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Fractional Coloring

Like coloring, but we can color a vertex part red and part blue.
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Weight wI ∈ [0, 1] for each ind. set I so each vert in sets that sum
to 1; min sum of weights is χf (G ); weights in {0, 1} gives χ(G ).

t-fold chromatic number, χt(G ), is fewest colors to give each
vertex t colors, so adjacent vertices get disjoint sets of colors.

χf = min
t

χt(G )

t
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Interesting results about χf

What is hard?

I χ(G )− χf (G ) can be arbitrarily large

I Computing χf is NP-hard [Grötschel–Lovasz–Schrijver ‘81]

I Fractional list chromatic number equals fractional chromatic
number: χ`f (G ) = χf (G ) [Alon–Tuza–Voigt ’97]

What is easy?

I Fractional edge coloring: computing χ′f is in P.
[Edmonds ’65, Seymour ’79]

I For every ε > 0, there exist N such that if χ′f (G ) > N,
then χ′(G ) ≤ (1 + ε)χ′f (G ). Later, improved error term.
[Kahn ’96] [Scheide ’09] [Planthold ’13] [Haxell–Kierstead ’15]

I Fractional total coloring: χ′′f (G ) ≤ ∆(G ) + 2.
[Kilakos–Reed ’93]
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A 9
2 Color Theorem for Planar Graphs

Question: Is there an “easy” proof that χf ≤ 9
2 for planar graphs?

[Scheinerman and Ullman ’97]

I 2-fold coloring planar graphs
I 5CT implies that 10 colors suffice
I 4CT implies that 8 colors suffice
I 9

2CT will show that 9 colors suffice. [C.–Rabern ’15+]

Def: The Kneser graph Kt:k has as
vertices the k-element subsets of
{1, . . . , t}. Vertices are adjacent
whenever their sets are disjoint. 2 5

2 4 1 4

1 3

3 5
3 4

1 5 2 3

4 5

1 2

Every planar graph has a
homomorphism to K9:2.
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9
2-Coloring Planar Graphs

Thm: Every planar graph has a homomorphism to K9:2.
Pf: Assume not. A minimal counterexample G :

1. has minimum degree 5

2. has no separating triangle

3. can’t have “too many 6−-vertices near each other”
if so, then contract some non-adjacent pairs of nbrs;
color smaller graph by induction, then extend to G

Use discharging method to contradict (1), (2), or (3).

I each v gets ch(v) = d(v)− 6, so
∑

v∈V ch(v) = −12

I redistribute charge, so every vertex finishes nonnegative

I Now −12 =
∑

v∈V ch(v) =
∑

v∈V ch∗(v) ≥ 0, Contradiction!
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Too many 6−-vertices near each other

Key Fact: Denote the center vertex of by v and the other

vertices by u1, u2, u3. If v has 5 allowable colors and each ui has
3 allowable colors, then we can color each vertex with 2 colors,
such that no color appears on both ends of an edge.

Pf: Give v a color available for at most one ui , say u1. 2(5) > 3(3)
Now give v another color not available for u1. Now color each ui .
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Coloring the Plane

Goal: Color the plane so points at distance 1 get distinct colors.

I vertices are points of R2

I two vertices adjacent if points are at distance 1

Unit distance graph is any subgraph of this graph.
Min number of colors needed is χ(R2). [Nelson ’50]

What’s known?
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(b) The Golomb graph

So χ(R2) ≥ 4
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Coloring the Plane: an Upper Bound

Also, χ(R2) ≤ 7 [Isbell early ’50s]
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Fractional Coloring, Revisited

Prop. χf (G ) ≥ |V (G )|/α(G ).

|V (G )| =
∑
v∈V

∑
I3v

wI =
∑
I∈I

wI |I | ≤ α(G )
∑
I∈I

wI = α(G )χf (G ).
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More generally, for every weight function µ,

χf (G ) ≥ |Vµ(G )|/αµ(G ).
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A Computational Approach

Goal: Find unit distance H with χf (H) > 3.5.

Idea: Recall χf (spindle) = 3.5. Find graph with many spindles
that interact; at least one colored suboptimally. Core vertices from
triangular lattice;

attach many spindles; solve for best weights.

3 3

4 7 4

3 7 7 3

3 4 3

Core weights above, spindle weights 1, total weight: 51 + 45 = 96.
Max independent set weight: 27. So [Fisher–Ullman ’92]

χf (H) ≥ 96/27 = 32/9 = 3.5555 . . .
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Bigger Cores
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A “By Hand” Approach

Big Idea: Extend same approach to entire plane.

I Core is entire triangular lattice.

I Use all possible spindles in 3 directions.

I Each core vertex: weight 12

I Each spindle vertex: weight 1

I Avoid ∞: consider limit of bigger and bigger cores.

Core vertices: M
Total vertices: M + 9M − o(M)
Total weight: 12M + 9M − o(M) = 21M − o(M)

Lem: Each independent set hits weight at most 6M.
Pf: Next slide.

χf ≥ 21M/(6M) = 7/2 = 3.5
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The Discharging
Given independent set I , discharge weight of I as follows:

(R1) Each core vertex in I gives 1 to each core nbr

(R2) Each spindle vertex in I splits its weight equally between the
core vertices incident to its spindle that are not in I

Final weight on core vertices:

I in I : 12− 6(1) = 6

I 3 nbrs in I : 0 + 3 + 6
2 = 6

I 2 nbrs in I : 0 + 2 + 4
2 + 2 = 6

I 1 nbr in I : 0 + 1 + 2
2 + 4 = 6

I 0 nbrs in I : 0 + 0 + 0
2 + 6 = 6

Now
∑

v∈I µ(v) ≤ 6M, so

χf ≥
21M

6M
= 3.5
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Summary

I 4 ≤ χ(R2) ≤ 7; bounds unchanged since 50s

I Lower bounds for χf (R2) come from unit distance graphs
I Moser spindle shows χf (R2) ≥ 3.5
I Main tool: χf ≥ |V (G )|/α(G )
I Weighted: χf ≥ |Vµ(G )|/αµ(G )

I Fisher–Ullman proved χf (R2) ≥ 3.555 . . .
I Core from triangular lattice
I Attach many spindles (all with weight 1)
I Max. weight sum so no ind. set hits more than 27 (solve LP)
I Now χf (R2) ≥ 96/27 = 32/9 = 3.555 . . .
I Bigger cores give χf ≥ 3.6008 [C.–Rabern ’15+]

I By hand: consider entire triangular lattice (via limits)
I Core with M vertices: total weight 21M
I Max independent set hits weight 6M (via discharging)
I This proves χf (R2) ≥ (21M)/(6M) = 3.5
I Average over larger subsets of vertices: χf (R2) ≥ 3.6190 . . .

[C.–Rabern ’15+]
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A Hint of a Better Bound

To improve bound:

I Optimize the ratio of core weight and spindle weight

I Average final weights over bigger sets of core vertices

Which subsets to average over?

I Partition core into tiles with verts of I as corners

I Assume I intersects core in maximal independent set

I If not, modify I to hit more weight

Why is this good?

I Averaging over tiles allows better bound on final weight.

I Only 8 shapes of tiles (because I is maximal);
avoids combinatorial explosion.

Now compute the final weight, averaged over each tile.

χf (R2) ≥ 105

29
≈ 3.6207
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Discharging for 9
2-coloring planar graphs

Each v gets ch(v) = d(v)− 6. Now 5-vertices need 1 from nbrs.

Def: Hv is subgraph induced by 6−-nbrs of v .

If dHv (w) = 0, then w is isolated nbr of v;
otherwise w is non-isolated nbr of v .
A non-isolated 5-nbr of vertex v is crowded
(w.r.t. v) if it has two 6-nbrs in Hv .

v

6 5

67+

6
6

7+

(R1) Each 8+-vertex gives charge 1
2 to each isolated 5-nbr and

charge 1
4 to each non-isolated 5-nbr.

(R2) Each 7-vertex gives charge 1
2 to each isolated 5-nbr, charge 0

to each crowded 5-nbr and charge 1
4 to each remaining 5-nbr.

(R3) Each 7+-vertex gives charge 1
4 to each 6-nbr.

(R4) Each 6-vertex gives charge 1
2 to each 5-nbr.

Now show that ch∗(v) ≥ 0 for all v .
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