Revolutionaries and Spies

Daniel W. Cranston Virginia Commonwealth University dcranston@vcu.edu

Slides available on my preprint page Joint with Jane Butterfield, Greg Puleo, Cliff Smyth, Doug West, and Reza Zamani

> LSU Combinatorics Seminar 6 October 2011

Setup: r revolutionaries play against s spies on a graph G . Each rev. moves to a vertex, then each spy moves to a vertex.

Setup: r revolutionaries play against s spies on a graph G .

Each rev. moves to a vertex, then each spy moves to a vertex.

Goal: Rev's want to get m rev's at a common vertex, with no spy.

Setup: r revolutionaries play against s spies on a graph G .

Each rev. moves to a vertex, then each spy moves to a vertex.

Goal: Rev's want to get m rev's at a common vertex, with no spy.

Each turn: Each rev. moves/stays, then each spy moves/stays.

Setup: r revolutionaries play against s spies on a graph G . Each rev. moves to a vertex, then each spy moves to a vertex. **Goal:** Rev's want to get m rev's at a common vertex, with no spy. Each turn: Each rev. moves/stays, then each spy moves/stays.

Setup: r revolutionaries play against s spies on a graph G . Each rev. moves to a vertex, then each spy moves to a vertex. **Goal:** Rev's want to get m rev's at a common vertex, with no spy. Each turn: Each rev. moves/stays, then each spy moves/stays.

Setup: r revolutionaries play against s spies on a graph G . Each rev. moves to a vertex, then each spy moves to a vertex. **Goal:** Rev's want to get m rev's at a common vertex, with no spy. Each turn: Each rev. moves/stays, then each spy moves/stays.

Setup: r revolutionaries play against s spies on a graph G . Each rev. moves to a vertex, then each spy moves to a vertex. **Goal:** Rev's want to get m rev's at a common vertex, with no spy. Each turn: Each rev. moves/stays, then each spy moves/stays.

Obs 2: If $s < |V(G)|$ and $\lfloor r/m \rfloor > s$, then rev's win.

Setup: r revolutionaries play against s spies on a graph G . Each rev. moves to a vertex, then each spy moves to a vertex. **Goal:** Rev's want to get m rev's at a common vertex, with no spy. Each turn: Each rev. moves/stays, then each spy moves/stays.

Obs 2: If $s < |V(G)|$ and $\lfloor r/m \rfloor > s$, then rev's win. **Ex:** Say $m = 2$, $r = 8$, and $s = 3$.

Setup: r revolutionaries play against s spies on a graph G . Each rev. moves to a vertex, then each spy moves to a vertex. **Goal:** Rev's want to get m rev's at a common vertex, with no spy. Each turn: Each rev. moves/stays, then each spy moves/stays.

Obs 2: If $s < |V(G)|$ and $\lfloor r/m \rfloor > s$, then rev's win. **Ex:** Say $m = 2$, $r = 8$, and $s = 3$. So we assume $|r/m| \leq s < |V(G)|$.

Setup: r revolutionaries play against s spies on a graph G . Each rev. moves to a vertex, then each spy moves to a vertex. **Goal:** Rev's want to get m rev's at a common vertex, with no spy. **Each turn:** Each rev. moves/stays, then each spy moves/stays.

Obs 1: If $s \geq |V(G)|$, then the spies win.

Obs 2: If $s < |V(G)|$ and $\lfloor r/m \rfloor > s$, then rev's win. **Ex:** Say $m = 2$, $r = 8$, and $s = 3$. So we assume $|r/m| \leq s < |V(G)|$.

Def: $\sigma(G, m, r)$ is minimum number of spies needed to win on G

1. $|r/m|$ spies can win on:

1. $|r/m|$ spies can win on:

dominated graphs, trees, interval graphs, "webbed trees"

1. $|r/m|$ spies can win on: spy-good graphs dominated graphs, trees, interval graphs, "webbed trees"

- 1. $|r/m|$ spies can win on: spy-good graphs dominated graphs, trees, interval graphs, "webbed trees"
- 2. On chordal graphs, we may need $r m + 1$ spies to win

- 1. $\left| r/m \right|$ spies can win on: spy-good graphs dominated graphs, trees, interval graphs, "webbed trees"
- 2. On chordal graphs, we may need $r m + 1$ spies to win
- 3. On unicyclic graphs, $\lceil r/m \rceil$ spies can win rev's may need many moves to beat $\lceil r/m \rceil - 1$ spies

- 1. $|r/m|$ spies can win on: spy-good graphs dominated graphs, trees, interval graphs, "webbed trees"
- 2. On chordal graphs, we may need $r m + 1$ spies to win
- 3. On unicyclic graphs, $\lceil r/m \rceil$ spies can win rev's may need many moves to beat $\lceil r/m \rceil - 1$ spies
- 4. Random graph, hypercubes, large complete k -partite

- 1. $|r/m|$ spies can win on: spy-good graphs dominated graphs, trees, interval graphs, "webbed trees"
- 2. On chordal graphs, we may need $r m + 1$ spies to win
- 3. On unicyclic graphs, $\lceil r/m \rceil$ spies can win rev's may need many moves to beat $\lceil r/m \rceil - 1$ spies
- 4. Random graph, hypercubes, large complete k -partite
- 5. For large complete bipartite graphs:

$$
\sigma(G,2,r)=\frac{7}{10}r
$$

- 1. $|r/m|$ spies can win on: spy-good graphs dominated graphs, trees, interval graphs, "webbed trees"
- 2. On chordal graphs, we may need $r m + 1$ spies to win
- 3. On unicyclic graphs, $\lceil r/m \rceil$ spies can win rev's may need many moves to beat $\lceil r/m \rceil - 1$ spies
- 4. Random graph, hypercubes, large complete k -partite
- 5. For large complete bipartite graphs:

$$
\sigma(G, 2, r) = \frac{7}{10}r
$$

$$
\sigma(G, 3, r) = \frac{1}{2}r
$$

- 1. $|r/m|$ spies can win on: spy-good graphs dominated graphs, trees, interval graphs, "webbed trees"
- 2. On chordal graphs, we may need $r m + 1$ spies to win
- 3. On unicyclic graphs, $\lceil r/m \rceil$ spies can win rev's may need many moves to beat $\lceil r/m \rceil - 1$ spies
- 4. Random graph, hypercubes, large complete k -partite
- 5. For large complete bipartite graphs:

$$
\sigma(G, 2, r) = \frac{7}{10}r
$$

$$
\sigma(G, 3, r) = \frac{1}{2}r
$$

$$
\left(\frac{3}{2} - o(1)\right) \frac{r}{m} - 2 \le \sigma(G, m, r) < 1.58 \frac{r}{m}, \quad \text{for } m \ge 4
$$

- 1. $|r/m|$ spies can win on: spy-good graphs dominated graphs, trees, interval graphs, "webbed trees"
- 2. On chordal graphs, we may need $r m + 1$ spies to win
- 3. On unicyclic graphs, $\lceil r/m \rceil$ spies can win rev's may need many moves to beat $\lceil r/m \rceil - 1$ spies
- 4. Random graph, hypercubes, large complete k -partite
- 5. For large complete bipartite graphs:

$$
\sigma(G, 2, r) = \frac{7}{10}r = \frac{7}{5}\frac{r}{2}
$$

$$
\sigma(G, 3, r) = \frac{1}{2}r = \frac{3}{2}\frac{r}{3}
$$

$$
\left(\frac{3}{2} - o(1)\right)\frac{r}{m} - 2 \le \sigma(G, m, r) < 1.58\frac{r}{m}, \quad \text{for } m \ge 4
$$

Conj: As *m* grows: $\sigma(G, m, r) \sim \frac{3}{2}$ 2 r m

Ex: P_9 is spy-good. Consider $m = 3$, $r = 13$, $s = 4$.

Ex: P_9 is spy-good. Consider $m = 3$, $r = 13$, $s = 4$.

Pf: One spy follows each mth rev. When rev's move, spies repeat.

Ex: P_9 is spy-good. Consider $m = 3$, $r = 13$, $s = 4$.

Pf: One spy follows each mth rev. When rev's move, spies repeat.

Ex: P_9 is spy-good. Consider $m = 3$, $r = 13$, $s = 4$. Pf: One spy follows each mth rev. When rev's move, spies repeat.

Ex: P_9 is spy-good. Consider $m = 3$, $r = 13$, $s = 4$. Pf: One spy follows each *m*th rev. When rev's move, spies repeat.

Thm: Every tree is spy-good.

Ex: P_9 is spy-good. Consider $m = 3$, $r = 13$, $s = 4$. Pf: One spy follows each *m*th rev. When rev's move, spies repeat.

Thm: Every tree is spy-good.

Pf Sketch: Write $r(v)$ and $s(v)$ for num. of rev's and spies at v; $C(v)$ is children of v; and $w(v)$ is num. of rev's at descendants.

$$
s(v) = \left\lfloor \frac{w(v)}{m} \right\rfloor - \sum_{x \in C(v)} \left\lfloor \frac{w(x)}{m} \right\rfloor
$$

Ex: P_9 is spy-good. Consider $m = 3$, $r = 13$, $s = 4$. Pf: One spy follows each *m*th rev. When rev's move, spies repeat.

Thm: Every tree is spy-good.

Pf Sketch: Write $r(v)$ and $s(v)$ for num. of rev's and spies at v; $C(v)$ is children of v; and $w(v)$ is num. of rev's at descendants.

$$
s(v) = \left\lfloor \frac{w(v)}{m} \right\rfloor - \sum_{x \in C(v)} \left\lfloor \frac{w(x)}{m} \right\rfloor
$$

1. Since $|a + b| > |a| + |b|$, s(v) is nonnegative

Ex: P_9 is spy-good. Consider $m = 3$, $r = 13$, $s = 4$. Pf: One spy follows each *m*th rev. When rev's move, spies repeat.

Thm: Every tree is spy-good.

Pf Sketch: Write $r(v)$ and $s(v)$ for num. of rev's and spies at v; $C(v)$ is children of v; and $w(v)$ is num. of rev's at descendants.

$$
s(v) = \left\lfloor \frac{w(v)}{m} \right\rfloor - \sum_{x \in C(v)} \left\lfloor \frac{w(x)}{m} \right\rfloor
$$

1. Since $|a + b| \ge |a| + |b|$, s(v) is nonnegative 2. If $r(v) \geq m$, then $s(v) \geq \left\lfloor \frac{w(v)}{m} \right\rfloor$ $\left|\frac{v(v)}{m}\right| = \left|\frac{w(v)-r(v)}{m}\right|$ $\left|\frac{p-r(v)}{m}\right|\geq 1$

Ex: P_9 is spy-good. Consider $m = 3$, $r = 13$, $s = 4$. **Pf:** One spy follows each *m*th rev. When rev's move, spies repeat.

Thm: Every tree is spy-good.

Pf Sketch: Write $r(v)$ and $s(v)$ for num. of rev's and spies at v; $C(v)$ is children of v; and $w(v)$ is num. of rev's at descendants.

$$
s(v) = \left\lfloor \frac{w(v)}{m} \right\rfloor - \sum_{x \in C(v)} \left\lfloor \frac{w(x)}{m} \right\rfloor
$$

1. Since $|a + b| \ge |a| + |b|$, s(v) is nonnegative 2. If $r(v) \geq m$, then $s(v) \geq \left\lfloor \frac{w(v)}{m} \right\rfloor$ $\left|\frac{v(v)}{m}\right| = \left|\frac{w(v)-r(v)}{m}\right|$ $\left|\frac{p-r(v)}{m}\right|\geq 1$ 3. $\sum_{v \in \mathcal{T}} s(v) = \left| \frac{w(u)}{m} \right|$ $\left|\frac{f(u)}{m}\right| = \left|\frac{r}{m}\right|$ $\frac{r}{m}$

Thm: Every graph G with a dominating vertex u is spy-good.

Thm: Every graph G with a dominating vertex u is spy-good.

$$
\xrightarrow{X: \text{ spies off } u} \underbrace{(x_1 \cdots x_k)}_{y_1 \cdots y_k} \underbrace{(x_{k+1} \cdots x_s)}_{y_k \cdots y_k}
$$

Thm: Every graph G with a dominating vertex u is spy-good.

Thm: Every graph G with a dominating vertex u is spy-good.

Matching covering Y ?

Thm: Every graph G with a dominating vertex u is spy-good.

Matching covering Y ? Hall's Theorem.

Thm: Every graph G with a dominating vertex μ is spy-good.

Matching covering Y? Hall's Theorem. $|N(S)| = |X'| + |N(S) \cap X|$

Thm: Every graph G with a dominating vertex u is spy-good.

Matching covering Y? Hall's Theorem. $|N(S)| = |X'| + |N(S) \cap X|$ Since rev's at meetings in S came from $X \cap N(S)$ or u:

Thm: Every graph G with a dominating vertex u is spy-good.

Matching covering Y? Hall's Theorem. $|N(S)| = |X'| + |N(S) \cap X|$ Since rev's at meetings in S came from $X \cap N(S)$ or u: $m|S| \le m|N(S) \cap X| + (r - km)$

Thm: Every graph G with a dominating vertex μ is spy-good.

Matching covering Y? Hall's Theorem. $|N(S)| = |X'| + |N(S) \cap X|$ Since rev's at meetings in S came from $X \cap N(S)$ or u: $m|S| \leq m|N(S) \cap X| + (r - km)$ $|S| \leq |N(S) \cap X| + (|r/m| - k)$

Thm: Every graph G with a dominating vertex μ is spy-good.

Matching covering Y? Hall's Theorem. $|N(S)| = |X'| + |N(S) \cap X|$ Since rev's at meetings in S came from $X \cap N(S)$ or u: $m|S| \le m|N(S) \cap X| + (r - km)$ $|S| \leq |N(S) \cap X| + (|r/m| - k)$ $|N(S) \cap X| > |S| - (|r/m| - k)$

Thm: Every graph G with a dominating vertex u is spy-good.

Matching covering Y? Hall's Theorem. $|N(S)| = |X'| + |N(S) \cap X|$ Since rev's at meetings in S came from $X \cap N(S)$ or u: $m|S| \le m|N(S) \cap X| + (r - km)$ $|S| < |N(S) \cap X| + (|r/m| - k)$ $|N(S) \cap X| > |S| - (|r/m| - k)$

Together this gives:

 $|N(S)| = |X'| + |N(S) \cap X|$

Thm: Every graph G with a dominating vertex u is spy-good.

Matching covering Y? Hall's Theorem. $|N(S)| = |X'| + |N(S) \cap X|$ Since rev's at meetings in S came from $X \cap N(S)$ or u: $m|S| \le m|N(S) \cap X| + (r - km)$ $|S| \leq |N(S) \cap X| + (|r/m| - k)$ $|N(S) \cap X| > |S| - (|r/m| - k)$

Together this gives:

 $|N(S)| = |X'| + |N(S) \cap X| \ge |X'| + |S| - (|r/m| - k)$

Thm: Every graph G with a dominating vertex \boldsymbol{u} is spy-good.

Matching covering Y? Hall's Theorem. $|N(S)| = |X'| + |N(S) \cap X|$ Since rev's at meetings in S came from $X \cap N(S)$ or u: $|m|S| \le m|N(S) \cap X| + (r - km)$ $|S| \leq |N(S) \cap X| + (|r/m| - k)$ $|N(S) \cap X| > |S| - (|r/m| - k)$

Together this gives:

 $|N(S)| = |X'| + |N(S) \cap X| \ge |X'| + |S| - (|r/m| - k)$ $= (|r/m| - k) + |S| - (|r/m| - k)$

Thm: Every graph G with a dominating vertex \boldsymbol{u} is spy-good.

Matching covering Y? Hall's Theorem. $|N(S)| = |X'| + |N(S) \cap X|$ Since rev's at meetings in S came from $X \cap N(S)$ or u: $|m|S| \le m|N(S) \cap X| + (r - km)$ $|S| \leq |N(S) \cap X| + (|r/m| - k)$ $|N(S) \cap X| > |S| - (|r/m| - k)$

Together this gives:

 $|N(S)| = |X'| + |N(S) \cap X| \ge |X'| + |S| - (|r/m| - k)$ $= (|r/m| - k) + |S| - (|r/m| - k) = |S|$

Thm: Every graph G with a dominating vertex u is spy-good.

Matching covering Y? Hall's Theorem. $|N(S)| = |X'| + |N(S) \cap X|$ Since rev's at meetings in S came from $X \cap N(S)$ or u: $|m|S| \le m|N(S) \cap X| + (r - km)$ $|S| \leq |N(S) \cap X| + (|r/m| - k)$ $|N(S) \cap X| > |S| - (|r/m| - k)$

Together this gives:

 $|N(S)| = |X'| + |N(S) \cap X| \ge |X'| + |S| - (|r/m| - k)$ $= (|r/m| - k) + |S| - (|r/m| - k) = |S|$

So spies have a stable position at time $t + 1$, and G is spy-good.

Def: G is a webbed tree if G has a rooted spanning tree \overline{T} s.t. each edge of G not in \overline{T} is between siblings.

Def: G is a webbed tree if G has a rooted spanning tree \overline{T} s.t. each edge of G not in \overline{T} is between siblings.

Thm: Every webbed tree is spy-good. Pf Sketch: Same strategy as for trees:

$$
s(v) = \left\lfloor \frac{w(v)}{m} \right\rfloor - \sum_{x \in C(v)} \left\lfloor \frac{w(x)}{m} \right\rfloor
$$

Def: G is a webbed tree if G has a rooted spanning tree \overline{T} s.t. each edge of G not in \overline{T} is between siblings.

Thm: Every webbed tree is spy-good. Pf Sketch: Same strategy as for trees:

$$
s(v) = \left\lfloor \frac{w(v)}{m} \right\rfloor - \sum_{x \in C(v)} \left\lfloor \frac{w(x)}{m} \right\rfloor
$$

Partition $E(G)$ into subgraphs $G(v) = G[v \cup C(v)]$.

Def: G is a webbed tree if G has a rooted spanning tree \overline{T} s.t. each edge of G not in \overline{T} is between siblings.

Thm: Every webbed tree is spy-good. Pf Sketch: Same strategy as for trees:

$$
s(v) = \left\lfloor \frac{w(v)}{m} \right\rfloor - \sum_{x \in C(v)} \left\lfloor \frac{w(x)}{m} \right\rfloor
$$

Partition $E(G)$ into subgraphs $G(v) = G[v \cup C(v)]$. Simulate a game in each $G(v)$; use those moves in the actual game. Each $G(v)$ is a dominated graph, so we can use that result.

Def: G is a webbed tree if G has a rooted spanning tree \overline{T} s.t. each edge of G not in \overline{T} is between siblings.

Thm: Every webbed tree is spy-good. Pf Sketch: Same strategy as for trees:

$$
s(v) = \left\lfloor \frac{w(v)}{m} \right\rfloor - \sum_{x \in C(v)} \left\lfloor \frac{w(x)}{m} \right\rfloor
$$

Partition $E(G)$ into subgraphs $G(v) = G[v \cup C(v)]$. Simulate a game in each $G(v)$; use those moves in the actual game. Each $G(v)$ is a dominated graph, so we can use that result.

Cor: Every interval graph is spy-good.

Def: G is a webbed tree if G has a rooted spanning tree \overline{T} s.t. each edge of G not in \overline{T} is between siblings.

Thm: Every webbed tree is spy-good. Pf Sketch: Same strategy as for trees:

$$
s(v) = \left\lfloor \frac{w(v)}{m} \right\rfloor - \sum_{x \in C(v)} \left\lfloor \frac{w(x)}{m} \right\rfloor
$$

Partition $E(G)$ into subgraphs $G(v) = G[v \cup C(v)]$. Simulate a game in each $G(v)$; use those moves in the actual game. Each $G(v)$ is a dominated graph, so we can use that result.

Cor: Every interval graph is spy-good. **Pf:** Interval graphs are webbed trees.

Thm: For a large complete bipartite graph G

 $\sigma(G, 2, r) = \frac{7}{5}$ r 2

Thm: For a large complete bipartite graph G

$$
\sigma(G,2,r)=\frac{7}{5}\frac{r}{2}
$$

Main ideas: Call the two parts X_1 and X_2 .

 \triangleright On each round, the two main threats of the rev's are to form as many uncovered meetings as possible in X_1 ; or in X_2 . If the spies defend against these two threats, then they won't lose.

Thm: For a large complete bipartite graph G

$$
\sigma(G,2,r)=\frac{7}{5}\frac{r}{2}
$$

- \triangleright On each round, the two main threats of the rev's are to form as many uncovered meetings as possible in X_1 ; or in X_2 . If the spies defend against these two threats, then they won't lose.
- \blacktriangleright "Lonely spies" are bad, so the spies avoid them when possible.

Thm: For a large complete bipartite graph G

$$
\sigma(G,2,r)=\frac{7}{5}\frac{r}{2}
$$

- \triangleright On each round, the two main threats of the rev's are to form as many uncovered meetings as possible in X_1 ; or in X_2 . If the spies defend against these two threats, then they won't lose.
- \blacktriangleright "Lonely spies" are bad, so the spies avoid them when possible.
- \triangleright By always keeping a large fraction of spies in each part, the spies guarantee that they'll have few lonely spies.

Thm: For a large complete bipartite graph G

$$
\sigma(G,2,r)=\frac{7}{5}\frac{r}{2}
$$

- \triangleright On each round, the two main threats of the rev's are to form as many uncovered meetings as possible in X_1 ; or in X_2 . If the spies defend against these two threats, then they won't lose.
- \blacktriangleright "Lonely spies" are bad, so the spies avoid them when possible.
- \triangleright By always keeping a large fraction of spies in each part, the spies guarantee that they'll have few lonely spies.
- \blacktriangleright The spies never need to look more than 1 move ahead.

Thm: For a large complete bipartite graph G

$$
\sigma(G,2,r)=\frac{7}{5}\frac{r}{2}
$$

- \triangleright On each round, the two main threats of the rev's are to form as many uncovered meetings as possible in X_1 ; or in X_2 . If the spies defend against these two threats, then they won't lose.
- \blacktriangleright "Lonely spies" are bad, so the spies avoid them when possible.
- \triangleright By always keeping a large fraction of spies in each part, the spies guarantee that they'll have few lonely spies.
- \blacktriangleright The spies never need to look more than 1 move ahead.
- \blacktriangleright To win, on each round the spies maintain an invariant.

Main Results and Open Problems

1. $|r/m|$ spies can win on:

dominated graphs, trees, interval graphs, "webbed trees"

Main Results and Open Problems

1. $|r/m|$ spies can win on: dominated graphs, trees, interval graphs, "webbed trees" also graph powers and "vertex blowups"

Main Results and Open Problems

1. $|r/m|$ spies can win on: dominated graphs, trees, interval graphs, "webbed trees" also graph powers and "vertex blowups" Problem 1: Characterize spy-good graphs
Main Results and Open Problems

- 1. $|r/m|$ spies can win on: dominated graphs, trees, interval graphs, "webbed trees" also graph powers and "vertex blowups" Problem 1: Characterize spy-good graphs
- 2. For large complete bipartite graphs:

$$
\sigma(G, 2, r) = \frac{7}{10}r = \frac{7}{5}\frac{r}{2}
$$

$$
\sigma(G, 3, r) = \frac{1}{2}r = \frac{3}{2}\frac{r}{3}
$$

$$
\left(\frac{3}{2} - o(1)\right)\frac{r}{m} - 2 \le \sigma(G, m, r) < 1.58\frac{r}{m}, \quad \text{for } m \ge 4
$$

Main Results and Open Problems

- 1. $|r/m|$ spies can win on: dominated graphs, trees, interval graphs, "webbed trees" also graph powers and "vertex blowups" Problem 1: Characterize spy-good graphs
- 2. For large complete bipartite graphs:

$$
\sigma(G, 2, r) = \frac{7}{10}r = \frac{7}{5}\frac{r}{2}
$$

$$
\sigma(G, 3, r) = \frac{1}{2}r = \frac{3}{2}\frac{r}{3}
$$

$$
\left(\frac{3}{2} - o(1)\right)\frac{r}{m} - 2 \le \sigma(G, m, r) < 1.58\frac{r}{m}, \quad \text{for } m \ge 4
$$

Problem 2: Improve upper bounds for $m > 4$.

Main Results and Open Problems

- 1. $|r/m|$ spies can win on: dominated graphs, trees, interval graphs, "webbed trees" also graph powers and "vertex blowups" Problem 1: Characterize spy-good graphs
- 2. For large complete bipartite graphs:

$$
\sigma(G, 2, r) = \frac{7}{10}r = \frac{7}{5}\frac{r}{2}
$$

$$
\sigma(G, 3, r) = \frac{1}{2}r = \frac{3}{2}\frac{r}{3}
$$

$$
\left(\frac{3}{2} - o(1)\right)\frac{r}{m} - 2 \le \sigma(G, m, r) < 1.58\frac{r}{m}, \quad \text{for } m \ge 4
$$

Problem 2: Improve upper bounds for $m > 4$. **Conj:** As *m* grows: $\sigma(G, m, r) \sim \frac{3}{2}$ 2 r m