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Background

Ex:

Always ∆ + 1 ≤ χ(G 2).

Wegner’s Conjecture:
If G is planar with maximum degree ∆,

χ(G 2) ≤


7 if ∆ = 3

∆ + 5 if 4 ≤ ∆ ≤ 7⌊
3
2∆ + 1

⌋
if ∆ ≥ 8
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Higher Girth

Conj [Wang–Lih ’03]: For every g ≥ 5 there exists ∆g s.t. if G is
planar with girth ≥ g and ∆ ≥ ∆g , then χ(G 2) = ∆ + 1.

Thm [Borodin et al. ’04]: Wang-Lih conjecture is true for g ≥ 7
and ∆g = 30. But false for girth 5 and girth 6.

Thm [Dvǒrák–Král–Nejedlý–Škrekovski ’08]: If G is planar with
girth at least 6, then χ(G 2) ≤ ∆ + 2 when ∆ ≥ 8821.
Improved to ∆ ≥ 18 [Borodin–Ivanova ’09].

Conj [Dvǒrák–Král–Nejedlý–Škrekovski ’08]: There exists M s.t.
if G is planar with girth 5 and ∆ ≥ M, then χ(G 2) ≤ ∆ + 2.

Thm [Bonamy-C.-Postle ’15+]: If G is planar with girth 5, then
χp(G 2) ≤ ∆ + 2 whenever ∆ is sufficiently large.
In particular, true for ∆ ≥ 2, 689, 601.
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Proof Sketch

Structural Thm: Let G be plane graph with girth ≥ 5 and
∆ ≥ 2.7× 106. Let k = ∆ and B = {v ∈ V (G ) : d(v) ≥

√
k}.

Now G contains one of the following configurations.

(C1) a vertex v of degree at most 1

(C2) an edge uv with u /∈ N[B] and v /∈ N[B]

(C3) an edge uv with d(u) = d(v) = 2 and u /∈ N[B] or v /∈ N[B]

(C4) an r -region with r ≥ 152

Lem: If G is a counterexample to our coloring theorem with the
fewest edges possible, then G contains none of (C1) to (C4).
Pf: (C1) By minimality, color G − v , then extend the coloring to v .
(C2) By minimality, color G − uv . Now add uv and recolor u and
v to avoid conflicts. Can since |N2(u)| <

√
k
√
k = k. Same for v .

(C3) Suppose tuvw is a path with d(u) = d(v) = 2 and t /∈ B.
Color G − uv by minimality; add uv and recolor v . Can since
|N2(v)− u| = d(w) + 1 ≤ k + 1. Recolor u, as |N2(u)| ≤ 2 +

√
k.
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Rem: In the square, B1 and B2 are both cliques; each vertex has
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since we can color those last. After coloring G − (B1 ∪ B2 ∪ D2),
each v in Bi has a list of size Bi . When B1 and B2 are big enough,
we can extend the coloring to G .
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Structural Thm Idea

Structural Thm: Let G be plane graph with girth ≥ 5 and
∆ ≥ 2.7× 106. Let k = ∆ and B = {v ∈ V (G ) : d(v) ≥

√
k}.

Now G contains one of the following configurations.

(C1) a vertex v of degree at most 1

(C2) an edge uv with u /∈ N[B] and v /∈ N[B]

(C3) an edge uv with d(u) = d(v) = 2 and u /∈ N[B] or v /∈ N[B]

(C4) an r -region with r ≥ 152

Pf Idea: Let S = {v ∈ V : d(v) <
√
k} and

Si = {v ∈ S : dB(v) = i}. So V = B ∪
⋃∞

i=0 Si . By planarity, B
is a tiny fraction of V . Similary, ∪∞i=2Si has size linear in |B|, so is
a tiny fraction of V . Since every edge has an endpoint in N[B], S1
has many vertices. We contract the r -regions as shown earlier.
Now the underlying simple graph has a vertex of degree at most 5.
It must have a very large r -region with one of its neighbors.
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Summary

I Wang–Lih conjectured that if G is planar with girth g ≥ 5
and ∆ big enough, then χ(G 2) = ∆ + 1.

I True for g ≥ 7, but false for g ∈ {5, 6}.
I Almost true for g = 6; now χ(G 2) ≤ ∆ + 2. And g = 5?

I Coloring Thm: If G is planar with g ≥ 5 and ∆ ≥ 2.7× 106,
then χp(G 2) ≤ ∆ + 2.

I Structural Thm: If G is planar with g ≥ 5 and
∆ ≥ 2.7× 106, then G has a configuration of one of
four types: 3 are straightforward and fourth is big r -region.

I Lemma: All four types are reducible for Coloring Thm.
I Structural Thm Pf Idea: For each pair of big vertices,

contract all paths joining them of length at most 4 down to
parallel edges. In the underlying simple graph H, some big
vertex v has dH(v) ≤ 5. So v has lots of parallel edges to
some big neighbor. This gives a big r -region.
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