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A Problem of Network Security
Setup: r revolutionaries play against s spies on a graph G .
Each rev. moves to a vertex, then each spy moves to a vertex.

Goal: Rev’s want to get m rev’s at a common vertex, with no spy.
Each turn: Each rev. moves/stays, then each spy moves/stays.

Obs 1: If s ≥ |V (G )|, then the spies win.

s

s

Obs 2: If s < |V (G )| and br/mc > s, then rev’s win.
Ex: Say m = 2, r = 8, and s = 3.
So we assume br/mc ≤ s < |V (G )|.

Def: σ(G ,m, r) is minimum number of spies needed to win on G
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Results (thresholds for spies to win)

1. br/mc spies can win on:

dominated graphs, trees, interval graphs, “webbed trees”

2. On chordal graphs, we may need r −m + 1 spies to win

3. On unicyclic graphs, dr/me spies can win
rev’s may need many moves to beat dr/me − 1 spies

4. Random graph, hypercubes, large complete k-partite

5. For large complete bipartite graphs:

σ(G , 2, r) =
7

10
r

=
7

5

r

2

σ(G , 3, r) =
1

2
r

=
3
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r

3

(
3

2
− o(1)

)
r

m
− 2 ≤ σ(G ,m, r) < 1.58

r

m
, for m ≥ 4

Conj: As m grows: σ(G ,m, r) ∼ 3
2

r
m
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Spy-good Graphs: Trees
Def: A graph G is spy-good if σ(G ,m, r) = br/mc for all m, r .

Ex: P9 is spy-good. Consider m = 3, r = 13, s = 4.
Pf: One spy follows each mth rev. When rev’s move, spies repeat.

s

s

Thm: Every tree is spy-good.
Pf Sketch: Write r(v) and s(v) for num. of rev’s and spies at v ;
C (v) is children of v ; and w(v) is num. of rev’s at descendants.

s(v) =

⌊
w(v)

m

⌋
−
∑

x∈C(v)

⌊
w(x)

m

⌋
1. Since ba + bc ≥ bac+ bbc, s(v) is nonnegative

2. If r(v) ≥ m, then s(v) ≥
⌊

w(v)
m

⌋
−
⌊

w(v)−r(v)
m

⌋
≥ 1

3.
∑

v∈T s(v) =
⌊

w(u)
m

⌋
=
⌊

r
m

⌋
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Spy-good graphs: Dominated graphs
Thm: Every graph G with a dominating vertex u is spy-good.

x1 · · · xkX : spies off u xk+1 · · · xs X ′: spies on u

y1 · · · yk ′Y : new meetings

S

Matching covering Y ? Hall’s Theorem. |N(S)| = |X ′|+ |N(S)∩X |
Since rev’s at meetings in S came from X ∩ N(S) or u:

m|S | ≤ m|N(S) ∩ X |+ (r − km)

|S | ≤ |N(S) ∩ X |+ (br/mc − k)

|N(S) ∩ X | ≥ |S | − (br/mc − k)

Together this gives:

|N(S)| =|X ′|+ |N(S) ∩ X |

≥ |X ′|+ |S | − (br/mc − k)

=(br/mc − k) + |S | − (br/mc − k) = |S |
So spies have a stable position at time t + 1, and G is spy-good.
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Spy-good graphs: Webbed Trees

Def: G is a webbed tree if G has a rooted spanning
tree T s.t. each edge of G not in T is between siblings.

Thm: Every webbed tree is spy-good.
Pf Sketch: Same strategy as for trees:

s(v) =

⌊
w(v)

m

⌋
−
∑

x∈C(v)

⌊
w(x)

m

⌋

Partition E (G ) into subgraphs G (v) = G [v ∪ C (v)]. Simulate
a game in each G (v); use those moves in the actual game.
Each G (v) is a dominated graph, so we can use that result.

Cor: Every interval graph is spy-good.
Pf: Interval graphs are webbed trees.
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Large Complete Bipartite Graphs

Thm: For a large complete bipartite graph G

σ(G , 2, r) =
7

5

r

2

Main ideas: Call the two parts X1 and X2.

I On each round, the two main threats of the rev’s are to form
as many uncovered meetings as possible in X1; or in X2. If the
spies defend against these two threats, then they won’t lose.

I “Lonely spies” are bad, so the spies avoid them when possible.

I By always keeping a large fraction of spies in each part,
the spies guarantee that they’ll have few lonely spies.

I The spies never need to look more than 1 move ahead.

I To win, on each round the spies maintain an invariant.
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Main Results and Open Problems

1. br/mc spies can win on:
dominated graphs, trees, interval graphs, “webbed trees”

also graph powers and “vertex blowups”
Problem 1: Characterize spy-good graphs

2. For large complete bipartite graphs:
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− 2 ≤ σ(G ,m, r) < 1.58

r

m
, for m ≥ 4

Problem 2: Improve upper bounds for m ≥ 4.
Conj: As m grows: σ(G ,m, r) ∼ 3
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m
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