Fractional Coloring of Planar Graphs and the Plane

Daniel W. Cranston Virginia Commonwealth University dcranston@vcu.edu

Joint with Landon Rabern Slides available on my webpage

> Cycles & Colourings High Tatras 9 September 2015

Like coloring, but we can color a vertex part red and part blue.

Weight $w_1 \in [0, 1]$ for each ind. set *I* so each vert in sets that sum to 1;

Like coloring, but we can color a vertex part red and part blue.

Weight $w_1 \in [0, 1]$ for each ind. set *I* so each vert in sets that sum to 1; min sum of weights is $\chi_f(G)$;

Like coloring, but we can color a vertex part red and part blue.

Weight $w_1 \in [0, 1]$ for each ind. set *I* so each vert in sets that sum to 1; min sum of weights is $\chi_f(G)$; weights in $\{0,1\}$ gives $\chi(G)$.

Like coloring, but we can color a vertex part red and part blue.

Weight $w_1 \in [0, 1]$ for each ind. set I so each vert in sets that sum to 1; min sum of weights is $\chi_f(G)$; weights in $\{0,1\}$ gives $\chi(G)$.

t-fold chromatic number, $\chi_t(G)$, is fewest colors to give each vertex t colors, so adjacent vertices get disjoint sets of colors.

Like coloring, but we can color a vertex part red and part blue.

Weight $w_1 \in [0, 1]$ for each ind. set I so each vert in sets that sum to 1; min sum of weights is $\chi_f(G)$; weights in $\{0,1\}$ gives $\chi(G)$.

t-fold chromatic number, $\chi_t(G)$, is fewest colors to give each vertex t colors, so adjacent vertices get disjoint sets of colors.

$$
\chi_f = \min_t \frac{\chi_t(G)}{t}.
$$

What is hard?

What is hard?

 $\triangleright \chi(G) - \chi_f(G)$ can be arbitrarily large

What is hard?

- $\triangleright \chi(G) \chi_f(G)$ can be arbitrarily large
- ► Computing χ_f is NP-hard [Grötschel–Lovasz–Schrijver '81]

What is hard?

- $\blacktriangleright \chi(G) \chi_f(G)$ can be arbitrarily large
- ► Computing χ_f is NP-hard [Grötschel–Lovasz–Schrijver '81]
- \blacktriangleright Fractional list chromatic number equals fractional chromatic number: $\chi_f^{\ell}(G) = \chi_f(G)$ [Alon–Tuza–Voigt '97]

What is hard?

- $\triangleright \chi(G) \chi_f(G)$ can be arbitrarily large
- ► Computing χ_f is NP-hard [Grötschel–Lovasz–Schrijver '81]
- \blacktriangleright Fractional list chromatic number equals fractional chromatic number: $\chi_f^{\ell}(G) = \chi_f(G)$ [Alon–Tuza–Voigt '97]

What is hard?

- $\triangleright \chi(G) \chi_f(G)$ can be arbitrarily large
- ► Computing χ_f is NP-hard [Grötschel–Lovasz–Schrijver '81]
- \triangleright Fractional list chromatic number equals fractional chromatic number: $\chi_f^{\ell}(G) = \chi_f(G)$ [Alon–Tuza–Voigt '97]

What is easy?

Fractional edge coloring: computing χ_f' is in P. [Edmonds '65, Seymour '79]

What is hard?

- $\triangleright \ \chi(G) \chi_f(G)$ can be arbitrarily large
- ► Computing χ_f is NP-hard [Grötschel–Lovasz–Schrijver '81]
- \triangleright Fractional list chromatic number equals fractional chromatic number: $\chi_f^{\ell}(G) = \chi_f(G)$ [Alon–Tuza–Voigt '97]

- Fractional edge coloring: computing χ_f' is in P. [Edmonds '65, Seymour '79]
- ► For every $\epsilon > 0$, there exist N such that if $\chi_f'(G) > N$, then $\chi'(G) \leq (1+\epsilon)\chi'_f(G)$.

What is hard?

- $\triangleright \ \chi(G) \chi_f(G)$ can be arbitrarily large
- ► Computing χ_f is NP-hard [Grötschel–Lovasz–Schrijver '81]
- \triangleright Fractional list chromatic number equals fractional chromatic number: $\chi_f^{\ell}(G) = \chi_f(G)$ [Alon–Tuza–Voigt '97]

- Fractional edge coloring: computing χ_f' is in P. [Edmonds '65, Seymour '79]
- ► For every $\epsilon > 0$, there exist N such that if $\chi_f'(G) > N$, then $\chi'(\mathsf{G}) \leq (1+\epsilon) \chi'_\mathsf{f}(\mathsf{G}).$ Later, improved error term. [Kahn '96] [Scheide '09] [Planthold '13] [Haxell–Kierstead '15]

What is hard?

- $\triangleright \ \chi(G) \chi_f(G)$ can be arbitrarily large
- ► Computing χ_f is NP-hard [Grötschel–Lovasz–Schrijver '81]
- \triangleright Fractional list chromatic number equals fractional chromatic number: $\chi_f^{\ell}(G) = \chi_f(G)$ [Alon–Tuza–Voigt '97]

- Fractional edge coloring: computing χ_f' is in P. [Edmonds '65, Seymour '79]
- ► For every $\epsilon > 0$, there exist N such that if $\chi_f'(G) > N$, then $\chi'(\mathsf{G}) \leq (1+\epsilon) \chi'_\mathsf{f}(\mathsf{G}).$ Later, improved error term. [Kahn '96] [Scheide '09] [Planthold '13] [Haxell–Kierstead '15]
- Fractional total coloring: $\chi_f''(G) \leq \Delta(G) + 2$. [Kilakos–Reed '93]

Question: Is there an "easy" proof that $\chi_f\leq \frac{9}{2}$ $\frac{9}{2}$ for planar graphs? [Scheinerman and Ullman '97]

 \triangleright 2-fold coloring planar graphs

- \triangleright 2-fold coloring planar graphs
	- \triangleright 5CT implies that 10 colors suffice

- \triangleright 2-fold coloring planar graphs
	- \triangleright 5CT implies that 10 colors suffice
	- \triangleright 4CT implies that 8 colors suffice

- \triangleright 2-fold coloring planar graphs
	- \triangleright 5CT implies that 10 colors suffice
	- \triangleright 4CT implies that 8 colors suffice
	- \blacktriangleright $\frac{9}{2}$ CT will show that 9 colors suffice. [C.–Rabern '15+]

Question: Is there an "easy" proof that $\chi_f\leq \frac{9}{2}$ $\frac{9}{2}$ for planar graphs? [Scheinerman and Ullman '97]

- \triangleright 2-fold coloring planar graphs
	- \triangleright 5CT implies that 10 colors suffice
	- \triangleright 4CT implies that 8 colors suffice
	- \blacktriangleright $\frac{9}{2}$ CT will show that 9 colors suffice. [C.–Rabern '15+]

Def: The Kneser graph $K_{t,k}$ has as vertices the k -element subsets of $\{1, \ldots, t\}$. Vertices are adjacent whenever their sets are disjoint.

Question: Is there an "easy" proof that $\chi_f\leq \frac{9}{2}$ $\frac{9}{2}$ for planar graphs? [Scheinerman and Ullman '97]

- \triangleright 2-fold coloring planar graphs
	- \triangleright 5CT implies that 10 colors suffice
	- \triangleright 4CT implies that 8 colors suffice
	- \blacktriangleright $\frac{9}{2}$ CT will show that 9 colors suffice. [C.–Rabern '15+]

Def: The Kneser graph $K_{t,k}$ has as vertices the k -element subsets of $\{1, \ldots, t\}$. Vertices are adjacent whenever their sets are disjoint.

Question: Is there an "easy" proof that $\chi_f\leq \frac{9}{2}$ $\frac{9}{2}$ for planar graphs? [Scheinerman and Ullman '97]

- \triangleright 2-fold coloring planar graphs
	- \triangleright 5CT implies that 10 colors suffice
	- \triangleright 4CT implies that 8 colors suffice
	- \blacktriangleright $\frac{9}{2}$ CT will show that 9 colors suffice. [C.–Rabern '15+]

Def: The Kneser graph $K_{t:k}$ has as vertices the k -element subsets of $\{1, \ldots, t\}$. Vertices are adjacent whenever their sets are disjoint.

Every planar graph has a homomorphism to $K_{9.2}$.

<u>و</u> $\frac{9}{2}$ -Coloring Planar Graphs

<u>و</u> $\frac{9}{2}$ -Coloring Planar Graphs

Thm: Every planar graph has a homomorphism to $K_{9:2}$.

<u>و</u> $\frac{9}{2}$ -Coloring Planar Graphs

Thm: Every planar graph has a homomorphism to $K_{9:2}$. Pf:
Thm: Every planar graph has a homomorphism to $K_{9.2}$. Pf: Assume not. A minimal counterexample G:

1. has minimum degree 5

Thm: Every planar graph has a homomorphism to $K_{9.2}$.

Pf: Assume not. A minimal counterexample G:

- 1. has minimum degree 5
- 2. has no separating triangle

Thm: Every planar graph has a homomorphism to $K_{9.2}$. **Pf:** Assume not. A minimal counterexample G:

- 1. has minimum degree 5
- 2. has no separating triangle
- 3. can't have "too many 6^- -vertices near each other"

Thm: Every planar graph has a homomorphism to $K_{9.2}$. **Pf:** Assume not. A minimal counterexample G:

- 1. has minimum degree 5
- 2. has no separating triangle
- 3. can't have "too many 6^- -vertices near each other" if so, then contract some non-adjacent pairs of nbrs; color smaller graph by induction, then extend to G

Thm: Every planar graph has a homomorphism to $K_{9.2}$. **Pf:** Assume not. A minimal counterexample G:

- 1. has minimum degree 5
- 2. has no separating triangle
- 3. can't have "too many 6^- -vertices near each other" if so, then contract some non-adjacent pairs of nbrs; color smaller graph by induction, then extend to G

Thm: Every planar graph has a homomorphism to $K_{9.2}$. **Pf:** Assume not. A minimal counterexample G:

- 1. has minimum degree 5
- 2. has no separating triangle
- 3. can't have "too many 6^- -vertices near each other" if so, then contract some non-adjacent pairs of nbrs; color smaller graph by induction, then extend to G

Use discharging method to contradict (1) , (2) , or (3) .

► each v gets $ch(v) = d(v) - 6$, so $\sum_{v \in V} ch(v) = -12$

Thm: Every planar graph has a homomorphism to $K_{9.2}$. **Pf:** Assume not. A minimal counterexample G:

- 1. has minimum degree 5
- 2. has no separating triangle
- 3. can't have "too many 6^- -vertices near each other" if so, then contract some non-adjacent pairs of nbrs; color smaller graph by induction, then extend to G

- ► each v gets $ch(v) = d(v) 6$, so $\sum_{v \in V} ch(v) = -12$
- \triangleright redistribute charge, so every vertex finishes nonnegative

Thm: Every planar graph has a homomorphism to $K_{9.2}$. **Pf:** Assume not. A minimal counterexample G:

- 1. has minimum degree 5
- 2. has no separating triangle
- 3. can't have "too many 6^- -vertices near each other" if so, then contract some non-adjacent pairs of nbrs; color smaller graph by induction, then extend to G

- ► each v gets $ch(v) = d(v) 6$, so $\sum_{v \in V} ch(v) = -12$
- \triangleright redistribute charge, so every vertex finishes nonnegative
- Now $-12 = \sum_{v \in V} ch(v) = \sum_{v \in V} ch^*(v) \ge 0$,

Thm: Every planar graph has a homomorphism to $K_{9.2}$. **Pf:** Assume not. A minimal counterexample G:

- 1. has minimum degree 5
- 2. has no separating triangle
- 3. can't have "too many 6^- -vertices near each other" if so, then contract some non-adjacent pairs of nbrs; color smaller graph by induction, then extend to G

- ► each v gets $ch(v) = d(v) 6$, so $\sum_{v \in V} ch(v) = -12$
- \triangleright redistribute charge, so every vertex finishes nonnegative
- ► Now $-12 = \sum_{v \in V} ch(v) = \sum_{v \in V} ch^*(v) \ge 0$, Contradiction!

Key Fact: Denote the center vertex of \leq by v and the other vertices by u_1, u_2, u_3 .

Key Fact: Denote the center vertex of \leq by v and the other vertices by u_1, u_2, u_3 . If v has 5 allowable colors and each u_i has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.

Key Fact: Denote the center vertex of \leq by v and the other vertices by u_1, u_2, u_3 . If v has 5 allowable colors and each u_i has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.

Pf: Give v a color available for at most one u_i , say u_1 .

Key Fact: Denote the center vertex of \iff by v and the other vertices by u_1, u_2, u_3 . If v has 5 allowable colors and each u_i has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.

Pf: Give v a color available for at most one u_i , say u_1 . 2(5) $> 3(3)$

Key Fact: Denote the center vertex of \iff by v and the other vertices by u_1, u_2, u_3 . If v has 5 allowable colors and each u_i has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.

Pf: Give v a color available for at most one u_i , say u_1 . 2(5) $> 3(3)$ Now give v another color not available for u_1 .

Key Fact: Denote the center vertex of \leq by v and the other vertices by u_1, u_2, u_3 . If v has 5 allowable colors and each u_i has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.

Pf: Give v a color available for at most one u_i , say u_1 . 2(5) $> 3(3)$ Now give v another color not available for u_1 . Now color each u_i .

Key Fact: Denote the center vertex of \leq by v and the other vertices by u_1, u_2, u_3 . If v has 5 allowable colors and each u_i has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.

Pf: Give v a color available for at most one u_i , say u_1 . 2(5) $> 3(3)$ Now give v another color not available for u_1 . Now color each u_i .

Key Fact: Denote the center vertex of \leq by v and the other vertices by u_1, u_2, u_3 . If v has 5 allowable colors and each u_i has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.

Pf: Give v a color available for at most one u_i , say u_1 . 2(5) $> 3(3)$ Now give v another color not available for u_1 . Now color each u_i .

-
- -
	- -
		-
		-

Goal: Color the plane so points at distance 1 get distinct colors.

Goal: Color the plane so points at distance 1 get distinct colors.

rertices are points of \mathbb{R}^2

Goal: Color the plane so points at distance 1 get distinct colors.

- rertices are points of \mathbb{R}^2
- \triangleright two vertices adjacent if points are at distance 1

Goal: Color the plane so points at distance 1 get distinct colors.

- rertices are points of \mathbb{R}^2
- \triangleright two vertices adjacent if points are at distance 1

Unit distance graph is any subgraph of this graph.

Goal: Color the plane so points at distance 1 get distinct colors.

- rertices are points of \mathbb{R}^2
- \triangleright two vertices adjacent if points are at distance 1

Unit distance graph is any subgraph of this graph. Min number of colors needed is $\chi(\mathbb{R}^2)$. [Nelson '50]

Goal: Color the plane so points at distance 1 get distinct colors.

- rertices are points of \mathbb{R}^2
- \triangleright two vertices adjacent if points are at distance 1

Unit distance graph is any subgraph of this graph. Min number of colors needed is $\chi(\mathbb{R}^2)$. [Nelson '50]

Goal: Color the plane so points at distance 1 get distinct colors.

- rertices are points of \mathbb{R}^2
- \triangleright two vertices adjacent if points are at distance 1

Unit distance graph is any subgraph of this graph. Min number of colors needed is $\chi(\mathbb{R}^2)$. [Nelson '50]

Goal: Color the plane so points at distance 1 get distinct colors.

- rertices are points of \mathbb{R}^2
- \triangleright two vertices adjacent if points are at distance 1

Unit distance graph is any subgraph of this graph. Min number of colors needed is $\chi(\mathbb{R}^2)$. [Nelson '50]

Goal: Color the plane so points at distance 1 get distinct colors.

- rertices are points of \mathbb{R}^2
- \triangleright two vertices adjacent if points are at distance 1

Unit distance graph is any subgraph of this graph. Min number of colors needed is $\chi(\mathbb{R}^2)$. [Nelson '50]

What's known?

(a) The Moser spindle

Goal: Color the plane so points at distance 1 get distinct colors.

- rertices are points of \mathbb{R}^2
- \triangleright two vertices adjacent if points are at distance 1

Unit distance graph is any subgraph of this graph. Min number of colors needed is $\chi(\mathbb{R}^2)$. [Nelson '50]

(a) The Moser spindle

(b) The Golomb graph

Goal: Color the plane so points at distance 1 get distinct colors.

- rertices are points of \mathbb{R}^2
- \triangleright two vertices adjacent if points are at distance 1

Unit distance graph is any subgraph of this graph. Min number of colors needed is $\chi(\mathbb{R}^2)$. [Nelson '50]

What's known?

(a) The Moser spindle

(b) The Golomb graph

So $\chi(\mathbb{R}^2) \geq 4$

Coloring the Plane: an Upper Bound

Coloring the Plane: an Upper Bound Also, $\chi(\mathbb{R}^2) \leq 7$ [Isbell early '50s]

Fractional Coloring, Revisited

Fractional Coloring, Revisited **Prop.** $\chi_f(G) \geq |V(G)|/\alpha(G)$.

Fractional Coloring, Revisited **Prop.** $\chi_f(G) \geq |V(G)|/\alpha(G)$. $|V(G)|$

Fractional Coloring, Revisited **Prop.** $\chi_f(G) \geq |V(G)|/\alpha(G)$. $|V(G)| = \sum \sum w_i$ v∈V I3v
Fractional Coloring, Revisited **Prop.** $\chi_f(G) \geq |V(G)|/\alpha(G)$. $|V(G)| = \sum_{l} w_l = \sum_{l} w_l |l|$ v∈V I∋v I∈I

Fractional Coloring, Revisited **Prop.** $\chi_f(G) > |V(G)|/\alpha(G)$. $|V(G)| = \sum_{i} \sum_{i} w_i = \sum_{i} w_i |I| \leq \alpha(G) \sum_{i} w_i = \alpha(G) \chi_f(G).$ v∈V I∋v I∈I $I \subset \tau$

Fractional Coloring, Revisited **Prop.** $\chi_f(G) > |V(G)|/\alpha(G)$. $|V(G)| = \sum_{i} \sum_{i} w_i = \sum_{i} w_i |I| \leq \alpha(G) \sum_{i} w_i = \alpha(G) \chi_f(G).$ v∈V I∋v I∈I I∈I 1,4 3,5

More generally, for every weight function μ ,

 $\chi_f(G) > |V_u(G)|/\alpha_u(G)$.

Goal: Find unit distance H with $\chi_f(H) > 3.5$.

Goal: Find unit distance H with $\chi_f(H) > 3.5$. **Idea:** Recall χ_f (spindle) = 3.5.

Goal: Find unit distance H with $\chi_f(H) > 3.5$.

Idea: Recall χ_f (spindle) = 3.5. Find graph with many spindles that interact;

Goal: Find unit distance H with $\chi_f(H) > 3.5$.

Idea: Recall χ_f (spindle) = 3.5. Find graph with many spindles that interact; at least one colored suboptimally.

Goal: Find unit distance H with $\chi_f(H) > 3.5$.

Goal: Find unit distance H with $\chi_f(H) > 3.5$.

Goal: Find unit distance H with $\chi_f(H) > 3.5$.

Goal: Find unit distance H with $\chi_f(H) > 3.5$.

Goal: Find unit distance H with $\chi_f(H) > 3.5$.

Goal: Find unit distance H with $\chi_f(H) > 3.5$.

Goal: Find unit distance H with $\chi_f(H) > 3.5$.

Idea: Recall χ_f (spindle) = 3.5. Find graph with many spindles that interact; at least one colored suboptimally. Core vertices from triangular lattice; attach many spindles; solve for best weights.

Core weights above, spindle weights 1, total weight: $51 + 45 = 96$.

Goal: Find unit distance H with $\chi_f(H) > 3.5$.

Idea: Recall χ_f (spindle) = 3.5. Find graph with many spindles that interact; at least one colored suboptimally. Core vertices from triangular lattice; attach many spindles; solve for best weights.

Core weights above, spindle weights 1, total weight: $51 + 45 = 96$. Max independent set weight: 27.

Goal: Find unit distance H with $\chi_f(H) > 3.5$.

Idea: Recall χ_f (spindle) = 3.5. Find graph with many spindles that interact; at least one colored suboptimally. Core vertices from triangular lattice; attach many spindles; solve for best weights.

Core weights above, spindle weights 1, total weight: $51 + 45 = 96$. Max independent set weight: 27. So [Fisher–Ullman '92]

$$
\chi_f(H) \geq 96/27 = 32/9 = 3.5555...
$$

Bigger Cores

Bigger Cores

Spindle weight 1 gives $\chi_f \geq \frac{168}{47} \approx 3.5744$

Bigger Cores

 $\chi_f \geq \frac{168}{47} \approx 3.5744$ $\chi_f \geq$

Spindle weight 1 gives Spindle weight 2 gives $\frac{491}{137} \approx 3.5839$

Our Biggest Core

Our Biggest Core

Spindle weight 3 gives $\chi_f \geq \frac{1732}{481} \approx 3.6008$

Big Idea: Extend same approach to entire plane.

 \triangleright Core is entire triangular lattice.

- \triangleright Core is entire triangular lattice.
- \triangleright Use all possible spindles in 3 directions.

- \triangleright Core is entire triangular lattice.
- \triangleright Use all possible spindles in 3 directions.
- Each core vertex: weight 12

- \triangleright Core is entire triangular lattice.
- \triangleright Use all possible spindles in 3 directions.
- Each core vertex: weight 12
- Each spindle vertex: weight 1

- \triangleright Core is entire triangular lattice.
- \triangleright Use all possible spindles in 3 directions.
- Each core vertex: weight 12
- Each spindle vertex: weight 1
- \triangleright Avoid ∞ : consider limit of bigger and bigger cores.

Big Idea: Extend same approach to entire plane.

- \triangleright Core is entire triangular lattice.
- \triangleright Use all possible spindles in 3 directions.
- Each core vertex: weight 12
- Each spindle vertex: weight 1
- \triangleright Avoid ∞ : consider limit of bigger and bigger cores.

Core vertices: M

Big Idea: Extend same approach to entire plane.

- \triangleright Core is entire triangular lattice.
- \triangleright Use all possible spindles in 3 directions.
- Each core vertex: weight 12
- Each spindle vertex: weight 1
- \triangleright Avoid ∞ : consider limit of bigger and bigger cores.

Core vertices: M Total vertices: $M + 9M - o(M)$
Big Idea: Extend same approach to entire plane.

- \triangleright Core is entire triangular lattice.
- \triangleright Use all possible spindles in 3 directions.
- Each core vertex: weight 12
- Each spindle vertex: weight 1
- \triangleright Avoid ∞ : consider limit of bigger and bigger cores.

Core vertices: M Total vertices: $M + 9M - o(M)$ Total weight: $12M + 9M - o(M) = 21M - o(M)$

Big Idea: Extend same approach to entire plane.

- \triangleright Core is entire triangular lattice.
- \triangleright Use all possible spindles in 3 directions.
- Each core vertex: weight 12
- Each spindle vertex: weight 1
- \triangleright Avoid ∞ : consider limit of bigger and bigger cores.

Core vertices: M Total vertices: $M + 9M - o(M)$ Total weight: $12M + 9M - o(M) = 21M - o(M)$

Lem: Each independent set hits weight at most 6M.

Big Idea: Extend same approach to entire plane.

- \triangleright Core is entire triangular lattice.
- \triangleright Use all possible spindles in 3 directions.
- Each core vertex: weight 12
- Each spindle vertex: weight 1
- \triangleright Avoid ∞ : consider limit of bigger and bigger cores.

Core vertices: M Total vertices: $M + 9M - o(M)$ Total weight: $12M + 9M - o(M) = 21M - o(M)$

Lem: Each independent set hits weight at most 6M. Pf: Next slide.

Big Idea: Extend same approach to entire plane.

- \triangleright Core is entire triangular lattice.
- \triangleright Use all possible spindles in 3 directions.
- Each core vertex: weight 12
- Each spindle vertex: weight 1
- \triangleright Avoid ∞ : consider limit of bigger and bigger cores.

Core vertices: M Total vertices: $M + 9M - o(M)$ Total weight: $12M + 9M - o(M) = 21M - o(M)$

Lem: Each independent set hits weight at most 6M. Pf: Next slide.

$$
\chi_f \geq 21M/(6M) = 7/2 = 3.5
$$

Given independent set *I*, discharge weight of *I* as follows:

Given independent set *, discharge weight of* $*I*$ *as follows:*

 $(R1)$ Each core vertex in *I* gives 1 to each core nbr

Given independent set \prime , discharge weight of \prime as follows:

- $(R1)$ Each core vertex in *I* gives 1 to each core nbr
- $(R2)$ Each spindle vertex in *I* splits its weight equally between the core vertices incident to its spindle that are *not* in *I*

Given independent set \prime , discharge weight of \prime as follows:

 $(R1)$ Each core vertex in *I* gives 1 to each core nbr

 $(R2)$ Each spindle vertex in *I* splits its weight equally between the core vertices incident to its spindle that are *not* in *I*

Given independent set \prime , discharge weight of \prime as follows:

 $(R1)$ Each core vertex in *I* gives 1 to each core nbr

 $(R2)$ Each spindle vertex in *I* splits its weight equally between the core vertices incident to its spindle that are *not* in *I*

Final weight on core vertices:

 \triangleright in *I*: 12 − 6(1) = 6

Given independent set \prime , discharge weight of \prime as follows:

 $(R1)$ Each core vertex in *I* gives 1 to each core nbr

 $(R2)$ Each spindle vertex in *I* splits its weight equally between the core vertices incident to its spindle that are *not* in *I*

- \triangleright in *I*: 12 − 6(1) = 6
- 3 nbrs in $1: 0 + 3 + \frac{6}{2} = 6$

Given independent set \prime , discharge weight of \prime as follows:

 $(R1)$ Each core vertex in *I* gives 1 to each core nbr

 $(R2)$ Each spindle vertex in *I* splits its weight equally between the core vertices incident to its spindle that are *not* in *I*

- \triangleright in *I*: 12 − 6(1) = 6
- 3 nbrs in $1: 0 + 3 + \frac{6}{2} = 6$
- **2** nbrs in $1: 0 + 2 + \frac{4}{2} + 2 = 6$

Given independent set \prime , discharge weight of \prime as follows:

 $(R1)$ Each core vertex in *I* gives 1 to each core nbr

 $(R2)$ Each spindle vertex in *I* splits its weight equally between the core vertices incident to its spindle that are *not* in *I*

- \triangleright in *I*: 12 − 6(1) = 6
- 3 nbrs in $1: 0 + 3 + \frac{6}{2} = 6$
- **2** nbrs in $1: 0 + 2 + \frac{4}{2} + 2 = 6$
- 1 nbr in $1: 0 + 1 + \frac{2}{2} + 4 = 6$

Given independent set \prime , discharge weight of \prime as follows:

 $(R1)$ Each core vertex in *I* gives 1 to each core nbr

 $(R2)$ Each spindle vertex in *I* splits its weight equally between the core vertices incident to its spindle that are not in I

- \triangleright in *I*: 12 − 6(1) = 6
- 3 nbrs in $1: 0 + 3 + \frac{6}{2} = 6$
- **2** nbrs in $1: 0 + 2 + \frac{4}{2} + 2 = 6$
- 1 nbr in $1: 0 + 1 + \frac{2}{2} + 4 = 6$
- 0 nbrs in $1: 0 + 0 + \frac{0}{2} + 6 = 6$

Given independent set \prime , discharge weight of \prime as follows:

 $(R1)$ Each core vertex in *I* gives 1 to each core nbr

 $(R2)$ Each spindle vertex in *I* splits its weight equally between the core vertices incident to its spindle that are not in I

Final weight on core vertices:

- \triangleright in *I*: 12 − 6(1) = 6
- 3 nbrs in $1: 0 + 3 + \frac{6}{2} = 6$
- **2** nbrs in $1: 0 + 2 + \frac{4}{2} + 2 = 6$
- 1 nbr in $1: 0 + 1 + \frac{2}{2} + 4 = 6$
- 0 nbrs in $1: 0 + 0 + \frac{0}{2} + 6 = 6$

Now $\sum_{v\in I}\mu(v)\leq 6M$,

Given independent set \prime , discharge weight of \prime as follows:

 $(R1)$ Each core vertex in *I* gives 1 to each core nbr

 $(R2)$ Each spindle vertex in *I* splits its weight equally between the core vertices incident to its spindle that are not in I

Final weight on core vertices:

- \triangleright in *I*: 12 − 6(1) = 6
- 3 nbrs in $1: 0 + 3 + \frac{6}{2} = 6$
- **2** nbrs in $1: 0 + 2 + \frac{4}{2} + 2 = 6$
- 1 nbr in $1: 0 + 1 + \frac{2}{2} + 4 = 6$
- 0 nbrs in $1: 0 + 0 + \frac{0}{2} + 6 = 6$

Now $\sum_{\mathsf{v}\in I}\mu(\mathsf{v})\leq\mathsf{6}M$, so

$$
\chi_f \geq \frac{21M}{6M} = 3.5
$$

 \blacktriangleright 4 $\leq \chi(\mathbb{R}^2) \leq 7$

 \blacktriangleright 4 $\leq \chi(\mathbb{R}^2) \leq 7$; bounds unchanged since 50s

- \blacktriangleright 4 $\leq \chi(\mathbb{R}^2) \leq 7$; bounds unchanged since 50s
- \blacktriangleright Lower bounds for $\chi_f({\mathbb R}^2)$ come from unit distance graphs

- \blacktriangleright 4 $\leq \chi(\mathbb{R}^2) \leq 7$; bounds unchanged since 50s
- \blacktriangleright Lower bounds for $\chi_f({\mathbb R}^2)$ come from unit distance graphs
	- \blacktriangleright Moser spindle shows $\chi_f(\mathbb{R}^2) \geq 3.5$

- \blacktriangleright 4 $\leq \chi(\mathbb{R}^2) \leq 7$; bounds unchanged since 50s
- \blacktriangleright Lower bounds for $\chi_f({\mathbb R}^2)$ come from unit distance graphs
	- \blacktriangleright Moser spindle shows $\chi_f(\mathbb{R}^2) \geq 3.5$
	- ► Main tool: $\chi_f \geq |V(G)|/\alpha(G)$

- \blacktriangleright 4 $\leq \chi(\mathbb{R}^2) \leq 7$; bounds unchanged since 50s
- \blacktriangleright Lower bounds for $\chi_f({\mathbb R}^2)$ come from unit distance graphs
	- \blacktriangleright Moser spindle shows $\chi_f(\mathbb{R}^2) \geq 3.5$
	- ► Main tool: $\chi_f \geq |V(G)|/\alpha(G)$
	- \triangleright Weighted: $\chi_f \geq |V_u(G)|/\alpha_u(G)$

- \blacktriangleright 4 $\leq \chi(\mathbb{R}^2) \leq 7$; bounds unchanged since 50s
- \blacktriangleright Lower bounds for $\chi_f({\mathbb R}^2)$ come from unit distance graphs
	- \blacktriangleright Moser spindle shows $\chi_f(\mathbb{R}^2) \geq 3.5$
	- Main tool: $\chi_f \geq |V(G)|/\alpha(G)$
	- \triangleright Weighted: $\chi_f \geq |V_u(G)|/\alpha_u(G)$
- \blacktriangleright Fisher–Ullman proved $\chi_f(\mathbb{R}^2) \geq 3.555\ldots$

- \blacktriangleright 4 $\leq \chi(\mathbb{R}^2) \leq 7$; bounds unchanged since 50s
- \blacktriangleright Lower bounds for $\chi_f({\mathbb R}^2)$ come from unit distance graphs
	- \blacktriangleright Moser spindle shows $\chi_f(\mathbb{R}^2) \geq 3.5$
	- ► Main tool: $\chi_f \geq |V(G)|/\alpha(G)$
	- \triangleright Weighted: $\chi_f \geq |V_u(G)|/\alpha_u(G)$
- \blacktriangleright Fisher–Ullman proved $\chi_f(\mathbb{R}^2) \geq 3.555\ldots$
	- \triangleright Core from triangular lattice

- \blacktriangleright 4 $\leq \chi(\mathbb{R}^2) \leq 7$; bounds unchanged since 50s
- \blacktriangleright Lower bounds for $\chi_f({\mathbb R}^2)$ come from unit distance graphs
	- \blacktriangleright Moser spindle shows $\chi_f(\mathbb{R}^2) \geq 3.5$
	- ► Main tool: $\chi_f \geq |V(G)|/\alpha(G)$
	- \triangleright Weighted: $\chi_f \geq |V_u(G)|/\alpha_u(G)$
- \blacktriangleright Fisher–Ullman proved $\chi_f(\mathbb{R}^2) \geq 3.555\ldots$
	- \triangleright Core from triangular lattice
	- \blacktriangleright Attach many spindles

- \blacktriangleright 4 $\leq \chi(\mathbb{R}^2) \leq 7$; bounds unchanged since 50s
- \blacktriangleright Lower bounds for $\chi_f({\mathbb R}^2)$ come from unit distance graphs
	- \blacktriangleright Moser spindle shows $\chi_f(\mathbb{R}^2) \geq 3.5$
	- ► Main tool: $\chi_f \geq |V(G)|/\alpha(G)$
	- \triangleright Weighted: $\chi_f \geq |V_u(G)|/\alpha_u(G)$
- \blacktriangleright Fisher–Ullman proved $\chi_f(\mathbb{R}^2) \geq 3.555\ldots$
	- \triangleright Core from triangular lattice
	- Attach many spindles (all with weight 1)

- \blacktriangleright 4 $\leq \chi(\mathbb{R}^2) \leq 7$; bounds unchanged since 50s
- \blacktriangleright Lower bounds for $\chi_f({\mathbb R}^2)$ come from unit distance graphs
	- \blacktriangleright Moser spindle shows $\chi_f(\mathbb{R}^2) \geq 3.5$
	- ► Main tool: $\chi_f \geq |V(G)|/\alpha(G)$
	- \triangleright Weighted: $\chi_f \geq |V_u(G)|/\alpha_u(G)$
- \blacktriangleright Fisher–Ullman proved $\chi_f(\mathbb{R}^2) \geq 3.555\ldots$
	- \triangleright Core from triangular lattice
	- Attach many spindles (all with weight 1)
	- \triangleright Max. weight sum so no ind. set hits more than 27 (solve LP)

- \blacktriangleright 4 $\leq \chi(\mathbb{R}^2) \leq 7$; bounds unchanged since 50s
- \blacktriangleright Lower bounds for $\chi_f({\mathbb R}^2)$ come from unit distance graphs
	- \blacktriangleright Moser spindle shows $\chi_f(\mathbb{R}^2) \geq 3.5$
	- ► Main tool: $\chi_f \geq |V(G)|/\alpha(G)$
	- \triangleright Weighted: $\chi_f \geq |V_u(G)|/\alpha_u(G)$
- \blacktriangleright Fisher–Ullman proved $\chi_f(\mathbb{R}^2) \geq 3.555\ldots$
	- \triangleright Core from triangular lattice
	- Attach many spindles (all with weight 1)
	- \triangleright Max. weight sum so no ind. set hits more than 27 (solve LP)
	- Now $\chi_f(\bar{\mathbb{R}}^2) \ge 96/27 = 32/9 = 3.555...$

- \blacktriangleright 4 $\leq \chi(\mathbb{R}^2) \leq 7$; bounds unchanged since 50s
- \blacktriangleright Lower bounds for $\chi_f({\mathbb R}^2)$ come from unit distance graphs
	- \blacktriangleright Moser spindle shows $\chi_f(\mathbb{R}^2) \geq 3.5$
	- ► Main tool: $\chi_f \geq |V(G)|/\alpha(G)$
	- \triangleright Weighted: $\chi_f \geq |V_u(G)|/\alpha_u(G)$
- \blacktriangleright Fisher–Ullman proved $\chi_f(\mathbb{R}^2) \geq 3.555\ldots$
	- \triangleright Core from triangular lattice
	- Attach many spindles (all with weight 1)
	- \triangleright Max. weight sum so no ind. set hits more than 27 (solve LP)
	- Now $\chi_f(\bar{\mathbb{R}}^2) \ge 96/27 = 32/9 = 3.555...$
	- ► Bigger cores give $\chi_f \geq 3.6008$ [C.–Rabern '15+]

- \blacktriangleright 4 $\leq \chi(\mathbb{R}^2) \leq 7$; bounds unchanged since 50s
- \blacktriangleright Lower bounds for $\chi_f({\mathbb R}^2)$ come from unit distance graphs
	- \blacktriangleright Moser spindle shows $\chi_f(\mathbb{R}^2) \geq 3.5$
	- ► Main tool: $\chi_f \geq |V(G)|/\alpha(G)$
	- \triangleright Weighted: $\chi_f \geq |V_u(G)|/\alpha_u(G)$
- \blacktriangleright Fisher–Ullman proved $\chi_f(\mathbb{R}^2) \geq 3.555\ldots$
	- \triangleright Core from triangular lattice
	- Attach many spindles (all with weight 1)
	- \triangleright Max. weight sum so no ind. set hits more than 27 (solve LP)
	- Now $\chi_f(\bar{\mathbb{R}}^2) \ge 96/27 = 32/9 = 3.555...$
	- ► Bigger cores give $\chi_f > 3.6008$ [C.–Rabern '15+]
- \triangleright By hand: consider entire triangular lattice (via limits)

- \blacktriangleright 4 $\leq \chi(\mathbb{R}^2) \leq 7$; bounds unchanged since 50s
- \blacktriangleright Lower bounds for $\chi_f({\mathbb R}^2)$ come from unit distance graphs
	- \blacktriangleright Moser spindle shows $\chi_f(\mathbb{R}^2) \geq 3.5$
	- ► Main tool: $\chi_f \geq |V(G)|/\alpha(G)$
	- \triangleright Weighted: $\chi_f \geq |V_u(G)|/\alpha_u(G)$
- \blacktriangleright Fisher–Ullman proved $\chi_f(\mathbb{R}^2) \geq 3.555\ldots$
	- \triangleright Core from triangular lattice
	- Attach many spindles (all with weight 1)
	- \triangleright Max. weight sum so no ind. set hits more than 27 (solve LP)
	- Now $\chi_f(\bar{\mathbb{R}}^2) \ge 96/27 = 32/9 = 3.555...$
	- ► Bigger cores give $\chi_f > 3.6008$ [C.–Rabern '15+]
- \triangleright By hand: consider entire triangular lattice (via limits)
	- \triangleright Core with M vertices: total weight 21M

- \blacktriangleright 4 $\leq \chi(\mathbb{R}^2) \leq 7$; bounds unchanged since 50s
- \blacktriangleright Lower bounds for $\chi_f({\mathbb R}^2)$ come from unit distance graphs
	- \blacktriangleright Moser spindle shows $\chi_f(\mathbb{R}^2) \geq 3.5$
	- ► Main tool: $\chi_f \geq |V(G)|/\alpha(G)$
	- \triangleright Weighted: $\chi_f \geq |V_u(G)|/\alpha_u(G)$
- \blacktriangleright Fisher–Ullman proved $\chi_f(\mathbb{R}^2) \geq 3.555\ldots$
	- \triangleright Core from triangular lattice
	- Attach many spindles (all with weight 1)
	- \triangleright Max. weight sum so no ind. set hits more than 27 (solve LP)
	- Now $\chi_f(\bar{\mathbb{R}}^2) \ge 96/27 = 32/9 = 3.555...$
	- ► Bigger cores give $\chi_f > 3.6008$ [C.–Rabern '15+]
- \triangleright By hand: consider entire triangular lattice (via limits)
	- \triangleright Core with M vertices: total weight 21M
	- \blacktriangleright Max independent set hits weight 6M (via discharging)

- \blacktriangleright 4 $\leq \chi(\mathbb{R}^2) \leq 7$; bounds unchanged since 50s
- \blacktriangleright Lower bounds for $\chi_f({\mathbb R}^2)$ come from unit distance graphs
	- \blacktriangleright Moser spindle shows $\chi_f(\mathbb{R}^2) \geq 3.5$
	- ► Main tool: $\chi_f \geq |V(G)|/\alpha(G)$
	- \triangleright Weighted: $\chi_f \geq |V_u(G)|/\alpha_u(G)$
- \blacktriangleright Fisher–Ullman proved $\chi_f(\mathbb{R}^2) \geq 3.555\ldots$
	- \triangleright Core from triangular lattice
	- Attach many spindles (all with weight 1)
	- \triangleright Max. weight sum so no ind. set hits more than 27 (solve LP)
	- Now $\chi_f(\bar{\mathbb{R}}^2) \ge 96/27 = 32/9 = 3.555...$
	- ► Bigger cores give $\chi_f > 3.6008$ [C.–Rabern '15+]
- \triangleright By hand: consider entire triangular lattice (via limits)
	- \triangleright Core with M vertices: total weight 21M
	- \blacktriangleright Max independent set hits weight 6M (via discharging)
	- **Fig. 1** This proves $\chi_f(\mathbb{R}^2) \geq (21M)/(6M) = 3.5$

- \blacktriangleright 4 $\leq \chi(\mathbb{R}^2) \leq 7$; bounds unchanged since 50s
- \blacktriangleright Lower bounds for $\chi_f({\mathbb R}^2)$ come from unit distance graphs
	- \blacktriangleright Moser spindle shows $\chi_f(\mathbb{R}^2) \geq 3.5$
	- ► Main tool: $\chi_f \geq |V(G)|/\alpha(G)$
	- \triangleright Weighted: $\chi_f \geq |V_u(G)|/\alpha_u(G)$
- \blacktriangleright Fisher–Ullman proved $\chi_f(\mathbb{R}^2) \geq 3.555\ldots$
	- \triangleright Core from triangular lattice
	- Attach many spindles (all with weight 1)
	- \triangleright Max. weight sum so no ind. set hits more than 27 (solve LP)
	- Now $\chi_f(\bar{\mathbb{R}}^2) \ge 96/27 = 32/9 = 3.555...$
	- ► Bigger cores give $\chi_f > 3.6008$ [C.–Rabern '15+]
- \triangleright By hand: consider entire triangular lattice (via limits)
	- \triangleright Core with M vertices: total weight 21M
	- \blacktriangleright Max independent set hits weight 6M (via discharging)
	- **Fig. 1** This proves $\chi_f(\mathbb{R}^2) \geq (21M)/(6M) = 3.5$
	- Average over larger subsets of vertices: $\chi_f(\mathbb{R}^2) \geq 3.6190\dots$ [C.–Rabern '15+]

- \blacktriangleright 4 $\leq \chi(\mathbb{R}^2) \leq 7$; bounds unchanged since 50s
- \blacktriangleright Lower bounds for $\chi_f({\mathbb R}^2)$ come from unit distance graphs
	- \blacktriangleright Moser spindle shows $\chi_f(\mathbb{R}^2) \geq 3.5$
	- ► Main tool: $\chi_f \geq |V(G)|/\alpha(G)$
	- \triangleright Weighted: $\chi_f \geq |V_u(G)|/\alpha_u(G)$
- \blacktriangleright Fisher–Ullman proved $\chi_f(\mathbb{R}^2) \geq 3.555\ldots$
	- \triangleright Core from triangular lattice
	- Attach many spindles (all with weight 1)
	- \triangleright Max. weight sum so no ind. set hits more than 27 (solve LP)
	- Now $\chi_f(\bar{\mathbb{R}}^2) \ge 96/27 = 32/9 = 3.555...$
	- ► Bigger cores give $\chi_f > 3.6008$ [C.–Rabern '15+]
- \triangleright By hand: consider entire triangular lattice (via limits)
	- \triangleright Core with M vertices: total weight 21M
	- \blacktriangleright Max independent set hits weight 6M (via discharging)
	- **Fig. 1** This proves $\chi_f(\mathbb{R}^2) \geq (21M)/(6M) = 3.5$
	- Average over larger subsets of vertices: $\chi_f(\mathbb{R}^2) \geq 3.6190\dots$ [C.–Rabern '15+]

- \blacktriangleright 4 $\leq \chi(\mathbb{R}^2) \leq 7$; bounds unchanged since 50s
- \blacktriangleright Lower bounds for $\chi_f({\mathbb R}^2)$ come from unit distance graphs
	- \blacktriangleright Moser spindle shows $\chi_f(\mathbb{R}^2) \geq 3.5$
	- ► Main tool: $\chi_f \geq |V(G)|/\alpha(G)$
	- \triangleright Weighted: $\chi_f \geq |V_u(G)|/\alpha_u(G)$
- \blacktriangleright Fisher–Ullman proved $\chi_f(\mathbb{R}^2) \geq 3.555\ldots$
	- \triangleright Core from triangular lattice
	- Attach many spindles (all with weight 1)
	- \triangleright Max. weight sum so no ind. set hits more than 27 (solve LP)
	- Now $\chi_f(\bar{\mathbb{R}}^2) \ge 96/27 = 32/9 = 3.555...$
	- ► Bigger cores give $\chi_f > 3.6008$ [C.–Rabern '15+]
- \triangleright By hand: consider entire triangular lattice (via limits)
	- \triangleright Core with M vertices: total weight 21M
	- \blacktriangleright Max independent set hits weight 6M (via discharging)
	- **Fig. 1** This proves $\chi_f(\mathbb{R}^2) \geq (21M)/(6M) = 3.5$
	- Average over larger subsets of vertices: $\chi_f(\mathbb{R}^2) \geq 3.6190\dots$ [C.–Rabern '15+]
Summary

- \blacktriangleright 4 $\leq \chi(\mathbb{R}^2) \leq 7$; bounds unchanged since 50s
- \blacktriangleright Lower bounds for $\chi_f({\mathbb R}^2)$ come from unit distance graphs
	- \blacktriangleright Moser spindle shows $\chi_f(\mathbb{R}^2) \geq 3.5$
	- ► Main tool: $\chi_f \geq |V(G)|/\alpha(G)$
	- \triangleright Weighted: $\chi_f \geq |V_u(G)|/\alpha_u(G)$
- \blacktriangleright Fisher–Ullman proved $\chi_f(\mathbb{R}^2) \geq 3.555\ldots$
	- \triangleright Core from triangular lattice
	- Attach many spindles (all with weight 1)
	- \triangleright Max. weight sum so no ind. set hits more than 27 (solve LP)
	- Now $\chi_f(\bar{\mathbb{R}}^2) \ge 96/27 = 32/9 = 3.555...$
	- ► Bigger cores give $\chi_f > 3.6008$ [C.–Rabern '15+]
- \triangleright By hand: consider entire triangular lattice (via limits)
	- \triangleright Core with M vertices: total weight 21M
	- \triangleright Max independent set hits weight 6M (via discharging)
	- **Fig. 1** This proves $\chi_f(\mathbb{R}^2) \geq (21M)/(6M) = 3.5$
	- Average over larger subsets of vertices: $\chi_f(\mathbb{R}^2) \geq 3.6190\dots$ [C.–Rabern '15+]

To improve bound:

 \triangleright Optimize the ratio of core weight and spindle weight

To improve bound:

- \triangleright Optimize the ratio of core weight and spindle weight
- \blacktriangleright Average final weights over bigger sets of core vertices

To improve bound:

- \triangleright Optimize the ratio of core weight and spindle weight
- \triangleright Average final weights over bigger sets of core vertices

Which subsets to average over?

 \triangleright Partition core into tiles with verts of I as corners

To improve bound:

- \triangleright Optimize the ratio of core weight and spindle weight
- \triangleright Average final weights over bigger sets of core vertices

Which subsets to average over?

- \triangleright Partition core into tiles with verts of l as corners
- \triangleright Assume *l* intersects core in *maximal* independent set

To improve bound:

- \triangleright Optimize the ratio of core weight and spindle weight
- \triangleright Average final weights over bigger sets of core vertices

Which subsets to average over?

- \triangleright Partition core into tiles with verts of ℓ as corners
- \triangleright Assume *l* intersects core in *maximal* independent set
- If not, modify *I* to hit more weight

To improve bound:

- \triangleright Optimize the ratio of core weight and spindle weight
- \triangleright Average final weights over bigger sets of core vertices

Which subsets to average over?

- \triangleright Partition core into tiles with verts of ℓ as corners
- \triangleright Assume *l* intersects core in *maximal* independent set
- If not, modify *I* to hit more weight

Why is this good?

To improve bound:

- \triangleright Optimize the ratio of core weight and spindle weight
- \triangleright Average final weights over bigger sets of core vertices

Which subsets to average over?

- \triangleright Partition core into tiles with verts of I as corners
- \triangleright Assume *l* intersects core in *maximal* independent set
- If not, modify *I* to hit more weight

Why is this good?

 \triangleright Averaging over tiles allows better bound on final weight.

To improve bound:

- \triangleright Optimize the ratio of core weight and spindle weight
- \triangleright Average final weights over bigger sets of core vertices

Which subsets to average over?

- \triangleright Partition core into tiles with verts of I as corners
- \triangleright Assume *l* intersects core in *maximal* independent set
- If not, modify *I* to hit more weight

Why is this good?

- \triangleright Averaging over tiles allows better bound on final weight.
- \triangleright Only 8 shapes of tiles (because *l* is maximal);

To improve bound:

- \triangleright Optimize the ratio of core weight and spindle weight
- \triangleright Average final weights over bigger sets of core vertices

Which subsets to average over?

- \triangleright Partition core into tiles with verts of I as corners
- \triangleright Assume *l* intersects core in *maximal* independent set
- If not, modify *I* to hit more weight

Why is this good?

- \triangleright Averaging over tiles allows better bound on final weight.
- \triangleright Only 8 shapes of tiles (because *l* is maximal); avoids combinatorial explosion.

To improve bound:

- \triangleright Optimize the ratio of core weight and spindle weight
- \triangleright Average final weights over bigger sets of core vertices

Which subsets to average over?

- \triangleright Partition core into tiles with verts of I as corners
- \triangleright Assume *l* intersects core in *maximal* independent set
- If not, modify *I* to hit more weight

Why is this good?

- \triangleright Averaging over tiles allows better bound on final weight.
- \triangleright Only 8 shapes of tiles (because *l* is maximal); avoids combinatorial explosion.

Now compute the final weight, averaged over each tile.

To improve bound:

- \triangleright Optimize the ratio of core weight and spindle weight
- \triangleright Average final weights over bigger sets of core vertices

Which subsets to average over?

- \triangleright Partition core into tiles with verts of I as corners
- \triangleright Assume *l* intersects core in *maximal* independent set
- If not, modify *I* to hit more weight

Why is this good?

- \triangleright Averaging over tiles allows better bound on final weight.
- \triangleright Only 8 shapes of tiles (because *l* is maximal); avoids combinatorial explosion.

Now compute the final weight, averaged over each tile.

$$
\chi_f(\mathbb{R}^2) \geq \frac{105}{29} \approx 3.6207
$$

A Tiling for a Better Bound

Discharging for $\frac{9}{2}$ -coloring planar graphs Each v gets $ch(v) = d(v) - 6$.

Each v gets $ch(v) = d(v) - 6$. Now 5-vertices need 1 from nbrs.

Each v gets $ch(v) = d(v) - 6$. Now 5-vertices need 1 from nbrs.

Def: H_v is subgraph induced by 6⁻-nbrs of v.

Each v gets $ch(v) = d(v) - 6$. Now 5-vertices need 1 from nbrs.

Def: H_v is subgraph induced by 6⁻-nbrs of v.

Each v gets $ch(v) = d(v) - 6$. Now 5-vertices need 1 from nbrs.

Def: H_v is subgraph induced by 6⁻-nbrs of v. If $d_{H_v}(w) = 0$, then w is isolated nbr of v; otherwise w is non-isolated nbr of v .

Each v gets $ch(v) = d(v) - 6$. Now 5-vertices need 1 from nbrs.

Each v gets $ch(v) = d(v) - 6$. Now 5-vertices need 1 from nbrs.

Def: H_v is subgraph induced by 6⁻-nbrs of v. If $d_{H_v}(w) = 0$, then w is isolated nbr of v; otherwise w is non-isolated nbr of v . A non-isolated 5-nbr of vertex v is crowded (w.r.t. v) if it has two 6-nbrs in H_v .

(R1) Each 8^+ -vertex gives charge $\frac{1}{2}$ to each isolated 5-nbr and charge $\frac{1}{4}$ to each non-isolated 5-nbr.

Each v gets $ch(v) = d(v) - 6$. Now 5-vertices need 1 from nbrs.

- (R1) Each 8^+ -vertex gives charge $\frac{1}{2}$ to each isolated 5-nbr and charge $\frac{1}{4}$ to each non-isolated 5-nbr.
- (R2) Each 7-vertex gives charge $\frac{1}{2}$ to each isolated 5-nbr, charge 0 to each crowded 5-nbr and charge $\frac{1}{4}$ to each remaining 5-nbr.

Each v gets $ch(v) = d(v) - 6$. Now 5-vertices need 1 from nbrs.

- (R1) Each 8^+ -vertex gives charge $\frac{1}{2}$ to each isolated 5-nbr and charge $\frac{1}{4}$ to each non-isolated 5-nbr.
- (R2) Each 7-vertex gives charge $\frac{1}{2}$ to each isolated 5-nbr, charge 0 to each crowded 5-nbr and charge $\frac{1}{4}$ to each remaining 5-nbr. (R3) Each 7^+ -vertex gives charge $\frac{1}{4}$ to each 6-nbr.

Each v gets $ch(v) = d(v) - 6$. Now 5-vertices need 1 from nbrs.

- (R1) Each 8^+ -vertex gives charge $\frac{1}{2}$ to each isolated 5-nbr and charge $\frac{1}{4}$ to each non-isolated 5-nbr.
- (R2) Each 7-vertex gives charge $\frac{1}{2}$ to each isolated 5-nbr, charge 0 to each crowded 5-nbr and charge $\frac{1}{4}$ to each remaining 5-nbr.
- (R3) Each 7^+ -vertex gives charge $\frac{1}{4}$ to each 6-nbr.
- (R4) Each 6-vertex gives charge $\frac{1}{2}$ to each 5-nbr.

Each v gets $ch(v) = d(v) - 6$. Now 5-vertices need 1 from nbrs.

Def: H_v is subgraph induced by 6⁻-nbrs of v. If $d_{H_v}(w) = 0$, then w is isolated nbr of v; otherwise w is non-isolated nbr of v . A non-isolated 5-nbr of vertex v is crowded (w.r.t. v) if it has two 6-nbrs in H_v .

- (R1) Each 8^+ -vertex gives charge $\frac{1}{2}$ to each isolated 5-nbr and charge $\frac{1}{4}$ to each non-isolated 5-nbr.
- (R2) Each 7-vertex gives charge $\frac{1}{2}$ to each isolated 5-nbr, charge 0 to each crowded 5-nbr and charge $\frac{1}{4}$ to each remaining 5-nbr.
- (R3) Each 7^+ -vertex gives charge $\frac{1}{4}$ to each 6-nbr.
- (R4) Each 6-vertex gives charge $\frac{1}{2}$ to each 5-nbr.

Now show that $ch^*(v) \geq 0$ for all v.