Planar Graphs of Girth at least 5 are Square ($\Delta + 2$)-Choosable

Daniel W. Cranston Virginia Commonwealth University dcranston@vcu.edu

Joint with Marthe Bonamy and Luke Postle Slides available on my webpage

> SIAM Discrete Math 6 June 2016

Always $\Delta + 1 \leq \chi(G^2)$.

Always $\Delta + 1 \leq \chi(G^2)$.

Wegner's Conjecture:

If G is planar with maximum degree Δ ,

$$\chi(G^{2}) \leq \begin{cases} 7 & \text{if } \Delta = 3\\ \Delta + 5 & \text{if } 4 \leq \Delta \leq 7\\ \lfloor \frac{3}{2}\Delta + 1 \rfloor & \text{if } \Delta \geq 8 \end{cases}$$

Always $\Delta + 1 \leq \chi(G^2)$.

Wegner's Conjecture: If G is planar with maximum degree Δ ,

$$\chi(G^{2}) \leq \begin{cases} 7 & \text{if } \Delta = 3\\ \Delta + 5 & \text{if } 4 \leq \Delta \leq 7\\ \lfloor \frac{3}{2}\Delta + 1 \rfloor & \text{if } \Delta \geq 8 \end{cases}$$

Conj [Wang–Lih '03]: For every $g \ge 5$ there exists Δ_g s.t. if G is planar with girth $\ge g$ and $\Delta \ge \Delta_g$, then $\chi(G^2) = \Delta + 1$.

Conj [Wang–Lih '03]: For every $g \ge 5$ there exists Δ_g s.t. if G is planar with girth $\ge g$ and $\Delta \ge \Delta_g$, then $\chi(G^2) = \Delta + 1$.

Thm [Borodin et al. '04]: Wang-Lih conjecture is true for $g \ge 7$ and $\Delta_g = 30$.

Conj [Wang–Lih '03]: For every $g \ge 5$ there exists Δ_g s.t. if G is planar with girth $\ge g$ and $\Delta \ge \Delta_g$, then $\chi(G^2) = \Delta + 1$.

Thm [Borodin et al. '04]: Wang-Lih conjecture is true for $g \ge 7$ and $\Delta_g = 30$. But false for girth 5 and girth 6.

Conj [Wang–Lih '03]: For every $g \ge 5$ there exists Δ_g s.t. if G is planar with girth $\ge g$ and $\Delta \ge \Delta_g$, then $\chi(G^2) = \Delta + 1$.

Thm [Borodin et al. '04]: Wang-Lih conjecture is true for $g \ge 7$ and $\Delta_g = 30$. But false for girth 5 and girth 6.

Thm [Dvořák–Král–Nejedlý–Škrekovski '08]: If G is planar with girth at least 6, then $\chi(G^2) \leq \Delta + 2$ when $\Delta \geq 8821$.

Conj [Wang–Lih '03]: For every $g \ge 5$ there exists Δ_g s.t. if G is planar with girth $\ge g$ and $\Delta \ge \Delta_g$, then $\chi(G^2) = \Delta + 1$.

Thm [Borodin et al. '04]: Wang-Lih conjecture is true for $g \ge 7$ and $\Delta_g = 30$. But false for girth 5 and girth 6.

Thm [Dvořák–Král–Nejedlý–Škrekovski '08]: If G is planar with girth at least 6, then $\chi(G^2) \le \Delta + 2$ when $\Delta \ge 8821$. Improved to $\Delta \ge 18$ [Borodin–Ivanova '09].

Conj [Wang–Lih '03]: For every $g \ge 5$ there exists Δ_g s.t. if G is planar with girth $\ge g$ and $\Delta \ge \Delta_g$, then $\chi(G^2) = \Delta + 1$.

Thm [Borodin et al. '04]: Wang-Lih conjecture is true for $g \ge 7$ and $\Delta_g = 30$. But false for girth 5 and girth 6.

Thm [Dvořák–Král–Nejedlý–Škrekovski '08]: If G is planar with girth at least 6, then $\chi(G^2) \leq \Delta + 2$ when $\Delta \geq 8821$. Improved to $\Delta \geq 18$ [Borodin–Ivanova '09]. **Conj** [Dvořák–Král–Nejedlý–Škrekovski '08]: There exists M s.t. if G is planar with girth 5 and $\Delta \geq M$, then $\chi(G^2) \leq \Delta + 2$.

Conj [Wang–Lih '03]: For every $g \ge 5$ there exists Δ_g s.t. if G is planar with girth $\ge g$ and $\Delta \ge \Delta_g$, then $\chi(G^2) = \Delta + 1$.

Thm [Borodin et al. '04]: Wang-Lih conjecture is true for $g \ge 7$ and $\Delta_g = 30$. But false for girth 5 and girth 6.

Thm [Dvořák–Král–Nejedlý–Škrekovski '08]: If *G* is planar with girth at least 6, then $\chi(G^2) \leq \Delta + 2$ when $\Delta \geq 8821$. Improved to $\Delta \geq 18$ [Borodin–Ivanova '09]. **Conj** [Dvořák–Král–Nejedlý–Škrekovski '08]: There exists *M* s.t. if *G* is planar with girth 5 and $\Delta \geq M$, then $\chi(G^2) \leq \Delta + 2$.

Thm [Bonamy-C.-Postle '15+]: If G is planar with girth 5, then $\chi_p(G^2) \leq \Delta + 2$ whenever Δ is sufficiently large.

Conj [Wang–Lih '03]: For every $g \ge 5$ there exists Δ_g s.t. if G is planar with girth $\ge g$ and $\Delta \ge \Delta_g$, then $\chi(G^2) = \Delta + 1$.

Thm [Borodin et al. '04]: Wang-Lih conjecture is true for $g \ge 7$ and $\Delta_g = 30$. But false for girth 5 and girth 6.

Thm [Dvořák–Král–Nejedlý–Škrekovski '08]: If G is planar with girth at least 6, then $\chi(G^2) \le \Delta + 2$ when $\Delta \ge 8821$. Improved to $\Delta \ge 18$ [Borodin–Ivanova '09]. **Conj** [Dvořák–Král–Nejedlý–Škrekovski '08]: There exists M s.t. if G is planar with girth 5 and $\Delta \ge M$, then $\chi(G^2) \le \Delta + 2$.

Thm [Bonamy-C.-Postle '15+]: If G is planar with girth 5, then $\chi_p(G^2) \leq \Delta + 2$ whenever Δ is sufficiently large. In particular, true for $\Delta \geq 2,689,601$.

Structural Thm: Let G be plane graph with girth \geq 5 and $\Delta \geq 2.7 \times 10^{6}$.

Structural Thm: Let G be plane graph with girth ≥ 5 and $\Delta \geq 2.7 \times 10^6$. Let $k = \Delta$ and $B = \{v \in V(G) : d(v) \geq \sqrt{k}\}$.

Structural Thm: Let *G* be plane graph with girth ≥ 5 and $\Delta \geq 2.7 \times 10^6$. Let $k = \Delta$ and $B = \{v \in V(G) : d(v) \geq \sqrt{k}\}$. Now *G* contains one of the following configurations.

(C1) a vertex v of degree at most 1

Structural Thm: Let *G* be plane graph with girth ≥ 5 and $\Delta \geq 2.7 \times 10^6$. Let $k = \Delta$ and $B = \{v \in V(G) : d(v) \geq \sqrt{k}\}$. Now *G* contains one of the following configurations.

(C1) a vertex v of degree at most 1

(C2) an edge uv with $u \notin N[B]$ and $v \notin N[B]$

Structural Thm: Let *G* be plane graph with girth ≥ 5 and $\Delta \geq 2.7 \times 10^6$. Let $k = \Delta$ and $B = \{v \in V(G) : d(v) \geq \sqrt{k}\}$. Now *G* contains one of the following configurations.

- (C1) a vertex v of degree at most 1
- (C2) an edge uv with $u \notin N[B]$ and $v \notin N[B]$
- (C3) an edge uv with d(u) = d(v) = 2 and $u \notin N[B]$ or $v \notin N[B]$

Structural Thm: Let G be plane graph with girth ≥ 5 and $\Delta \geq 2.7 \times 10^6$. Let $k = \Delta$ and $B = \{v \in V(G) : d(v) \geq \sqrt{k}\}$. Now G contains one of the following configurations.

- (C1) a vertex v of degree at most 1
- (C2) an edge uv with $u \notin N[B]$ and $v \notin N[B]$
- (C3) an edge uv with d(u) = d(v) = 2 and $u \notin N[B]$ or $v \notin N[B]$
- (C4) an *r*-region with $r \ge 152$

Structural Thm: Let *G* be plane graph with girth ≥ 5 and $\Delta \geq 2.7 \times 10^6$. Let $k = \Delta$ and $B = \{v \in V(G) : d(v) \geq \sqrt{k}\}$. Now *G* contains one of the following configurations.

- (C1) a vertex v of degree at most 1
- (C2) an edge uv with $u \notin N[B]$ and $v \notin N[B]$
- (C3) an edge uv with d(u) = d(v) = 2 and $u \notin N[B]$ or $v \notin N[B]$
- (C4) an *r*-region with $r \ge 152$

Lem: If G is a counterexample to our coloring theorem with the fewest edges possible, then G contains none of (C1) to (C4).

Structural Thm: Let *G* be plane graph with girth ≥ 5 and $\Delta \geq 2.7 \times 10^6$. Let $k = \Delta$ and $B = \{v \in V(G) : d(v) \geq \sqrt{k}\}$. Now *G* contains one of the following configurations.

- (C1) a vertex v of degree at most 1
- (C2) an edge uv with $u \notin N[B]$ and $v \notin N[B]$
- (C3) an edge uv with d(u) = d(v) = 2 and $u \notin N[B]$ or $v \notin N[B]$ (C4) an *r*-region with $r \ge 152$

Lem: If *G* is a counterexample to our coloring theorem with the fewest edges possible, then *G* contains none of (C1) to (C4). **Pf:** (C1) By minimality, color G - v, then extend the coloring to *v*.

Structural Thm: Let *G* be plane graph with girth ≥ 5 and $\Delta \geq 2.7 \times 10^6$. Let $k = \Delta$ and $B = \{v \in V(G) : d(v) \geq \sqrt{k}\}$. Now *G* contains one of the following configurations.

- (C1) a vertex v of degree at most 1
- (C2) an edge uv with $u \notin N[B]$ and $v \notin N[B]$
- (C3) an edge uv with d(u) = d(v) = 2 and $u \notin N[B]$ or $v \notin N[B]$ (C4) an *r*-region with $r \ge 152$

Lem: If *G* is a counterexample to our coloring theorem with the fewest edges possible, then *G* contains none of (C1) to (C4). **Pf:** (C1) By minimality, color G - v, then extend the coloring to *v*. (C2) By minimality, color G - uv. Now add uv and recolor *u* and *v* to avoid conflicts.

Structural Thm: Let *G* be plane graph with girth ≥ 5 and $\Delta \geq 2.7 \times 10^6$. Let $k = \Delta$ and $B = \{v \in V(G) : d(v) \geq \sqrt{k}\}$. Now *G* contains one of the following configurations.

- (C1) a vertex v of degree at most 1
- (C2) an edge uv with $u \notin N[B]$ and $v \notin N[B]$
- (C3) an edge uv with d(u) = d(v) = 2 and $u \notin N[B]$ or $v \notin N[B]$ (C4) an *r*-region with $r \ge 152$

Lem: If *G* is a counterexample to our coloring theorem with the fewest edges possible, then *G* contains none of (C1) to (C4). **Pf:** (C1) By minimality, color G - v, then extend the coloring to *v*. (C2) By minimality, color G - uv. Now add uv and recolor *u* and *v* to avoid conflicts. Can since $|N_2(u)| < \sqrt{k}\sqrt{k} = k$.

Structural Thm: Let *G* be plane graph with girth ≥ 5 and $\Delta \geq 2.7 \times 10^6$. Let $k = \Delta$ and $B = \{v \in V(G) : d(v) \geq \sqrt{k}\}$. Now *G* contains one of the following configurations.

- (C1) a vertex v of degree at most 1
- (C2) an edge uv with $u \notin N[B]$ and $v \notin N[B]$
- (C3) an edge uv with d(u) = d(v) = 2 and $u \notin N[B]$ or $v \notin N[B]$ (C4) an r-region with $r \ge 152$

Lem: If *G* is a counterexample to our coloring theorem with the fewest edges possible, then *G* contains none of (C1) to (C4). **Pf:** (C1) By minimality, color G - v, then extend the coloring to *v*. (C2) By minimality, color G - uv. Now add uv and recolor *u* and *v* to avoid conflicts. Can since $|N_2(u)| < \sqrt{k}\sqrt{k} = k$. Same for *v*.

Structural Thm: Let *G* be plane graph with girth ≥ 5 and $\Delta \geq 2.7 \times 10^6$. Let $k = \Delta$ and $B = \{v \in V(G) : d(v) \geq \sqrt{k}\}$. Now *G* contains one of the following configurations.

- (C1) a vertex v of degree at most 1
- (C2) an edge uv with $u \notin N[B]$ and $v \notin N[B]$
- (C3) an edge uv with d(u) = d(v) = 2 and $u \notin N[B]$ or $v \notin N[B]$ (C4) an *r*-region with $r \ge 152$

Lem: If *G* is a counterexample to our coloring theorem with the fewest edges possible, then *G* contains none of (C1) to (C4). **Pf:** (C1) By minimality, color G - v, then extend the coloring to *v*. (C2) By minimality, color G - uv. Now add uv and recolor *u* and *v* to avoid conflicts. Can since $|N_2(u)| < \sqrt{k}\sqrt{k} = k$. Same for *v*. (C3) Suppose *tuvw* is a path with d(u) = d(v) = 2 and $t \notin B$.

Structural Thm: Let *G* be plane graph with girth ≥ 5 and $\Delta \geq 2.7 \times 10^6$. Let $k = \Delta$ and $B = \{v \in V(G) : d(v) \geq \sqrt{k}\}$. Now *G* contains one of the following configurations.

- (C1) a vertex v of degree at most 1
- (C2) an edge uv with $u \notin N[B]$ and $v \notin N[B]$
- (C3) an edge uv with d(u) = d(v) = 2 and $u \notin N[B]$ or $v \notin N[B]$ (C4) an *r*-region with $r \ge 152$

Lem: If *G* is a counterexample to our coloring theorem with the fewest edges possible, then *G* contains none of (C1) to (C4). **Pf:** (C1) By minimality, color G - v, then extend the coloring to *v*. (C2) By minimality, color G - uv. Now add uv and recolor *u* and *v* to avoid conflicts. Can since $|N_2(u)| < \sqrt{k}\sqrt{k} = k$. Same for *v*. (C3) Suppose *tuvw* is a path with d(u) = d(v) = 2 and $t \notin B$. Color G - uv by minimality;

Structural Thm: Let *G* be plane graph with girth ≥ 5 and $\Delta \geq 2.7 \times 10^6$. Let $k = \Delta$ and $B = \{v \in V(G) : d(v) \geq \sqrt{k}\}$. Now *G* contains one of the following configurations.

- (C1) a vertex v of degree at most 1
- (C2) an edge uv with $u \notin N[B]$ and $v \notin N[B]$
- (C3) an edge uv with d(u) = d(v) = 2 and $u \notin N[B]$ or $v \notin N[B]$ (C4) an *r*-region with $r \ge 152$

Lem: If *G* is a counterexample to our coloring theorem with the fewest edges possible, then *G* contains none of (C1) to (C4). **Pf:** (C1) By minimality, color G - v, then extend the coloring to *v*. (C2) By minimality, color G - uv. Now add uv and recolor *u* and *v* to avoid conflicts. Can since $|N_2(u)| < \sqrt{k}\sqrt{k} = k$. Same for *v*. (C3) Suppose *tuvw* is a path with d(u) = d(v) = 2 and $t \notin B$. Color G - uv by minimality; add uv and recolor *v*.

Structural Thm: Let *G* be plane graph with girth ≥ 5 and $\Delta \geq 2.7 \times 10^6$. Let $k = \Delta$ and $B = \{v \in V(G) : d(v) \geq \sqrt{k}\}$. Now *G* contains one of the following configurations.

- (C1) a vertex v of degree at most 1
- (C2) an edge uv with $u \notin N[B]$ and $v \notin N[B]$
- (C3) an edge uv with d(u) = d(v) = 2 and $u \notin N[B]$ or $v \notin N[B]$ (C4) an *r*-region with $r \ge 152$

Lem: If *G* is a counterexample to our coloring theorem with the fewest edges possible, then *G* contains none of (C1) to (C4). **Pf:** (C1) By minimality, color G - v, then extend the coloring to *v*. (C2) By minimality, color G - uv. Now add uv and recolor *u* and *v* to avoid conflicts. Can since $|N_2(u)| < \sqrt{k}\sqrt{k} = k$. Same for *v*. (C3) Suppose *tuvw* is a path with d(u) = d(v) = 2 and $t \notin B$. Color G - uv by minimality; add uv and recolor *v*. Can since $|N_2(v) - u| = d(w) + 1 \le k + 1$.

Structural Thm: Let *G* be plane graph with girth ≥ 5 and $\Delta \geq 2.7 \times 10^6$. Let $k = \Delta$ and $B = \{v \in V(G) : d(v) \geq \sqrt{k}\}$. Now *G* contains one of the following configurations.

- (C1) a vertex v of degree at most 1
- (C2) an edge uv with $u \notin N[B]$ and $v \notin N[B]$
- (C3) an edge uv with d(u) = d(v) = 2 and $u \notin N[B]$ or $v \notin N[B]$ (C4) an *r*-region with $r \ge 152$

Lem: If *G* is a counterexample to our coloring theorem with the fewest edges possible, then *G* contains none of (C1) to (C4). **Pf:** (C1) By minimality, color G - v, then extend the coloring to *v*. (C2) By minimality, color G - uv. Now add uv and recolor *u* and *v* to avoid conflicts. Can since $|N_2(u)| < \sqrt{k}\sqrt{k} = k$. Same for *v*. (C3) Suppose *tuvw* is a path with d(u) = d(v) = 2 and $t \notin B$. Color G - uv by minimality; add uv and recolor *v*. Can since $|N_2(v) - u| = d(w) + 1 \le k + 1$. Recolor *u*, as $|N_2(u)| \le 2 + \sqrt{k}$.

Rem: In the square, B_1 and B_2 are both cliques; each vertex has at most 3 neighbors in the other clique.

Rem: In the square, B_1 and B_2 are both cliques; each vertex has at most 3 neighbors in the other clique. We don't worry about D_2 , since we can color those last.

Rem: In the square, B_1 and B_2 are both cliques; each vertex has at most 3 neighbors in the other clique. We don't worry about D_2 , since we can color those last. After coloring $G - (B_1 \cup B_2 \cup D_2)$, each v in B_i has a list of size B_i .

Rem: In the square, B_1 and B_2 are both cliques; each vertex has at most 3 neighbors in the other clique. We don't worry about D_2 , since we can color those last. After coloring $G - (B_1 \cup B_2 \cup D_2)$, each v in B_i has a list of size B_i . When B_1 and B_2 are big enough, we can extend the coloring to G.

Structural Thm: Let *G* be plane graph with girth ≥ 5 and $\Delta \geq 2.7 \times 10^6$. Let $k = \Delta$ and $B = \{v \in V(G) : d(v) \geq \sqrt{k}\}$. Now *G* contains one of the following configurations.

- (C1) a vertex v of degree at most 1
- (C2) an edge uv with $u \notin N[B]$ and $v \notin N[B]$
- (C3) an edge uv with d(u) = d(v) = 2 and $u \notin N[B]$ or $v \notin N[B]$
- (C4) an *r*-region with $r \ge 152$

Structural Thm: Let *G* be plane graph with girth ≥ 5 and $\Delta \geq 2.7 \times 10^6$. Let $k = \Delta$ and $B = \{v \in V(G) : d(v) \geq \sqrt{k}\}$. Now *G* contains one of the following configurations.

- (C1) a vertex v of degree at most 1
- (C2) an edge uv with $u \notin N[B]$ and $v \notin N[B]$
- (C3) an edge uv with d(u) = d(v) = 2 and $u \notin N[B]$ or $v \notin N[B]$
- (C4) an *r*-region with $r \ge 152$

Pf Idea:

Structural Thm: Let *G* be plane graph with girth ≥ 5 and $\Delta \geq 2.7 \times 10^6$. Let $k = \Delta$ and $B = \{v \in V(G) : d(v) \geq \sqrt{k}\}$. Now *G* contains one of the following configurations.

- (C1) a vertex v of degree at most 1
- (C2) an edge uv with $u \notin N[B]$ and $v \notin N[B]$
- (C3) an edge uv with d(u) = d(v) = 2 and $u \notin N[B]$ or $v \notin N[B]$ (C4) an *r*-region with r > 152

Pf Idea: Let $S = \{v \in V : d(v) < \sqrt{k}\}$ and $S_i = \{v \in S : d_B(v) = i\}.$

Structural Thm: Let *G* be plane graph with girth ≥ 5 and $\Delta \geq 2.7 \times 10^6$. Let $k = \Delta$ and $B = \{v \in V(G) : d(v) \geq \sqrt{k}\}$. Now *G* contains one of the following configurations.

- (C1) a vertex v of degree at most 1
- (C2) an edge uv with $u \notin N[B]$ and $v \notin N[B]$
- (C3) an edge uv with d(u) = d(v) = 2 and $u \notin N[B]$ or $v \notin N[B]$ (C4) an *r*-region with $r \ge 152$

Pf Idea: Let $S = \{v \in V : d(v) < \sqrt{k}\}$ and $S_i = \{v \in S : d_B(v) = i\}$. So $V = B \cup \bigcup_{i=0}^{\infty} S_i$.

Structural Thm: Let *G* be plane graph with girth ≥ 5 and $\Delta \geq 2.7 \times 10^6$. Let $k = \Delta$ and $B = \{v \in V(G) : d(v) \geq \sqrt{k}\}$. Now *G* contains one of the following configurations.

- (C1) a vertex v of degree at most 1
- (C2) an edge uv with $u \notin N[B]$ and $v \notin N[B]$
- (C3) an edge uv with d(u) = d(v) = 2 and $u \notin N[B]$ or $v \notin N[B]$ (C4) an *r*-region with $r \ge 152$

Pf Idea: Let $S = \{v \in V : d(v) < \sqrt{k}\}$ and $S_i = \{v \in S : d_B(v) = i\}$. So $V = B \cup \bigcup_{i=0}^{\infty} S_i$. By planarity, *B* is a tiny fraction of *V*.

Structural Thm: Let *G* be plane graph with girth ≥ 5 and $\Delta \geq 2.7 \times 10^6$. Let $k = \Delta$ and $B = \{v \in V(G) : d(v) \geq \sqrt{k}\}$. Now *G* contains one of the following configurations.

- (C1) a vertex v of degree at most 1
- (C2) an edge uv with $u \notin N[B]$ and $v \notin N[B]$
- (C3) an edge uv with d(u) = d(v) = 2 and $u \notin N[B]$ or $v \notin N[B]$ (C4) an *r*-region with $r \ge 152$

Pf Idea: Let $S = \{v \in V : d(v) < \sqrt{k}\}$ and $S_i = \{v \in S : d_B(v) = i\}$. So $V = B \cup \bigcup_{i=0}^{\infty} S_i$. By planarity, *B* is a tiny fraction of *V*. Similary, $\bigcup_{i=2}^{\infty} S_i$ has size linear in |B|, so is a tiny fraction of *V*.

Structural Thm: Let *G* be plane graph with girth ≥ 5 and $\Delta \geq 2.7 \times 10^6$. Let $k = \Delta$ and $B = \{v \in V(G) : d(v) \geq \sqrt{k}\}$. Now *G* contains one of the following configurations.

- (C1) a vertex v of degree at most 1
- (C2) an edge uv with $u \notin N[B]$ and $v \notin N[B]$
- (C3) an edge uv with d(u) = d(v) = 2 and $u \notin N[B]$ or $v \notin N[B]$ (C4) an *r*-region with $r \ge 152$

Pf Idea: Let $S = \{v \in V : d(v) < \sqrt{k}\}$ and $S_i = \{v \in S : d_B(v) = i\}$. So $V = B \cup \bigcup_{i=0}^{\infty} S_i$. By planarity, *B* is a tiny fraction of *V*. Similary, $\bigcup_{i=2}^{\infty} S_i$ has size linear in |B|, so is a tiny fraction of *V*. Since every edge has an endpoint in N[B], S_1 has *many* vertices.

Structural Thm: Let *G* be plane graph with girth ≥ 5 and $\Delta \geq 2.7 \times 10^6$. Let $k = \Delta$ and $B = \{v \in V(G) : d(v) \geq \sqrt{k}\}$. Now *G* contains one of the following configurations.

- (C1) a vertex v of degree at most 1
- (C2) an edge uv with $u \notin N[B]$ and $v \notin N[B]$
- (C3) an edge uv with d(u) = d(v) = 2 and $u \notin N[B]$ or $v \notin N[B]$ (C4) an *r*-region with $r \ge 152$

Pf Idea: Let $S = \{v \in V : d(v) < \sqrt{k}\}$ and $S_i = \{v \in S : d_B(v) = i\}$. So $V = B \cup \bigcup_{i=0}^{\infty} S_i$. By planarity, *B* is a tiny fraction of *V*. Similary, $\bigcup_{i=2}^{\infty} S_i$ has size linear in |B|, so is a tiny fraction of *V*. Since every edge has an endpoint in N[B], S_1 has *many* vertices. We contract the *r*-regions as shown earlier.

Structural Thm: Let *G* be plane graph with girth ≥ 5 and $\Delta \geq 2.7 \times 10^6$. Let $k = \Delta$ and $B = \{v \in V(G) : d(v) \geq \sqrt{k}\}$. Now *G* contains one of the following configurations.

- (C1) a vertex v of degree at most 1
- (C2) an edge uv with $u \notin N[B]$ and $v \notin N[B]$
- (C3) an edge uv with d(u) = d(v) = 2 and $u \notin N[B]$ or $v \notin N[B]$ (C4) an r-region with $r \ge 152$

Pf Idea: Let $S = \{v \in V : d(v) < \sqrt{k}\}$ and $S_i = \{v \in S : d_B(v) = i\}$. So $V = B \cup \bigcup_{i=0}^{\infty} S_i$. By planarity, *B* is a tiny fraction of *V*. Similary, $\bigcup_{i=2}^{\infty} S_i$ has size linear in |B|, so is a tiny fraction of *V*. Since every edge has an endpoint in N[B], S_1 has *many* vertices. We contract the *r*-regions as shown earlier. Now the underlying simple graph has a vertex of degree at most 5.

Structural Thm: Let *G* be plane graph with girth ≥ 5 and $\Delta \geq 2.7 \times 10^6$. Let $k = \Delta$ and $B = \{v \in V(G) : d(v) \geq \sqrt{k}\}$. Now *G* contains one of the following configurations.

- (C1) a vertex v of degree at most 1
- (C2) an edge uv with $u \notin N[B]$ and $v \notin N[B]$
- (C3) an edge uv with d(u) = d(v) = 2 and $u \notin N[B]$ or $v \notin N[B]$ (C4) an *r*-region with $r \ge 152$

Pf Idea: Let $S = \{v \in V : d(v) < \sqrt{k}\}$ and $S_i = \{v \in S : d_B(v) = i\}$. So $V = B \cup \bigcup_{i=0}^{\infty} S_i$. By planarity, *B* is a tiny fraction of *V*. Similary, $\bigcup_{i=2}^{\infty} S_i$ has size linear in |B|, so is a tiny fraction of *V*. Since every edge has an endpoint in N[B], S_1 has *many* vertices. We contract the *r*-regions as shown earlier. Now the underlying simple graph has a vertex of degree at most 5. It must have a very large *r*-region with one of its neighbors.

Structural Thm: Let *G* be plane graph with girth ≥ 5 and $\Delta \geq 2.7 \times 10^6$. Let $k = \Delta$ and $B = \{v \in V(G) : d(v) \geq \sqrt{k}\}$. Now *G* contains one of the following configurations.

- (C1) a vertex v of degree at most 1
- (C2) an edge uv with $u \notin N[B]$ and $v \notin N[B]$
- (C3) an edge uv with d(u) = d(v) = 2 and $u \notin N[B]$ or $v \notin N[B]$ (C4) an *r*-region with $r \ge 152$

Pf Idea: Let $S = \{v \in V : d(v) < \sqrt{k}\}$ and $S_i = \{v \in S : d_B(v) = i\}$. So $V = B \cup \bigcup_{i=0}^{\infty} S_i$. By planarity, *B* is a tiny fraction of *V*. Similary, $\bigcup_{i=2}^{\infty} S_i$ has size linear in |B|, so is a tiny fraction of *V*. Since every edge has an endpoint in N[B], S_1 has *many* vertices. We contract the *r*-regions as shown earlier. Now the underlying simple graph has a vertex of degree at most 5. It must have a very large *r*-region with one of its neighbors.

Wang–Lih conjectured that if G is planar with girth g ≥ 5 and Δ big enough, then χ(G²) = Δ + 1.

- Wang–Lih conjectured that if G is planar with girth g ≥ 5 and Δ big enough, then χ(G²) = Δ + 1.
 - True for $g \ge 7$, but false for $g \in \{5, 6\}$.

- Wang–Lih conjectured that if G is planar with girth g ≥ 5 and Δ big enough, then χ(G²) = Δ + 1.
 - True for $g \ge 7$, but false for $g \in \{5, 6\}$.
 - Almost true for g = 6; now $\chi(G^2) \le \Delta + 2$.

- Wang-Lih conjectured that if G is planar with girth g ≥ 5 and Δ big enough, then χ(G²) = Δ + 1.
 - True for $g \ge 7$, but false for $g \in \{5, 6\}$.
 - Almost true for g = 6; now $\chi(G^2) \le \Delta + 2$. And g = 5?

- Wang–Lih conjectured that if G is planar with girth g ≥ 5 and Δ big enough, then χ(G²) = Δ + 1.
 - True for $g \ge 7$, but false for $g \in \{5, 6\}$.
 - Almost true for g = 6; now $\chi(G^2) \le \Delta + 2$. And g = 5?
- Coloring Thm: If G is planar with g ≥ 5 and Δ ≥ 2.7 × 10⁶, then χ_p(G²) ≤ Δ + 2.

- Wang–Lih conjectured that if G is planar with girth g ≥ 5 and Δ big enough, then χ(G²) = Δ + 1.
 - True for $g \ge 7$, but false for $g \in \{5, 6\}$.
 - Almost true for g = 6; now $\chi(G^2) \le \Delta + 2$. And g = 5?
- Coloring Thm: If G is planar with g ≥ 5 and Δ ≥ 2.7 × 10⁶, then χ_p(G²) ≤ Δ + 2.
 - Structural Thm: If G is planar with g ≥ 5 and Δ ≥ 2.7 × 10⁶, then G has a configuration of one of four types:

- Wang–Lih conjectured that if G is planar with girth g ≥ 5 and Δ big enough, then χ(G²) = Δ + 1.
 - True for $g \ge 7$, but false for $g \in \{5, 6\}$.
 - Almost true for g = 6; now $\chi(G^2) \le \Delta + 2$. And g = 5?
- Coloring Thm: If G is planar with g ≥ 5 and Δ ≥ 2.7 × 10⁶, then χ_p(G²) ≤ Δ + 2.
 - Structural Thm: If G is planar with g ≥ 5 and Δ ≥ 2.7 × 10⁶, then G has a configuration of one of four types: 3 are straightforward and fourth is big r-region.

- Wang–Lih conjectured that if G is planar with girth g ≥ 5 and Δ big enough, then χ(G²) = Δ + 1.
 - True for $g \ge 7$, but false for $g \in \{5, 6\}$.
 - Almost true for g = 6; now $\chi(G^2) \le \Delta + 2$. And g = 5?
- Coloring Thm: If G is planar with g ≥ 5 and Δ ≥ 2.7 × 10⁶, then χ_p(G²) ≤ Δ + 2.
 - Structural Thm: If G is planar with g ≥ 5 and Δ ≥ 2.7 × 10⁶, then G has a configuration of one of four types: 3 are straightforward and fourth is big r-region.
 - Lemma: All four types are reducible for Coloring Thm.

- Wang–Lih conjectured that if G is planar with girth g ≥ 5 and Δ big enough, then χ(G²) = Δ + 1.
 - True for $g \ge 7$, but false for $g \in \{5, 6\}$.
 - Almost true for g = 6; now $\chi(G^2) \le \Delta + 2$. And g = 5?
- Coloring Thm: If G is planar with g ≥ 5 and Δ ≥ 2.7 × 10⁶, then χ_p(G²) ≤ Δ + 2.
 - Structural Thm: If G is planar with g ≥ 5 and Δ ≥ 2.7 × 10⁶, then G has a configuration of one of four types: 3 are straightforward and fourth is big r-region.
 - Lemma: All four types are reducible for Coloring Thm.
 - Structural Thm Pf Idea:

- Wang–Lih conjectured that if G is planar with girth g ≥ 5 and Δ big enough, then χ(G²) = Δ + 1.
 - True for $g \ge 7$, but false for $g \in \{5, 6\}$.
 - Almost true for g = 6; now $\chi(G^2) \le \Delta + 2$. And g = 5?
- Coloring Thm: If G is planar with g ≥ 5 and Δ ≥ 2.7 × 10⁶, then χ_p(G²) ≤ Δ + 2.
 - Structural Thm: If G is planar with g ≥ 5 and Δ ≥ 2.7 × 10⁶, then G has a configuration of one of four types: 3 are straightforward and fourth is big r-region.
 - Lemma: All four types are reducible for Coloring Thm.
 - Structural Thm Pf Idea: For each pair of big vertices, contract all paths joining them of length at most 4 down to parallel edges.

- Wang–Lih conjectured that if G is planar with girth g ≥ 5 and Δ big enough, then χ(G²) = Δ + 1.
 - True for $g \ge 7$, but false for $g \in \{5, 6\}$.
 - Almost true for g = 6; now $\chi(G^2) \le \Delta + 2$. And g = 5?
- Coloring Thm: If G is planar with g ≥ 5 and Δ ≥ 2.7 × 10⁶, then χ_p(G²) ≤ Δ + 2.
 - Structural Thm: If G is planar with g ≥ 5 and Δ ≥ 2.7 × 10⁶, then G has a configuration of one of four types: 3 are straightforward and fourth is big r-region.
 - Lemma: All four types are reducible for Coloring Thm.
 - ▶ Structural Thm Pf Idea: For each pair of big vertices, contract all paths joining them of length at most 4 down to parallel edges. In the underlying simple graph *H*, some big vertex *v* has $d_H(v) \le 5$.

- Wang–Lih conjectured that if G is planar with girth g ≥ 5 and Δ big enough, then χ(G²) = Δ + 1.
 - True for $g \ge 7$, but false for $g \in \{5, 6\}$.
 - Almost true for g = 6; now $\chi(G^2) \le \Delta + 2$. And g = 5?
- Coloring Thm: If G is planar with g ≥ 5 and Δ ≥ 2.7 × 10⁶, then χ_p(G²) ≤ Δ + 2.
 - Structural Thm: If G is planar with g ≥ 5 and Δ ≥ 2.7 × 10⁶, then G has a configuration of one of four types: 3 are straightforward and fourth is big r-region.
 - Lemma: All four types are reducible for Coloring Thm.
 - ▶ Structural Thm Pf Idea: For each pair of big vertices, contract all paths joining them of length at most 4 down to parallel edges. In the underlying simple graph *H*, some big vertex *v* has $d_H(v) \le 5$. So *v* has *lots* of parallel edges to some big neighbor.

- Wang–Lih conjectured that if G is planar with girth g ≥ 5 and Δ big enough, then χ(G²) = Δ + 1.
 - True for $g \ge 7$, but false for $g \in \{5, 6\}$.
 - Almost true for g = 6; now $\chi(G^2) \le \Delta + 2$. And g = 5?
- Coloring Thm: If G is planar with g ≥ 5 and Δ ≥ 2.7 × 10⁶, then χ_p(G²) ≤ Δ + 2.
 - Structural Thm: If G is planar with g ≥ 5 and Δ ≥ 2.7 × 10⁶, then G has a configuration of one of four types: 3 are straightforward and fourth is big r-region.
 - Lemma: All four types are reducible for Coloring Thm.
 - Structural Thm Pf Idea: For each pair of big vertices, contract all paths joining them of length at most 4 down to parallel edges. In the underlying simple graph *H*, some big vertex *v* has *d_H*(*v*) ≤ 5. So *v* has *lots* of parallel edges to some big neighbor. This gives a big *r*-region.