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Obs 2: If s <|V(G)| and |r/m]| > s, then rev’s win.
Ex: Say m=2, r =8, and s = 3.
So we assume |[r/m| < s < |[V(G)].

Def: o(G, m,r) is minimum number of spies needed to win on G
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Thm: Every graph G with a dominating vertex u is spy-good.
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So spies have a stable position at time t + 1, and G is spy-good.
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Def: G is a webbed tree if G has a rooted spanning
tree T s.t. each edge of G not in T is between siblings.

Thm: Every webbed tree is spy-good.
Pf Sketch: Same strategy as for trees:

-5

Partition E£(G) into subgraphs G(v) = G[v U C(v)]. Simulate
a game in each G(v); use those moves in the actual game.
Each G(v) is a dominated graph, so we can use that result.

Cor: Every interval graph is spy-good.
Pf: Interval graphs are webbed trees.



Large Complete Bipartite Graphs
Thm: For a large complete bipartite graph G

Tr

(T(G,2,r): 55



Large Complete Bipartite Graphs
Thm: For a large complete bipartite graph G

.
7(G,2,r) = g%

Main ideas: Call the two parts X; and X5.
» On each round, the two main threats of the rev's are to form
as many uncovered meetings as possible in X7; or in X5. If the
spies defend against these two threats, then they won't lose.



Large Complete Bipartite Graphs
Thm: For a large complete bipartite graph G

Tr

,2,r) = ==
7(6.2.1)= ¢
Main ideas: Call the two parts X; and X5.

» On each round, the two main threats of the rev's are to form
as many uncovered meetings as possible in X7; or in X5. If the
spies defend against these two threats, then they won't lose.

> “Lonely spies” are bad, so the spies avoid them when possible.



Large Complete Bipartite Graphs
Thm: For a large complete bipartite graph G

Tr

,2,r) = ==
7(6.2.1)= ¢
Main ideas: Call the two parts X; and X5.

» On each round, the two main threats of the rev's are to form
as many uncovered meetings as possible in X7; or in X5. If the
spies defend against these two threats, then they won't lose.

> “Lonely spies” are bad, so the spies avoid them when possible.

» By always keeping a large fraction of spies in each part,
the spies guarantee that they'll have few lonely spies.



Large Complete Bipartite Graphs
Thm: For a large complete bipartite graph G

Tr

,2,r) = ==
7(6.2.1)= ¢
Main ideas: Call the two parts X; and X5.

» On each round, the two main threats of the rev's are to form
as many uncovered meetings as possible in X7; or in X5. If the
spies defend against these two threats, then they won't lose.

> “Lonely spies” are bad, so the spies avoid them when possible.

» By always keeping a large fraction of spies in each part,
the spies guarantee that they'll have few lonely spies.

» The spies never need to look more than 1 move ahead.



Large Complete Bipartite Graphs

Thm: For a large complete bipartite graph G

Tr

U(G,Z,r): 55

Main ideas: Call the two parts X; and X5.

>

On each round, the two main threats of the rev's are to form
as many uncovered meetings as possible in X7; or in X5. If the
spies defend against these two threats, then they won't lose.

> “Lonely spies” are bad, so the spies avoid them when possible.

» By always keeping a large fraction of spies in each part,

the spies guarantee that they'll have few lonely spies.

» The spies never need to look more than 1 move ahead.

» To win, on each round the spies maintain an invariant.
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Problem 2: Improve upper bounds for m > 4.

Conj: As m grows: o(G, m,r) ~ %#
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