Fractional Coloring of Planar Graphs and the Plane

Daniel W. Cranston Virginia Commonwealth University dcranston@vcu.edu

Joint with Landon Rabern Slides available on my webpage

> Cycles & Colourings High Tatras 9 September 2015

Like coloring, but we can color a vertex part red and part blue.

Weight $w_I \in [0, 1]$ for each ind. set I so each vert in sets that sum to 1;

Like coloring, but we can color a vertex part red and part blue.

Weight $w_I \in [0, 1]$ for each ind. set I so each vert in sets that sum to 1; min sum of weights is $\chi_f(G)$;

Like coloring, but we can color a vertex part red and part blue.

Weight $w_I \in [0, 1]$ for each ind. set I so each vert in sets that sum to 1; min sum of weights is $\chi_f(G)$; weights in $\{0, 1\}$ gives $\chi(G)$.

Like coloring, but we can color a vertex part red and part blue.

Weight $w_I \in [0, 1]$ for each ind. set I so each vert in sets that sum to 1; min sum of weights is $\chi_f(G)$; weights in $\{0, 1\}$ gives $\chi(G)$.

t-fold chromatic number, $\chi_t(G)$, is fewest colors to give each vertex *t* colors, so adjacent vertices get disjoint sets of colors.

Like coloring, but we can color a vertex part red and part blue.

Weight $w_I \in [0, 1]$ for each ind. set I so each vert in sets that sum to 1; min sum of weights is $\chi_f(G)$; weights in $\{0, 1\}$ gives $\chi(G)$.

t-fold chromatic number, $\chi_t(G)$, is fewest colors to give each vertex *t* colors, so adjacent vertices get disjoint sets of colors.

$$\chi_f = \min_t \frac{\chi_t(G)}{t}.$$

What is hard?

What is hard?

• $\chi(G) - \chi_f(G)$ can be arbitrarily large

What is hard?

- $\chi(G) \chi_f(G)$ can be arbitrarily large
- Computing χ_f is NP-hard [Grötschel–Lovasz–Schrijver '81]

What is hard?

- $\chi(G) \chi_f(G)$ can be arbitrarily large
- Computing χ_f is NP-hard [Grötschel–Lovasz–Schrijver '81]
- Fractional list chromatic number equals fractional chromatic number: χ^ℓ_f(G) = χ_f(G) [Alon−Tuza−Voigt '97]

What is hard?

- $\chi(G) \chi_f(G)$ can be arbitrarily large
- Computing χ_f is NP-hard [Grötschel–Lovasz–Schrijver '81]
- Fractional list chromatic number equals fractional chromatic number: χ^ℓ_f(G) = χ_f(G) [Alon−Tuza−Voigt '97]

What is hard?

- $\chi(G) \chi_f(G)$ can be arbitrarily large
- Computing χ_f is NP-hard [Grötschel–Lovasz–Schrijver '81]
- Fractional list chromatic number equals fractional chromatic number: χ^ℓ_f(G) = χ_f(G) [Alon−Tuza−Voigt '97]

What is easy?

Fractional edge coloring: computing χ'_f is in P.
 [Edmonds '65, Seymour '79]

What is hard?

- $\chi(G) \chi_f(G)$ can be arbitrarily large
- Computing χ_f is NP-hard [Grötschel–Lovasz–Schrijver '81]
- Fractional list chromatic number equals fractional chromatic number: χ^ℓ_f(G) = χ_f(G) [Alon−Tuza−Voigt '97]

- Fractional edge coloring: computing χ'_f is in P.
 [Edmonds '65, Seymour '79]
- For every e > 0, there exist N such that if χ'_f(G) > N, then χ'(G) ≤ (1 + ε)χ'_f(G).

What is hard?

- $\chi(G) \chi_f(G)$ can be arbitrarily large
- Computing χ_f is NP-hard [Grötschel–Lovasz–Schrijver '81]
- Fractional list chromatic number equals fractional chromatic number: χ^ℓ_f(G) = χ_f(G) [Alon−Tuza−Voigt '97]

- Fractional edge coloring: computing χ'_f is in P.
 [Edmonds '65, Seymour '79]
- For every ε > 0, there exist N such that if χ'_f(G) > N, then χ'(G) ≤ (1 + ε)χ'_f(G). Later, improved error term. [Kahn '96] [Scheide '09] [Planthold '13] [Haxell-Kierstead '15]

What is hard?

- $\chi(G) \chi_f(G)$ can be arbitrarily large
- Computing χ_f is NP-hard [Grötschel–Lovasz–Schrijver '81]
- Fractional list chromatic number equals fractional chromatic number: χ^ℓ_f(G) = χ_f(G) [Alon−Tuza−Voigt '97]

- Fractional edge coloring: computing χ'_f is in P.
 [Edmonds '65, Seymour '79]
- For every ε > 0, there exist N such that if χ'_f(G) > N, then χ'(G) ≤ (1 + ε)χ'_f(G). Later, improved error term. [Kahn '96] [Scheide '09] [Planthold '13] [Haxell–Kierstead '15]
- Fractional total coloring: χ["]_f(G) ≤ Δ(G) + 2. [Kilakos−Reed '93]

Question: Is there an "easy" proof that $\chi_f \leq \frac{9}{2}$ for planar graphs? [Scheinerman and Ullman '97]

2-fold coloring planar graphs

- 2-fold coloring planar graphs
 - 5CT implies that 10 colors suffice

- 2-fold coloring planar graphs
 - 5CT implies that 10 colors suffice
 - 4CT implies that 8 colors suffice

- 2-fold coloring planar graphs
 - ▶ 5CT implies that 10 colors suffice
 - 4CT implies that 8 colors suffice
 - $\frac{9}{2}$ CT will show that 9 colors suffice. [C.–Rabern '15+]

Question: Is there an "easy" proof that $\chi_f \leq \frac{9}{2}$ for planar graphs? [Scheinerman and Ullman '97]

- 2-fold coloring planar graphs
 - 5CT implies that 10 colors suffice
 - 4CT implies that 8 colors suffice
 - $\frac{9}{2}$ CT will show that 9 colors suffice. [C.–Rabern '15+]

Def: The Kneser graph $K_{t:k}$ has as vertices the *k*-element subsets of $\{1, \ldots, t\}$. Vertices are adjacent whenever their sets are disjoint.

Question: Is there an "easy" proof that $\chi_f \leq \frac{9}{2}$ for planar graphs? [Scheinerman and Ullman '97]

- 2-fold coloring planar graphs
 - 5CT implies that 10 colors suffice
 - 4CT implies that 8 colors suffice
 - $\frac{9}{2}$ CT will show that 9 colors suffice. [C.–Rabern '15+]

Def: The Kneser graph $K_{t:k}$ has as vertices the *k*-element subsets of $\{1, \ldots, t\}$. Vertices are adjacent whenever their sets are disjoint.

Question: Is there an "easy" proof that $\chi_f \leq \frac{9}{2}$ for planar graphs? [Scheinerman and Ullman '97]

- 2-fold coloring planar graphs
 - 5CT implies that 10 colors suffice
 - 4CT implies that 8 colors suffice
 - $\frac{9}{2}$ CT will show that 9 colors suffice. [C.–Rabern '15+]

Def: The Kneser graph $K_{t:k}$ has as vertices the *k*-element subsets of $\{1, \ldots, t\}$. Vertices are adjacent whenever their sets are disjoint.

Every planar graph has a homomorphism to $K_{9:2}$.

 $\frac{9}{2}$ -Coloring Planar Graphs

$\frac{9}{2}$ -Coloring Planar Graphs

Thm: Every planar graph has a homomorphism to $K_{9:2}$.

$\frac{9}{2}$ -Coloring Planar Graphs

Thm: Every planar graph has a homomorphism to $K_{9:2}$. **Pf:**

Thm: Every planar graph has a homomorphism to $K_{9:2}$. **Pf:** Assume not. A minimal counterexample *G*:

1. has minimum degree 5

Thm: Every planar graph has a homomorphism to $K_{9:2}$.

Pf: Assume not. A minimal counterexample *G*:

- 1. has minimum degree 5
- 2. has no separating triangle

Thm: Every planar graph has a homomorphism to $K_{9:2}$. **Pf:** Assume not. A minimal counterexample *G*:

- 1. has minimum degree 5
- 2. has no separating triangle
- 3. can't have "too many 6⁻-vertices near each other"

Thm: Every planar graph has a homomorphism to $K_{9:2}$. **Pf:** Assume not. A minimal counterexample *G*:

- 1. has minimum degree 5
- 2. has no separating triangle
- can't have "too many 6⁻-vertices near each other" if so, then contract some non-adjacent pairs of nbrs; color smaller graph by induction, then extend to G

Thm: Every planar graph has a homomorphism to $K_{9:2}$. **Pf:** Assume not. A minimal counterexample *G*:

- 1. has minimum degree 5
- 2. has no separating triangle
- can't have "too many 6⁻-vertices near each other" if so, then contract some non-adjacent pairs of nbrs; color smaller graph by induction, then extend to G

Thm: Every planar graph has a homomorphism to $K_{9:2}$. **Pf:** Assume not. A minimal counterexample *G*:

- 1. has minimum degree 5
- 2. has no separating triangle
- can't have "too many 6⁻-vertices near each other" if so, then contract some non-adjacent pairs of nbrs; color smaller graph by induction, then extend to G

Use discharging method to contradict (1), (2), or (3).

• each v gets ch(v) = d(v) - 6, so $\sum_{v \in V} ch(v) = -12$

Thm: Every planar graph has a homomorphism to $K_{9:2}$. **Pf:** Assume not. A minimal counterexample *G*:

- 1. has minimum degree 5
- 2. has no separating triangle
- can't have "too many 6⁻-vertices near each other" if so, then contract some non-adjacent pairs of nbrs; color smaller graph by induction, then extend to G

- ▶ each v gets ch(v) = d(v) 6, so $\sum_{v \in V} ch(v) = -12$
- redistribute charge, so every vertex finishes nonnegative

Thm: Every planar graph has a homomorphism to $K_{9:2}$. **Pf:** Assume not. A minimal counterexample *G*:

- 1. has minimum degree 5
- 2. has no separating triangle
- can't have "too many 6⁻-vertices near each other" if so, then contract some non-adjacent pairs of nbrs; color smaller graph by induction, then extend to G

- ▶ each v gets ch(v) = d(v) 6, so $\sum_{v \in V} ch(v) = -12$
- redistribute charge, so every vertex finishes nonnegative
- ▶ Now $-12 = \sum_{v \in V} ch(v) = \sum_{v \in V} ch^*(v) \ge 0$,

Thm: Every planar graph has a homomorphism to $K_{9:2}$. **Pf:** Assume not. A minimal counterexample *G*:

- 1. has minimum degree 5
- 2. has no separating triangle
- can't have "too many 6⁻-vertices near each other" if so, then contract some non-adjacent pairs of nbrs; color smaller graph by induction, then extend to G

- ▶ each v gets ch(v) = d(v) 6, so $\sum_{v \in V} ch(v) = -12$
- redistribute charge, so every vertex finishes nonnegative
- ▶ Now $-12 = \sum_{v \in V} ch(v) = \sum_{v \in V} ch^*(v) \ge 0$, Contradiction!

Too many 6^- -vertices near each other

Key Fact: Denote the center vertex of \checkmark by *v* and the other vertices by u_1, u_2, u_3 .

Key Fact: Denote the center vertex of \checkmark by v and the other vertices by u_1, u_2, u_3 . If v has 5 allowable colors and each u_i has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.

Key Fact: Denote the center vertex of \checkmark by v and the other vertices by u_1, u_2, u_3 . If v has 5 allowable colors and each u_i has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.

Pf: Give v a color available for at most one u_i , say u_1 .

Key Fact: Denote the center vertex of \checkmark by v and the other vertices by u_1, u_2, u_3 . If v has 5 allowable colors and each u_i has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.

Pf: Give v a color available for at most one u_i , say u_1 . 2(5) > 3(3)

Key Fact: Denote the center vertex of \checkmark by v and the other vertices by u_1, u_2, u_3 . If v has 5 allowable colors and each u_i has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.

Pf: Give v a color available for at most one u_i , say u_1 . 2(5) > 3(3) Now give v another color not available for u_1 .

Key Fact: Denote the center vertex of \checkmark by v and the other vertices by u_1, u_2, u_3 . If v has 5 allowable colors and each u_i has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.

Pf: Give v a color available for at most one u_i , say u_1 . 2(5) > 3(3) Now give v another color not available for u_1 . Now color each u_i .

Key Fact: Denote the center vertex of \checkmark by v and the other vertices by u_1, u_2, u_3 . If v has 5 allowable colors and each u_i has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.

Pf: Give v a color available for at most one u_i , say u_1 . 2(5) > 3(3) Now give v another color not available for u_1 . Now color each u_i .

Key Fact: Denote the center vertex of \checkmark by v and the other vertices by u_1, u_2, u_3 . If v has 5 allowable colors and each u_i has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.

Pf: Give v a color available for at most one u_i , say u_1 . 2(5) > 3(3) Now give v another color not available for u_1 . Now color each u_i .

Goal: Color the plane so points at distance 1 get distinct colors.

Goal: Color the plane so points at distance 1 get distinct colors.

• vertices are points of \mathbb{R}^2

Goal: Color the plane so points at distance 1 get distinct colors.

- \blacktriangleright vertices are points of \mathbb{R}^2
- two vertices adjacent if points are at distance 1

Goal: Color the plane so points at distance 1 get distinct colors.

- vertices are points of \mathbb{R}^2
- two vertices adjacent if points are at distance 1

Unit distance graph is any subgraph of this graph.

Goal: Color the plane so points at distance 1 get distinct colors.

- vertices are points of \mathbb{R}^2
- two vertices adjacent if points are at distance 1

Unit distance graph is any subgraph of this graph. Min number of colors needed is $\chi(\mathbb{R}^2)$. [Nelson '50]

Goal: Color the plane so points at distance 1 get distinct colors.

- \blacktriangleright vertices are points of \mathbb{R}^2
- two vertices adjacent if points are at distance 1

Unit distance graph is any subgraph of this graph. Min number of colors needed is $\chi(\mathbb{R}^2)$. [Nelson '50]

What's known?

Goal: Color the plane so points at distance 1 get distinct colors.

- vertices are points of \mathbb{R}^2
- two vertices adjacent if points are at distance 1

Unit distance graph is any subgraph of this graph. Min number of colors needed is $\chi(\mathbb{R}^2)$. [Nelson '50]

What's known?

Goal: Color the plane so points at distance 1 get distinct colors.

- vertices are points of \mathbb{R}^2
- two vertices adjacent if points are at distance 1

Unit distance graph is any subgraph of this graph. Min number of colors needed is $\chi(\mathbb{R}^2)$. [Nelson '50]

What's known?

Goal: Color the plane so points at distance 1 get distinct colors.

- vertices are points of \mathbb{R}^2
- two vertices adjacent if points are at distance 1

Unit distance graph is any subgraph of this graph. Min number of colors needed is $\chi(\mathbb{R}^2)$. [Nelson '50]

What's known?

(a) The Moser spindle

Goal: Color the plane so points at distance 1 get distinct colors.

- vertices are points of \mathbb{R}^2
- two vertices adjacent if points are at distance 1

Unit distance graph is any subgraph of this graph. Min number of colors needed is $\chi(\mathbb{R}^2)$. [Nelson '50]

What's known?

(a) The Moser spindle

(b) The Golomb graph

Goal: Color the plane so points at distance 1 get distinct colors.

- vertices are points of \mathbb{R}^2
- two vertices adjacent if points are at distance 1

Unit distance graph is any subgraph of this graph. Min number of colors needed is $\chi(\mathbb{R}^2)$. [Nelson '50]

What's known?

(a) The Moser spindle

(b) The Golomb graph

So $\chi(\mathbb{R}^2) \geq 4$

Coloring the Plane: an Upper Bound

Coloring the Plane: an Upper Bound Also, $\chi(\mathbb{R}^2) \leq 7$ [Isbell early '50s]

Fractional Coloring, Revisited

Fractional Coloring, Revisited **Prop.** $\chi_f(G) \ge |V(G)|/\alpha(G)$. Fractional Coloring, Revisited **Prop.** $\chi_f(G) \ge |V(G)|/\alpha(G)$. |V(G)| Fractional Coloring, Revisited Prop. $\chi_f(G) \ge |V(G)|/\alpha(G)$. $|V(G)| = \sum_{v \in V} \sum_{I \ni v} w_I$ Fractional Coloring, Revisited **Prop.** $\chi_f(G) \ge |V(G)|/\alpha(G)$. $|V(G)| = \sum_{v \in V} \sum_{I \ni v} w_I = \sum_{I \in \mathcal{I}} w_I |I|$

More generally, for every weight function μ ,

 $\chi_f(G) \geq |V_\mu(G)|/\alpha_\mu(G).$

Goal: Find unit distance *H* with $\chi_f(H) > 3.5$.

Goal: Find unit distance *H* with $\chi_f(H) > 3.5$. **Idea:** Recall $\chi_f(\text{spindle}) = 3.5$.

Goal: Find unit distance *H* with $\chi_f(H) > 3.5$.

Idea: Recall $\chi_f(\text{spindle}) = 3.5$. Find graph with many spindles that interact;

Goal: Find unit distance *H* with $\chi_f(H) > 3.5$.

Idea: Recall $\chi_f(\text{spindle}) = 3.5$. Find graph with many spindles that interact; at least one colored suboptimally.

Goal: Find unit distance *H* with $\chi_f(H) > 3.5$.

Goal: Find unit distance *H* with $\chi_f(H) > 3.5$.

Goal: Find unit distance *H* with $\chi_f(H) > 3.5$.

Goal: Find unit distance *H* with $\chi_f(H) > 3.5$.

Goal: Find unit distance *H* with $\chi_f(H) > 3.5$.

Goal: Find unit distance *H* with $\chi_f(H) > 3.5$.

Goal: Find unit distance *H* with $\chi_f(H) > 3.5$.

Idea: Recall $\chi_f(\text{spindle}) = 3.5$. Find graph with many spindles that interact; at least one colored suboptimally. Core vertices from triangular lattice; attach many spindles; solve for best weights.

Core weights above, spindle weights 1, total weight: 51 + 45 = 96.

Goal: Find unit distance *H* with $\chi_f(H) > 3.5$.

Idea: Recall $\chi_f(\text{spindle}) = 3.5$. Find graph with many spindles that interact; at least one colored suboptimally. Core vertices from triangular lattice; attach many spindles; solve for best weights.

Core weights above, spindle weights 1, total weight: 51 + 45 = 96. Max independent set weight: 27.

Goal: Find unit distance *H* with $\chi_f(H) > 3.5$.

Idea: Recall $\chi_f(\text{spindle}) = 3.5$. Find graph with many spindles that interact; at least one colored suboptimally. Core vertices from triangular lattice; attach many spindles; solve for best weights.

Core weights above, spindle weights 1, total weight: 51 + 45 = 96. Max independent set weight: 27. So [Fisher–Ullman '92]

$$\chi_f(H) \ge 96/27 = 32/9 = 3.5555\ldots$$

Bigger Cores

Bigger Cores

Spindle weight 1 gives $\chi_f \geq \frac{168}{47} \approx 3.5744$

Bigger Cores

Spindle weight 1 gives $\chi_f \geq rac{168}{47} pprox 3.5744$

Spindle weight 2 gives $\chi_f \geq \frac{491}{137} \approx 3.5839$

Our Biggest Core

Our Biggest Core

Spindle weight 3 gives $\chi_f \geq \frac{1732}{481} \approx 3.6008$

Big Idea: Extend same approach to entire plane.

• Core is entire triangular lattice.

- Core is entire triangular lattice.
- Use all possible spindles in 3 directions.

- Core is entire triangular lattice.
- Use all possible spindles in 3 directions.
- Each core vertex: weight 12

- Core is entire triangular lattice.
- Use all possible spindles in 3 directions.
- Each core vertex: weight 12
- Each spindle vertex: weight 1

- Core is entire triangular lattice.
- Use all possible spindles in 3 directions.
- Each core vertex: weight 12
- Each spindle vertex: weight 1
- Avoid ∞ : consider limit of bigger and bigger cores.

Big Idea: Extend same approach to entire plane.

- Core is entire triangular lattice.
- Use all possible spindles in 3 directions.
- Each core vertex: weight 12
- Each spindle vertex: weight 1
- Avoid ∞ : consider limit of bigger and bigger cores.

Core vertices: M

Big Idea: Extend same approach to entire plane.

- Core is entire triangular lattice.
- Use all possible spindles in 3 directions.
- Each core vertex: weight 12
- Each spindle vertex: weight 1
- Avoid ∞ : consider limit of bigger and bigger cores.

Core vertices: MTotal vertices: M + 9M - o(M)

Big Idea: Extend same approach to entire plane.

- Core is entire triangular lattice.
- Use all possible spindles in 3 directions.
- Each core vertex: weight 12
- Each spindle vertex: weight 1
- Avoid ∞ : consider limit of bigger and bigger cores.

Core vertices: MTotal vertices: M + 9M - o(M)Total weight: 12M + 9M - o(M) = 21M - o(M)

Big Idea: Extend same approach to entire plane.

- Core is entire triangular lattice.
- Use all possible spindles in 3 directions.
- Each core vertex: weight 12
- Each spindle vertex: weight 1
- Avoid ∞ : consider limit of bigger and bigger cores.

Core vertices: MTotal vertices: M + 9M - o(M)Total weight: 12M + 9M - o(M) = 21M - o(M)

Lem: Each independent set hits weight at most 6M.

Big Idea: Extend same approach to entire plane.

- Core is entire triangular lattice.
- Use all possible spindles in 3 directions.
- Each core vertex: weight 12
- Each spindle vertex: weight 1
- Avoid ∞ : consider limit of bigger and bigger cores.

Core vertices: MTotal vertices: M + 9M - o(M)Total weight: 12M + 9M - o(M) = 21M - o(M)

Lem: Each independent set hits weight at most 6M. **Pf:** Next slide.

Big Idea: Extend same approach to entire plane.

- Core is entire triangular lattice.
- Use all possible spindles in 3 directions.
- ► Each core vertex: weight 12
- Each spindle vertex: weight 1
- Avoid ∞ : consider limit of bigger and bigger cores.

Core vertices: MTotal vertices: M + 9M - o(M)Total weight: 12M + 9M - o(M) = 21M - o(M)

Lem: Each independent set hits weight at most 6M. **Pf:** Next slide.

$$\chi_f \ge 21M/(6M) = 7/2 = 3.5$$

Given independent set /, discharge weight of / as follows:

Given independent set *I*, discharge weight of *I* as follows:

(R1) Each core vertex in I gives 1 to each core nbr

Given independent set I, discharge weight of I as follows:

(R1) Each core vertex in I gives 1 to each core nbr

(R2) Each spindle vertex in / splits its weight equally between the core vertices incident to its spindle that are *not* in /

Given independent set /, discharge weight of / as follows:

(R1) Each core vertex in I gives 1 to each core nbr

(R2) Each spindle vertex in / splits its weight equally between the core vertices incident to its spindle that are *not* in /

Given independent set /, discharge weight of / as follows:

(R1) Each core vertex in I gives 1 to each core nbr

(R2) Each spindle vertex in / splits its weight equally between the core vertices incident to its spindle that are *not* in /

Final weight on core vertices:

▶ in *I*: 12 - 6(1) = 6

Given independent set /, discharge weight of / as follows:

(R1) Each core vertex in I gives 1 to each core nbr

(R2) Each spindle vertex in / splits its weight equally between the core vertices incident to its spindle that are *not* in /

- ▶ in *I*: 12 6(1) = 6
- 3 nbrs in *I*: $0 + 3 + \frac{6}{2} = 6$

Given independent set /, discharge weight of / as follows:

(R1) Each core vertex in I gives 1 to each core nbr

(R2) Each spindle vertex in / splits its weight equally between the core vertices incident to its spindle that are *not* in /

- in *I*: 12 6(1) = 6
- 3 nbrs in *I*: $0 + 3 + \frac{6}{2} = 6$
- 2 nbrs in *I*: $0 + 2 + \frac{4}{2} + 2 = 6$

Given independent set /, discharge weight of / as follows:

(R1) Each core vertex in I gives 1 to each core nbr

(R2) Each spindle vertex in / splits its weight equally between the core vertices incident to its spindle that are *not* in /

- in I: 12 6(1) = 6
- 3 nbrs in *I*: $0 + 3 + \frac{6}{2} = 6$
- 2 nbrs in *I*: $0 + 2 + \frac{4}{2} + 2 = 6$
- 1 nbr in *I*: $0 + 1 + \frac{2}{2} + 4 = 6$

Given independent set /, discharge weight of / as follows:

(R1) Each core vertex in I gives 1 to each core nbr

(R2) Each spindle vertex in / splits its weight equally between the core vertices incident to its spindle that are *not* in /

- in *I*: 12 6(1) = 6
- 3 nbrs in *I*: $0 + 3 + \frac{6}{2} = 6$
- 2 nbrs in *I*: $0 + 2 + \frac{4}{2} + 2 = 6$
- 1 nbr in *I*: $0 + 1 + \frac{2}{2} + 4 = 6$
- 0 nbrs in *I*: $0 + 0 + \frac{0}{2} + 6 = 6$

Given independent set /, discharge weight of / as follows:

(R1) Each core vertex in I gives 1 to each core nbr

(R2) Each spindle vertex in / splits its weight equally between the core vertices incident to its spindle that are *not* in /

Final weight on core vertices:

- in I: 12 6(1) = 6
- 3 nbrs in *I*: $0 + 3 + \frac{6}{2} = 6$
- 2 nbrs in *I*: $0 + 2 + \frac{4}{2} + 2 = 6$
- ▶ 1 nbr in *I*: $0 + 1 + \frac{2}{2} + 4 = 6$
- 0 nbrs in *I*: $0 + 0 + \frac{0}{2} + 6 = 6$

Now $\sum_{v \in I} \mu(v) \leq 6M$,

Given independent set /, discharge weight of / as follows:

(R1) Each core vertex in I gives 1 to each core nbr

(R2) Each spindle vertex in / splits its weight equally between the core vertices incident to its spindle that are *not* in /

Final weight on core vertices:

- in *l*: 12 6(1) = 6
 3 nbrs in *l*: 0 + 3 + ⁶/₂ = 6
 2 nbrs in *l*: 0 + 2 + ⁴/₂ + 2 = 6
 1 nbr in *l*: 0 + 1 + ²/₂ + 4 = 6
- 0 nbrs in *I*: $0 + 0 + \frac{0}{2} + 6 = 6$

Now $\sum_{v \in I} \mu(v) \leq 6M$, so

$$\chi_f \geq \frac{21M}{6M} = 3.5$$

► 4 ≤ $\chi(\mathbb{R}^2)$ ≤ 7

• $4 \le \chi(\mathbb{R}^2) \le 7$; bounds unchanged since 50s

- $4 \le \chi(\mathbb{R}^2) \le 7$; bounds unchanged since 50s
- Lower bounds for $\chi_f(\mathbb{R}^2)$ come from unit distance graphs

- $4 \le \chi(\mathbb{R}^2) \le 7$; bounds unchanged since 50s
- Lower bounds for $\chi_f(\mathbb{R}^2)$ come from unit distance graphs
 - Moser spindle shows $\chi_f(\mathbb{R}^2) \geq 3.5$

- $4 \le \chi(\mathbb{R}^2) \le 7$; bounds unchanged since 50s
- Lower bounds for $\chi_f(\mathbb{R}^2)$ come from unit distance graphs
 - Moser spindle shows $\chi_f(\mathbb{R}^2) \ge 3.5$
 - Main tool: $\chi_f \geq |V(G)|/\alpha(G)$

- $4 \le \chi(\mathbb{R}^2) \le 7$; bounds unchanged since 50s
- Lower bounds for $\chi_f(\mathbb{R}^2)$ come from unit distance graphs
 - Moser spindle shows $\chi_f(\mathbb{R}^2) \ge 3.5$
 - Main tool: $\chi_f \geq |V(G)|/\alpha(G)$
 - Weighted: $\chi_f \geq |V_\mu(G)|/\alpha_\mu(G)$

- $4 \le \chi(\mathbb{R}^2) \le 7$; bounds unchanged since 50s
- Lower bounds for $\chi_f(\mathbb{R}^2)$ come from unit distance graphs
 - Moser spindle shows $\chi_f(\mathbb{R}^2) \ge 3.5$
 - Main tool: $\chi_f \geq |V(G)|/\alpha(G)$
 - Weighted: $\chi_f \geq |V_\mu(G)|/\alpha_\mu(G)$
- Fisher–Ullman proved $\chi_f(\mathbb{R}^2) \ge 3.555\ldots$

- $4 \le \chi(\mathbb{R}^2) \le 7$; bounds unchanged since 50s
- Lower bounds for $\chi_f(\mathbb{R}^2)$ come from unit distance graphs
 - Moser spindle shows $\chi_f(\mathbb{R}^2) \ge 3.5$
 - Main tool: $\chi_f \geq |V(G)|/\alpha(G)$
 - Weighted: $\chi_f \geq |V_\mu(G)|/\alpha_\mu(G)$
- Fisher–Ullman proved $\chi_f(\mathbb{R}^2) \ge 3.555\ldots$
 - Core from triangular lattice

- $4 \le \chi(\mathbb{R}^2) \le 7$; bounds unchanged since 50s
- Lower bounds for $\chi_f(\mathbb{R}^2)$ come from unit distance graphs
 - Moser spindle shows $\chi_f(\mathbb{R}^2) \ge 3.5$
 - Main tool: $\chi_f \geq |V(G)|/\alpha(G)$
 - Weighted: $\chi_f \geq |V_\mu(G)|/\alpha_\mu(G)$
- Fisher–Ullman proved $\chi_f(\mathbb{R}^2) \ge 3.555\ldots$
 - Core from triangular lattice
 - Attach many spindles

- $4 \le \chi(\mathbb{R}^2) \le 7$; bounds unchanged since 50s
- Lower bounds for $\chi_f(\mathbb{R}^2)$ come from unit distance graphs
 - Moser spindle shows $\chi_f(\mathbb{R}^2) \ge 3.5$
 - Main tool: $\chi_f \geq |V(G)|/\alpha(G)$
 - Weighted: $\chi_f \geq |V_\mu(G)|/\alpha_\mu(G)$
- Fisher–Ullman proved $\chi_f(\mathbb{R}^2) \ge 3.555...$
 - Core from triangular lattice
 - Attach many spindles (all with weight 1)

- $4 \le \chi(\mathbb{R}^2) \le 7$; bounds unchanged since 50s
- Lower bounds for $\chi_f(\mathbb{R}^2)$ come from unit distance graphs
 - Moser spindle shows $\chi_f(\mathbb{R}^2) \ge 3.5$
 - Main tool: $\chi_f \geq |V(G)|/\alpha(G)$
 - Weighted: $\chi_f \geq |V_\mu(G)|/\alpha_\mu(G)$
- Fisher–Ullman proved $\chi_f(\mathbb{R}^2) \ge 3.555...$
 - Core from triangular lattice
 - Attach many spindles (all with weight 1)
 - Max. weight sum so no ind. set hits more than 27 (solve LP)

- $4 \le \chi(\mathbb{R}^2) \le 7$; bounds unchanged since 50s
- Lower bounds for $\chi_f(\mathbb{R}^2)$ come from unit distance graphs
 - Moser spindle shows $\chi_f(\mathbb{R}^2) \ge 3.5$
 - Main tool: $\chi_f \geq |V(G)|/\alpha(G)$
 - Weighted: $\chi_f \geq |V_\mu(G)|/\alpha_\mu(G)$
- Fisher–Ullman proved $\chi_f(\mathbb{R}^2) \ge 3.555...$
 - Core from triangular lattice
 - Attach many spindles (all with weight 1)
 - Max. weight sum so no ind. set hits more than 27 (solve LP)
 - Now $\chi_f(\mathbb{R}^2) \ge 96/27 = 32/9 = 3.555...$

- $4 \le \chi(\mathbb{R}^2) \le 7$; bounds unchanged since 50s
- Lower bounds for $\chi_f(\mathbb{R}^2)$ come from unit distance graphs
 - Moser spindle shows $\chi_f(\mathbb{R}^2) \ge 3.5$
 - Main tool: $\chi_f \geq |V(G)|/\alpha(G)$
 - Weighted: $\chi_f \geq |V_\mu(G)|/\alpha_\mu(G)$
- Fisher–Ullman proved $\chi_f(\mathbb{R}^2) \ge 3.555...$
 - Core from triangular lattice
 - Attach many spindles (all with weight 1)
 - Max. weight sum so no ind. set hits more than 27 (solve LP)
 - Now $\chi_f(\mathbb{R}^2) \ge 96/27 = 32/9 = 3.555...$
 - ▶ Bigger cores give $\chi_f \ge 3.6008$ [C.-Rabern '15+]

- $4 \le \chi(\mathbb{R}^2) \le 7$; bounds unchanged since 50s
- Lower bounds for $\chi_f(\mathbb{R}^2)$ come from unit distance graphs
 - Moser spindle shows $\chi_f(\mathbb{R}^2) \ge 3.5$
 - Main tool: $\chi_f \geq |V(G)|/\alpha(G)$
 - Weighted: $\chi_f \geq |V_\mu(G)|/\alpha_\mu(G)$
- Fisher–Ullman proved $\chi_f(\mathbb{R}^2) \ge 3.555...$
 - Core from triangular lattice
 - Attach many spindles (all with weight 1)
 - Max. weight sum so no ind. set hits more than 27 (solve LP)
 - Now $\chi_f(\mathbb{R}^2) \ge 96/27 = 32/9 = 3.555...$
 - Bigger cores give $\chi_f \ge 3.6008$ [C.–Rabern '15+]
- By hand: consider entire triangular lattice (via limits)

- $4 \le \chi(\mathbb{R}^2) \le 7$; bounds unchanged since 50s
- Lower bounds for $\chi_f(\mathbb{R}^2)$ come from unit distance graphs
 - Moser spindle shows $\chi_f(\mathbb{R}^2) \ge 3.5$
 - Main tool: $\chi_f \geq |V(G)|/\alpha(G)$
 - Weighted: $\chi_f \geq |V_\mu(G)|/\alpha_\mu(G)$
- Fisher–Ullman proved $\chi_f(\mathbb{R}^2) \ge 3.555...$
 - Core from triangular lattice
 - Attach many spindles (all with weight 1)
 - Max. weight sum so no ind. set hits more than 27 (solve LP)
 - Now $\chi_f(\mathbb{R}^2) \ge 96/27 = 32/9 = 3.555...$
 - Bigger cores give $\chi_f \ge 3.6008$ [C.–Rabern '15+]
- By hand: consider entire triangular lattice (via limits)
 - Core with M vertices: total weight 21M

- $4 \le \chi(\mathbb{R}^2) \le 7$; bounds unchanged since 50s
- Lower bounds for $\chi_f(\mathbb{R}^2)$ come from unit distance graphs
 - Moser spindle shows $\chi_f(\mathbb{R}^2) \ge 3.5$
 - Main tool: $\chi_f \geq |V(G)|/\alpha(G)$
 - Weighted: $\chi_f \geq |V_\mu(G)|/\alpha_\mu(G)$
- Fisher–Ullman proved $\chi_f(\mathbb{R}^2) \ge 3.555...$
 - Core from triangular lattice
 - Attach many spindles (all with weight 1)
 - Max. weight sum so no ind. set hits more than 27 (solve LP)
 - Now $\chi_f(\mathbb{R}^2) \ge 96/27 = 32/9 = 3.555...$
 - Bigger cores give $\chi_f \ge 3.6008$ [C.–Rabern '15+]
- By hand: consider entire triangular lattice (via limits)
 - Core with M vertices: total weight 21M
 - Max independent set hits weight 6M (via discharging)

- $4 \le \chi(\mathbb{R}^2) \le 7$; bounds unchanged since 50s
- Lower bounds for $\chi_f(\mathbb{R}^2)$ come from unit distance graphs
 - Moser spindle shows $\chi_f(\mathbb{R}^2) \ge 3.5$
 - Main tool: $\chi_f \geq |V(G)|/\alpha(G)$
 - Weighted: $\chi_f \geq |V_\mu(G)|/\alpha_\mu(G)$
- Fisher–Ullman proved $\chi_f(\mathbb{R}^2) \ge 3.555...$
 - Core from triangular lattice
 - Attach many spindles (all with weight 1)
 - Max. weight sum so no ind. set hits more than 27 (solve LP)
 - Now $\chi_f(\mathbb{R}^2) \ge 96/27 = 32/9 = 3.555...$
 - Bigger cores give $\chi_f \ge 3.6008$ [C.–Rabern '15+]
- By hand: consider entire triangular lattice (via limits)
 - Core with M vertices: total weight 21M
 - ▶ Max independent set hits weight 6*M* (via discharging)
 - This proves $\chi_f(\mathbb{R}^2) \ge (21M)/(6M) = 3.5$

- $4 \le \chi(\mathbb{R}^2) \le 7$; bounds unchanged since 50s
- Lower bounds for $\chi_f(\mathbb{R}^2)$ come from unit distance graphs
 - Moser spindle shows $\chi_f(\mathbb{R}^2) \ge 3.5$
 - Main tool: $\chi_f \geq |V(G)|/\alpha(G)$
 - Weighted: $\chi_f \geq |V_\mu(G)|/\alpha_\mu(G)$
- Fisher–Ullman proved $\chi_f(\mathbb{R}^2) \ge 3.555...$
 - Core from triangular lattice
 - Attach many spindles (all with weight 1)
 - Max. weight sum so no ind. set hits more than 27 (solve LP)
 - Now $\chi_f(\mathbb{R}^2) \ge 96/27 = 32/9 = 3.555...$
 - Bigger cores give $\chi_f \ge 3.6008$ [C.–Rabern '15+]
- By hand: consider entire triangular lattice (via limits)
 - Core with M vertices: total weight 21M
 - Max independent set hits weight 6M (via discharging)
 - This proves $\chi_f(\mathbb{R}^2) \ge (21M)/(6M) = 3.5$
 - Average over larger subsets of vertices: χ_f(ℝ²) ≥ 3.6190...
 [C.-Rabern '15+]

- $4 \le \chi(\mathbb{R}^2) \le 7$; bounds unchanged since 50s
- Lower bounds for $\chi_f(\mathbb{R}^2)$ come from unit distance graphs
 - Moser spindle shows $\chi_f(\mathbb{R}^2) \ge 3.5$
 - Main tool: $\chi_f \geq |V(G)|/\alpha(G)$
 - Weighted: $\chi_f \geq |V_\mu(G)|/\alpha_\mu(G)$
- Fisher–Ullman proved $\chi_f(\mathbb{R}^2) \ge 3.555...$
 - Core from triangular lattice
 - Attach many spindles (all with weight 1)
 - Max. weight sum so no ind. set hits more than 27 (solve LP)
 - Now $\chi_f(\mathbb{R}^2) \ge 96/27 = 32/9 = 3.555...$
 - Bigger cores give $\chi_f \ge 3.6008$ [C.–Rabern '15+]
- By hand: consider entire triangular lattice (via limits)
 - Core with M vertices: total weight 21M
 - Max independent set hits weight 6M (via discharging)
 - This proves $\chi_f(\mathbb{R}^2) \ge (21M)/(6M) = 3.5$
 - Average over larger subsets of vertices: χ_f(ℝ²) ≥ 3.6190...
 [C.-Rabern '15+]

- $4 \le \chi(\mathbb{R}^2) \le 7$; bounds unchanged since 50s
- Lower bounds for $\chi_f(\mathbb{R}^2)$ come from unit distance graphs
 - Moser spindle shows $\chi_f(\mathbb{R}^2) \ge 3.5$
 - Main tool: $\chi_f \geq |V(G)|/\alpha(G)$
 - Weighted: $\chi_f \geq |V_\mu(G)|/\alpha_\mu(G)$
- Fisher–Ullman proved $\chi_f(\mathbb{R}^2) \ge 3.555...$
 - Core from triangular lattice
 - Attach many spindles (all with weight 1)
 - Max. weight sum so no ind. set hits more than 27 (solve LP)
 - Now $\chi_f(\mathbb{R}^2) \ge 96/27 = 32/9 = 3.555...$
 - Bigger cores give $\chi_f \ge 3.6008$ [C.–Rabern '15+]
- By hand: consider entire triangular lattice (via limits)
 - Core with M vertices: total weight 21M
 - Max independent set hits weight 6M (via discharging)
 - This proves $\chi_f(\mathbb{R}^2) \ge (21M)/(6M) = 3.5$
 - Average over larger subsets of vertices: χ_f(ℝ²) ≥ 3.6190...
 [C.-Rabern '15+]

Summary

- $4 \le \chi(\mathbb{R}^2) \le 7$; bounds unchanged since 50s
- Lower bounds for $\chi_f(\mathbb{R}^2)$ come from unit distance graphs
 - Moser spindle shows $\chi_f(\mathbb{R}^2) \ge 3.5$
 - Main tool: $\chi_f \geq |V(G)|/\alpha(G)$
 - Weighted: $\chi_f \geq |V_\mu(G)|/\alpha_\mu(G)$
- Fisher–Ullman proved $\chi_f(\mathbb{R}^2) \ge 3.555...$
 - Core from triangular lattice
 - Attach many spindles (all with weight 1)
 - Max. weight sum so no ind. set hits more than 27 (solve LP)
 - Now $\chi_f(\mathbb{R}^2) \ge 96/27 = 32/9 = 3.555...$
 - Bigger cores give $\chi_f \ge 3.6008$ [C.–Rabern '15+]
- By hand: consider entire triangular lattice (via limits)
 - Core with M vertices: total weight 21M
 - Max independent set hits weight 6M (via discharging)
 - This proves $\chi_f(\mathbb{R}^2) \ge (21M)/(6M) = 3.5$
 - Average over larger subsets of vertices: χ_f(ℝ²) ≥ 3.6190...
 [C.-Rabern '15+]

To improve bound:

Optimize the ratio of core weight and spindle weight

To improve bound:

- Optimize the ratio of core weight and spindle weight
- Average final weights over bigger sets of core vertices

To improve bound:

- Optimize the ratio of core weight and spindle weight
- Average final weights over bigger sets of core vertices

Which subsets to average over?

Partition core into *tiles* with verts of / as corners

To improve bound:

- Optimize the ratio of core weight and spindle weight
- Average final weights over bigger sets of core vertices

Which subsets to average over?

- Partition core into tiles with verts of I as corners
- Assume / intersects core in maximal independent set

To improve bound:

- Optimize the ratio of core weight and spindle weight
- Average final weights over bigger sets of core vertices

Which subsets to average over?

- Partition core into *tiles* with verts of *l* as corners
- Assume / intersects core in maximal independent set
- If not, modify / to hit more weight

To improve bound:

- Optimize the ratio of core weight and spindle weight
- Average final weights over bigger sets of core vertices

Which subsets to average over?

- Partition core into tiles with verts of I as corners
- Assume / intersects core in maximal independent set
- If not, modify / to hit more weight

Why is this good?

To improve bound:

- Optimize the ratio of core weight and spindle weight
- Average final weights over bigger sets of core vertices

Which subsets to average over?

- Partition core into tiles with verts of / as corners
- Assume I intersects core in maximal independent set
- If not, modify / to hit more weight

Why is this good?

Averaging over tiles allows better bound on final weight.

To improve bound:

- Optimize the ratio of core weight and spindle weight
- Average final weights over bigger sets of core vertices

Which subsets to average over?

- Partition core into tiles with verts of I as corners
- Assume I intersects core in maximal independent set
- If not, modify / to hit more weight

Why is this good?

- Averaging over tiles allows better bound on final weight.
- Only 8 shapes of tiles (because *l* is maximal);

To improve bound:

- Optimize the ratio of core weight and spindle weight
- Average final weights over bigger sets of core vertices

Which subsets to average over?

- Partition core into tiles with verts of I as corners
- Assume I intersects core in maximal independent set
- If not, modify / to hit more weight

Why is this good?

- Averaging over tiles allows better bound on final weight.
- Only 8 shapes of tiles (because / is maximal); avoids combinatorial explosion.

To improve bound:

- Optimize the ratio of core weight and spindle weight
- Average final weights over bigger sets of core vertices

Which subsets to average over?

- Partition core into tiles with verts of I as corners
- Assume I intersects core in maximal independent set
- If not, modify / to hit more weight

Why is this good?

- Averaging over tiles allows better bound on final weight.
- Only 8 shapes of tiles (because / is maximal); avoids combinatorial explosion.

Now compute the final weight, averaged over each tile.

To improve bound:

- Optimize the ratio of core weight and spindle weight
- Average final weights over bigger sets of core vertices

Which subsets to average over?

- Partition core into tiles with verts of I as corners
- Assume I intersects core in maximal independent set
- If not, modify / to hit more weight

Why is this good?

- Averaging over tiles allows better bound on final weight.
- Only 8 shapes of tiles (because / is maximal); avoids combinatorial explosion.

Now compute the final weight, averaged over each tile.

$$\chi_f(\mathbb{R}^2) \geq \frac{105}{29} \approx 3.6207$$

A Tiling for a Better Bound

Discharging for $\frac{9}{2}$ -coloring planar graphs Each v gets ch(v) = d(v) - 6.

Each v gets ch(v) = d(v) - 6. Now 5-vertices need 1 from nbrs.

Each v gets ch(v) = d(v) - 6. Now 5-vertices need 1 from nbrs.

Def: H_v is subgraph induced by 6⁻-nbrs of v.

Each v gets ch(v) = d(v) - 6. Now 5-vertices need 1 from nbrs.

Def: H_v is subgraph induced by 6⁻-nbrs of v.

Each v gets ch(v) = d(v) - 6. Now 5-vertices need 1 from nbrs.

Def: H_v is subgraph induced by 6⁻-nbrs of v. If $d_{H_v}(w) = 0$, then w is isolated nbr of v; otherwise w is non-isolated nbr of v.

Each v gets ch(v) = d(v) - 6. Now 5-vertices need 1 from nbrs.

Def: H_v is subgraph induced by 6⁻-nbrs of v. If $d_{H_v}(w) = 0$, then w is isolated nbr of v; otherwise w is non-isolated nbr of v. A non-isolated 5-nbr of vertex v is crowded (w.r.t. v) if it has two 6-nbrs in H_v .

Each v gets ch(v) = d(v) - 6. Now 5-vertices need 1 from nbrs.

Def: H_v is subgraph induced by 6⁻-nbrs of v. If $d_{H_v}(w) = 0$, then w is isolated nbr of v; otherwise w is non-isolated nbr of v. A non-isolated 5-nbr of vertex v is crowded (w.r.t. v) if it has two 6-nbrs in H_v .

(R1) Each 8⁺-vertex gives charge $\frac{1}{2}$ to each isolated 5-nbr and charge $\frac{1}{4}$ to each non-isolated 5-nbr.

Each v gets ch(v) = d(v) - 6. Now 5-vertices need 1 from nbrs.

Def: H_v is subgraph induced by 6⁻-nbrs of v. If $d_{H_v}(w) = 0$, then w is isolated nbr of v; otherwise w is non-isolated nbr of v. A non-isolated 5-nbr of vertex v is crowded (w.r.t. v) if it has two 6-nbrs in H_v .

- (R1) Each 8⁺-vertex gives charge $\frac{1}{2}$ to each isolated 5-nbr and charge $\frac{1}{4}$ to each non-isolated 5-nbr.
- (R2) Each 7-vertex gives charge $\frac{1}{2}$ to each isolated 5-nbr, charge 0 to each crowded 5-nbr and charge $\frac{1}{4}$ to each remaining 5-nbr.

Each v gets ch(v) = d(v) - 6. Now 5-vertices need 1 from nbrs.

Def: H_v is subgraph induced by 6⁻-nbrs of v. If $d_{H_v}(w) = 0$, then w is isolated nbr of v; otherwise w is non-isolated nbr of v. A non-isolated 5-nbr of vertex v is crowded (w.r.t. v) if it has two 6-nbrs in H_v .

- (R1) Each 8⁺-vertex gives charge $\frac{1}{2}$ to each isolated 5-nbr and charge $\frac{1}{4}$ to each non-isolated 5-nbr.
- (R2) Each 7-vertex gives charge ¹/₂ to each isolated 5-nbr, charge 0 to each crowded 5-nbr and charge ¹/₄ to each remaining 5-nbr.
 (R3) Each 7⁺-vertex gives charge ¹/₄ to each 6-nbr.

Each v gets ch(v) = d(v) - 6. Now 5-vertices need 1 from nbrs.

Def: H_v is subgraph induced by 6⁻-nbrs of v. If $d_{H_v}(w) = 0$, then w is isolated nbr of v; otherwise w is non-isolated nbr of v. A non-isolated 5-nbr of vertex v is crowded (w.r.t. v) if it has two 6-nbrs in H_v .

- (R1) Each 8⁺-vertex gives charge $\frac{1}{2}$ to each isolated 5-nbr and charge $\frac{1}{4}$ to each non-isolated 5-nbr.
- (R2) Each 7-vertex gives charge $\frac{1}{2}$ to each isolated 5-nbr, charge 0 to each crowded 5-nbr and charge $\frac{1}{4}$ to each remaining 5-nbr.
- (R3) Each 7⁺-vertex gives charge $\frac{1}{4}$ to each 6-nbr.
- (R4) Each 6-vertex gives charge $\frac{1}{2}$ to each 5-nbr.

Each v gets ch(v) = d(v) - 6. Now 5-vertices need 1 from nbrs.

Def: H_v is subgraph induced by 6⁻-nbrs of v. If $d_{H_v}(w) = 0$, then w is isolated nbr of v; otherwise w is non-isolated nbr of v. A non-isolated 5-nbr of vertex v is crowded (w.r.t. v) if it has two 6-nbrs in H_v .

- (R1) Each 8⁺-vertex gives charge $\frac{1}{2}$ to each isolated 5-nbr and charge $\frac{1}{4}$ to each non-isolated 5-nbr.
- (R2) Each 7-vertex gives charge $\frac{1}{2}$ to each isolated 5-nbr, charge 0 to each crowded 5-nbr and charge $\frac{1}{4}$ to each remaining 5-nbr.
- (R3) Each 7⁺-vertex gives charge $\frac{1}{4}$ to each 6-nbr.
- (R4) Each 6-vertex gives charge $\frac{1}{2}$ to each 5-nbr.

Now show that $ch^*(v) \ge 0$ for all v.