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Conj [Dvotak—Kral-Nejedly-Skrekovski '08]: There exists M s.t.
if G is planar with girth 5 and A > M, then y(G?) < A + 2.

Thm [Bonamy-C.-Postle "15+]: If G is planar with girth 5, then
vp(G?) < A + 2 whenever A is sufficiently large.
In particular, true for A > 2,689, 601.
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Rem: In the square, B; and B, are both cliques; each vertex has
at most 3 neighbors in the other clique. We don’t worry about Dy,
since we can color those last. After coloring G — (B; U By U Dy),
each v in B; has a list of size B;. When B; and B> are big enough,
we can extend the coloring to G.



Structural Thm ldea

Structural Thm: Let G be plane graph with girth > 5 and

A>27x10° Let k=Aand B={ve V(G) : d(v)> Vk}.

Now G contains one of the following configurations.

C1) a vertex v of degree at most 1

C2) an edge uv with u ¢ N[B] and v ¢ N[B]

C3) an edge uv with d(u) = d(v) =2 and u ¢ N[B] or v ¢ N[B]
)

C4) an r-region with r > 152

(
(
(
(



Structural Thm ldea

Structural Thm: Let G be plane graph with girth > 5 and

A>27x10° Let k=Aand B={ve V(G) : d(v)> Vk}.

Now G contains one of the following configurations.

C1) a vertex v of degree at most 1

C2) an edge uv with u ¢ N[B] and v ¢ N[B]

C3) an edge uv with d(u) = d(v) =2 and u ¢ N[B] or v ¢ N[B]
)

C4) an r-region with r > 152

(
(
(
(

Pf Idea:



Structural Thm ldea

Structural Thm: Let G be plane graph with girth > 5 and

A>27x10° Let k=Aand B={ve V(G) : d(v)> Vk}.

Now G contains one of the following configurations.

C1) a vertex v of degree at most 1

C2) an edge uv with u ¢ N[B] and v ¢ N[B]

C3) an edge uv with d(u) = d(v) =2 and u ¢ N[B] or v ¢ N[B]
)

C4) an r-region with r > 152

(
(
(
(

Pf Idea: Let S = {v e V : d(v) < vk} and
Si={veS:dsg(v)=i}



Structural Thm ldea

Structural Thm: Let G be plane graph with girth > 5 and

A>27x10° Let k=Aand B={ve V(G) : d(v)> Vk}.

Now G contains one of the following configurations.

C1) a vertex v of degree at most 1

C2) an edge uv with u ¢ N[B] and v ¢ N[B]

C3) an edge uv with d(u) = d(v) =2 and u ¢ N[B] or v ¢ N[B]
)

C4) an r-region with r > 152

(
(
(
(

Pf Idea: Let S = {v e V : d(v) < vk} and
Si={veS:dg(v)=i}. SoV=BUUJZ,S:.



Structural Thm ldea

Structural Thm: Let G be plane graph with girth > 5 and

A>27x10° Let k=Aand B={ve V(G) : d(v)> Vk}.

Now G contains one of the following configurations.

C1) a vertex v of degree at most 1

C2) an edge uv with u ¢ N[B] and v ¢ N[B]

C3) an edge uv with d(u) = d(v) =2 and u ¢ N[B] or v ¢ N[B]
)

C4) an r-region with r > 152

(
(
(
(
Pf Idea: Let S = {v e V : d(v) < vk} and

Si={veS :dg(v)=i}. SoV=BULJ=,S. By planarity, B
is a tiny fraction of V.



Structural Thm ldea

Structural Thm: Let G be plane graph with girth > 5 and

A>27x10° Let k=Aand B={ve V(G) : d(v)> Vk}.

Now G contains one of the following configurations.

C1) a vertex v of degree at most 1

C2) an edge uv with u ¢ N[B] and v ¢ N[B]

C3) an edge uv with d(u) = d(v) =2 and u ¢ N[B] or v ¢ N[B]
)

C4) an r-region with r > 152

(
(
(
(
Pf Idea: Let S = {v e V : d(v) < vk} and

Si={veS :dg(v)=i}. SoV=BULJ=,S. By planarity, B
is a tiny fraction of V. Similary, U>®,S; has size linear in |B], so is
a tiny fraction of V.




Structural Thm ldea

Structural Thm: Let G be plane graph with girth > 5 and

A>27x10° Let k=Aand B={ve V(G) : d(v)> Vk}.

Now G contains one of the following configurations.

C1) a vertex v of degree at most 1

C2) an edge uv with u ¢ N[B] and v ¢ N[B]

C3) an edge uv with d(u) = d(v) =2 and u ¢ N[B] or v ¢ N[B]
)

C4) an r-region with r > 152

(
(
(
(
Pf Idea: Let S = {v e V : d(v) < vk} and

Si={veS :dg(v)=i}. SoV=BULJ=,S. By planarity, B
is a tiny fraction of V. Similary, U>®,S; has size linear in |B], so is
a tiny fraction of V. Since every edge has an endpoint in N[B], S;
has many vertices.




Structural Thm ldea

Structural Thm: Let G be plane graph with girth > 5 and

A>27x10° Let k=Aand B={ve V(G) : d(v)> Vk}.

Now G contains one of the following configurations.

C1) a vertex v of degree at most 1

C2) an edge uv with u ¢ N[B] and v ¢ N[B]

C3) an edge uv with d(u) = d(v) =2 and u ¢ N[B] or v ¢ N[B]
)

C4) an r-region with r > 152

(
(
(
(
Pf ldea: Let S={ve V : d(v) < vk} and

Si={veS :dg(v)=i}. SoV=BULJ=,S. By planarity, B
is a tiny fraction of V. Similary, U>®,S; has size linear in |B], so is
a tiny fraction of V. Since every edge has an endpoint in N[B], S;
has many vertices. We contract the r-regions as shown earlier.




Structural Thm ldea

Structural Thm: Let G be plane graph with girth > 5 and
A>27x10° Let k=Aand B={ve V(G) : d(v)> Vk}.
Now G contains one of the following configurations.

(C1) a vertex v of degree at most 1

(C2) an edge uv with u ¢ N[B] and v ¢ N[B]
(C3) an edge uv with d(uv) = d(v) =2 and u ¢ N[B] or v ¢ N[B]
(C4) an r-region with r > 152

Pf ldea: Let S={ve V : d(v) < vk} and

Si={veS :dg(v)=i}. SoV=BULJ=,S. By planarity, B
is a tiny fraction of V. Similary, U>®,S; has size linear in |B], so is
a tiny fraction of V. Since every edge has an endpoint in N[B], S;
has many vertices. We contract the r-regions as shown earlier.
Now the underlying simple graph has a vertex of degree at most 5.




Structural Thm ldea

Structural Thm: Let G be plane graph with girth > 5 and
A>27x10° Let k=Aand B={ve V(G) : d(v)> Vk}.
Now G contains one of the following configurations.

(C1) a vertex v of degree at most 1

(C2) an edge uv with u ¢ N[B] and v ¢ N[B]
(C3) an edge uv with d(uv) = d(v) =2 and u ¢ N[B] or v ¢ N[B]
(C4) an r-region with r > 152

Pf ldea: Let S={ve V : d(v) < vk} and

Si={veS :dg(v)=i}. SoV=BULJ=,S. By planarity, B
is a tiny fraction of V. Similary, U>®,S; has size linear in |B], so is
a tiny fraction of V. Since every edge has an endpoint in N[B], S;
has many vertices. We contract the r-regions as shown earlier.
Now the underlying simple graph has a vertex of degree at most 5.
It must have a very large r-region with one of its neighbors.




Structural Thm ldea

Structural Thm: Let G be plane graph with girth > 5 and
A>27x10° Let k=Aand B={ve V(G) : d(v)> Vk}.
Now G contains one of the following configurations.

(C1) a vertex v of degree at most 1

(C2) an edge uv with u ¢ N[B] and v ¢ N[B]
(C3) an edge uv with d(uv) = d(v) =2 and u ¢ N[B] or v ¢ N[B]
(C4) an r-region with r > 152

Pf ldea: Let S={ve V : d(v) < vk} and

Si={veS :dg(v)=i}. SoV=BULJ=,S. By planarity, B
is a tiny fraction of V. Similary, U>®,S; has size linear in |B], so is
a tiny fraction of V. Since every edge has an endpoint in N[B], S;
has many vertices. We contract the r-regions as shown earlier.
Now the underlying simple graph has a vertex of degree at most 5.
It must have a very large r-region with one of its neighbors. |




Summary

» Wang—Lih conjectured that if G is planar with girth g > 5
and A big enough, then \(G?) = A + 1.



Summary

» Wang—Lih conjectured that if G is planar with girth g > 5
and A big enough, then \(G?) = A + 1.
» True for g > 7, but false for g € {5,6}.



Summary

» Wang—Lih conjectured that if G is planar with girth g > 5
and A big enough, then \(G?) = A + 1.
» True for g > 7, but false for g € {5,6}.
» Almost true for g = 6; now y(G?) < A + 2.



Summary

» Wang—Lih conjectured that if G is planar with girth g > 5
and A big enough, then \(G?) = A + 1.
» True for g > 7, but false for g € {5,6}.
» Almost true for g = 6; now \(G?) < A+ 2. And g = 57



Summary

» Wang—Lih conjectured that if G is planar with girth g > 5
and A big enough, then \(G?) = A + 1.
» True for g > 7, but false for g € {5,6}.
» Almost true for g = 6; now \(G?) < A+ 2. And g = 57

» Coloring Thm: If G is planar with g > 5 and A > 2.7 x 10°
then y,(G?) < A +2.



Summary

» Wang—Lih conjectured that if G is planar with girth g > 5
and A big enough, then \(G?) = A + 1.
» True for g > 7, but false for g € {5,6}.
» Almost true for g = 6; now \(G?) < A+ 2. And g = 57

» Coloring Thm: If G is planar with ¢ > 5 and A > 2.7 x 106,
then y,(G?) < A +2.
» Structural Thm: If G is planar with g > 5 and

A > 2.7 % 10°, then G has a configuration of one of
four types:



Summary

» Wang—Lih conjectured that if G is planar with girth g > 5
and A big enough, then \(G?) = A + 1.
» True for g > 7, but false for g € {5,6}.
» Almost true for g = 6; now \(G?) < A+ 2. And g = 57

» Coloring Thm: If G is planar with g > 5 and A > 2.7 x 10°,
then y,(G?) < A +2.

» Structural Thm: If G is planar with g > 5 and
A > 2.7 % 10° then G has a configuration of one of
four types: 3 are straightforward and fourth is big r-region.



Summary

» Wang—Lih conjectured that if G is planar with girth g > 5
and A big enough, then \(G?) = A + 1.
» True for g > 7, but false for g € {5,6}.
» Almost true for g = 6; now \(G?) < A+ 2. And g = 57

» Coloring Thm: If G is planar with g > 5 and A > 2.7 x 10°,
then y,(G?) < A +2.

» Structural Thm: If G is planar with g > 5 and

A > 2.7 % 10° then G has a configuration of one of

four types: 3 are straightforward and fourth is big r-region.
» Lemma: All four types are reducible for Coloring Thm.



Summary

» Wang—Lih conjectured that if G is planar with girth g > 5
and A big enough, then \(G?) = A + 1.
» True for g > 7, but false for g € {5,6}.
» Almost true for g = 6; now \(G?) < A+ 2. And g = 57

» Coloring Thm: If G is planar with g > 5 and A > 2.7 x 10°,
then y,(G?) < A +2.

» Structural Thm: If G is planar with g > 5 and

A > 2.7 % 10° then G has a configuration of one of

four types: 3 are straightforward and fourth is big r-region.
» Lemma: All four types are reducible for Coloring Thm.
» Structural Thm Pf ldea:



Summary

» Wang—Lih conjectured that if G is planar with girth g > 5
and A big enough, then \(G?) = A + 1.
» True for g > 7, but false for g € {5,6}.
» Almost true for g = 6; now \(G?) < A+ 2. And g = 57

» Coloring Thm: If G is planar with g > 5 and A > 2.7 x 10°,
then y,(G?) < A +2.

» Structural Thm: If G is planar with g > 5 and
A > 2.7 % 10° then G has a configuration of one of
four types: 3 are straightforward and fourth is big r-region.
» Lemma: All four types are reducible for Coloring Thm.
» Structural Thm Pf Idea: For each pair of big vertices,
contract all paths joining them of length at most 4 down to
parallel edges.



Summary

» Wang—Lih conjectured that if G is planar with girth g > 5
and A big enough, then \(G?) = A + 1.
» True for g > 7, but false for g € {5,6}.
» Almost true for g = 6; now \(G?) < A+ 2. And g = 57

» Coloring Thm: If G is planar with g > 5 and A > 2.7 x 10°,
then y,(G?) < A +2.

» Structural Thm: If G is planar with g > 5 and
A > 2.7 % 10° then G has a configuration of one of
four types: 3 are straightforward and fourth is big r-region.

» Lemma: All four types are reducible for Coloring Thm.

» Structural Thm Pf Idea: For each pair of big vertices,
contract all paths joining them of length at most 4 down to
parallel edges. In the underlying simple graph H, some big
vertex v has dy(v) <5.



Summary

» Wang—Lih conjectured that if G is planar with girth g > 5
and A big enough, then \(G?) = A + 1.
» True for g > 7, but false for g € {5,6}.
» Almost true for g = 6; now \(G?) < A+ 2. And g = 57

» Coloring Thm: If G is planar with g > 5 and A > 2.7 x 10°,
then y,(G?) < A +2.

» Structural Thm: If G is planar with g > 5 and
A > 2.7 % 10° then G has a configuration of one of
four types: 3 are straightforward and fourth is big r-region.

» Lemma: All four types are reducible for Coloring Thm.

» Structural Thm Pf Idea: For each pair of big vertices,
contract all paths joining them of length at most 4 down to
parallel edges. In the underlying simple graph H, some big
vertex v has dy(v) < 5. So v has lots of parallel edges to
some big neighbor.



Summary

» Wang—Lih conjectured that if G is planar with girth g > 5
and A big enough, then \(G?) = A + 1.
» True for g > 7, but false for g € {5,6}.
» Almost true for g = 6; now \(G?) < A+ 2. And g = 57

» Coloring Thm: If G is planar with g > 5 and A > 2.7 x 10°,
then y,(G?) < A +2.

» Structural Thm: If G is planar with g > 5 and
A > 2.7 % 10° then G has a configuration of one of
four types: 3 are straightforward and fourth is big r-region.

» Lemma: All four types are reducible for Coloring Thm.

» Structural Thm Pf Idea: For each pair of big vertices,
contract all paths joining them of length at most 4 down to
parallel edges. In the underlying simple graph H, some big
vertex v has dy(v) < 5. So v has lots of parallel edges to
some big neighbor. This gives a big r-region.



	Title page
	Introduction
	Higher Girth
	Proof Sketch
	r-regions
	Structural Thm Idea
	Summary

