s0 > .\ ch(v) = —12
> redistribute charge, so every vertex finishes nonnegative
» Now —12=3%" _, ch(v)=>" . ch*(v) > 0, Contradiction!
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Coloring the Plane

Goal: Color the plane so points at distance 1 get distinct colors.
> vertices are points of R?
> two vertices adjacent if points are at distance 1

Unit distance graph is any subgraph of this graph.
Min number of colors needed is y(IR?). [Nelson '50]

What’s known?

(a) The Moser spindle (b) The Golomb graph

So X(]R2) >4
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Coloring the Plane: an Upper Bound
Also, x(IR?) < 7 [Isbell early '50s]
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Fractional Coloring, Revisited
Prop. x¢(G) > |[V(G)|/a(G).

VG) =SS w =S will] < a(6) 3 wi = a(6)x¢(6).

veV Isv 1eT el

More generally, for every weight function i,

x¢(G) = [Vu(G)/au(G).
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A Computational Approach

Goal: Find unit distance H with ¢(H) > 3.5.

Idea: Recall xf(spindle) = 3.5. Find graph with many spindles
that interact; at least one colored suboptimally. Core vertices from
triangular lattice; attach many spindles; solve for best weights.

Core weights above, spindle weights 1, total weight: 51 + 45 = 96.
Max independent set weight: 27. So [Fisher—Ullman '92]

x¢(H) > 96/27 = 32/9 = 3.5555.. ..
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Bigger Cores

Spindle weight 1 gives Spindle weight 2 gives
xr > 128 ~ 35744 xr > 31 ~3.5839
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Spindle weight 3 gives xr > 1478312 ~ 3.6008
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Big Idea: Extend same approach to entire plane.
» Core is entire triangular lattice.
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To improve bound:
» Optimize the ratio of core weight and spindle weight
» Average final weights over bigger sets of core vertices

Which subsets to average over?
» Partition core into tiles with verts of | as corners
» Assume / intersects core in maximal independent set
> If not, modify / to hit more weight
Why is this good?
» Averaging over tiles allows better bound on final weight.
» Only 8 shapes of tiles (because / is maximal);
avoids combinatorial explosion.

Now compute the final weight, averaged over each tile.

105
xr(R?) > Sy 36207



A Tiling for a Better Bound
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Each v gets ch(v) = d(v) — 6. Now 5-vertices need 1 from nbrs.

Def: H, is subgraph induced by 6™ -nbrs of v.
If dyy,(w) =0, then w is isolated nbr of v;
otherwise w is non-isolated nbr of v.

A non-isolated 5-nbr of vertex v is crowded
(w.r.t. v) if it has two 6-nbrs in H,.

(R1) Each 8"-vertex gives charge 5 to each isolated 5-nbr and

charge % to each non-isolated 5-nbr.

(R2) Each 7-vertex gives charge % to each isolated 5-nbr, charge 0

to each crowded 5-nbr and charge % to each remaining 5-nbr.
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Now show that ch*(v) > 0 for all v.



	Title page
	9/2-Coloring Planar Graphs
	Coloring the Plane

