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Maximum Average Degree, Squares, and Degeneracy

Q: How do we measure a graph’s sparsity?
A: Maximum average degree of G , denoted mad(G ), is defined as

mad(G ) := max
H⊆G

2|E (H)|
|V (H)|

.

I mad(G ) < 1 iff G is edgeless

I mad(G ) < 2 iff G is a forest

I mad(G ) < 4 if G is planar bip.

I mad(G ) < 6 if G is planar

Defn: The square, G 2, of a graph G is formed from G
by adding each edge vw such that distG (v ,w) = 2.

Defn: A graph is k-degenerate if there is order σ of V (G )
where each vertex has at most k neighbors later in σ.

Obs: If G is k-degenerate, then mad(G ) < 2k .
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Motivating Questions and Examples

Q: If mad(G ) < 4, what is the largest possible value of χ(G 2)?

A1: Bound uses ∆, since χ(K 2
1,∆) = ∆ + 1 and mad(K1,∆) < 2.

A2: If G is 2-degenerate, then G 2 has degeneracy 6 3∆− 2.

Thm: [Kierstead–Yang–Yi]
If mad(G ) 6 2k, then
deg(G 2) 6 ∆(2k − 1) + 2k .

Thm: [Hocquard–Kim–Pierron]
For every D ∈ Z+, there is GD

s.t. ∆(GD) = D and GD is
2-degenerate (so mad(GD) < 4)
and ω(G 2

D) = b5D/2c.

Q: What is max value, χ2(4,D), over graphs
G with mad(G ) < 4 and ∆ 6 D of χ(G 2)?

A: b5D/2c 6 χ2(4,D) 6 3D + 5.

Rem: Upper bound on degeneracy sharp up to constant.
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Main Theorem and Proof Outline
Main Thm: (a) If G is 2-degenerate with ∆ 6 D, then
ω(G 2) 6 5D/2 + 72.

(b) If G has mad(G ) < 4 and ∆ 6 D, then
ω(G 2) 6 5D/2 + 532. (Neither additive constant is sharp.)

Two Questions of Hocquard, Kim, and Pierron:

1. Is there D0 s.t. every 2-degenerate graph
G with ∆ > D0 has χ(G 2) 6 5∆/2?

2. Is there D0 s.t. every G with ∆ > D0

and mad(G ) < 4 has χ(G 2) 6 5∆/2?

Pf Outline:

1. Construction of HKP above is best
possible among graphs that “look similar”.

2. “Edit” arbitrary 2-degenerate graph G to
type above, shrinking ω(G 2) at most 72.

3. “Edit” arbitrary G with mad(G ) < 4 to
2-degenerate, shrinking ω(G 2) at most 460.
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G with ∆ > D0 has χ(G 2) 6 5∆/2?

2. Is there D0 s.t. every G with ∆ > D0

and mad(G ) < 4 has χ(G 2) 6 5∆/2?

Pf Outline:

1. Construction of HKP above is best
possible among graphs that “look similar”.

2. “Edit” arbitrary 2-degenerate graph G to
type above, shrinking ω(G 2) at most 72.

3. “Edit” arbitrary G with mad(G ) < 4 to
2-degenerate, shrinking ω(G 2) at most 460.
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Which Graphs “Look Similar” to our Construction?

Defn: A 2-degeneracy order for G is order of V (G ) where each
vertex has 6 2 later neighbors.

Now G is nice w.r.t. a clique S in
G 2 if (a) S is an ind. set in G and (b) G has a 2-degeneracy order
σ s.t. all vertices of S appear consecutively in σ. (Below is nice.)
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G 2 if (a) S is an ind. set in G and (b) G has a 2-degeneracy order
σ s.t. all vertices of S appear consecutively in σ. (Below is nice.)

Thm 1: If G is nice w.r.t. maximum clique S
in G 2 and ∆(G ) 6 D, then ω(G 2) 6 5D/2.

Thm 1’: Let H be a multigraph with ∆(H) 6
D. If each edge of H shares at least one end-
point with all but at most D − 2 other edges
of H, then |E (H)| 6 5D/2.

Rem: Thm 1’ implies Thm 1.

Pf: Given G , S , σ, delete all vertices before
S in order σ, and contract one edge incident
to each vertex of S . Now |E (H)| = |S |.
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Proving Main Theorem (for 2-Degenerate Graphs)

Main Thm (a):
If G is 2-degenerate with ∆(G ) 6 D, then ω(G 2) 6 5D/2 + 72.

Big Idea: Given G , S , σ, show all but constant subset of S is
ind. set. Delete exceptions from S to get S ′ with |S ′| > |S | − 72
and (G ′)2[S ′] complete. Alter σ to σ′ so G ′ nice w.r.t. S ′ and σ′.

Intuition: If v ∈ S doesn’t get adjacency (in G 2) to lots of S via
vertices earlier in σ, then both neighbors of S later in σ give v lots
of adjacencies in G 2 to verts of S . So 2 later neighbors act like
white vertices (last in σ) in construction.

Q: Why can’t most verts in S get much help from verts earlier in σ?
A: Because G is 2-degenerate.

Q: How to formalize all of this?
A: Tokens!
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Counting Tokens

Defn: Let tok(v) and prim(v) denote number of tokens
and number of primary tokens held by v when v is deleted.

Lem: If v ∈ S and w1,w2 are neighbors later in σ, then

1 + tok(v) + D + prim(w1) + prim(w2) + 6 > |S | > 5D/2 + 60.

Pf: Orient each edge of G towards endpoint later in σ.
v : 1; − : tok(v); −− : tok(v); −+ : D
+ : 2; ++ : 4; +− : prim(w1) + prim(w2);

Defn:

Big := {v ∈ V (G ) : prim(v) > D/4}
Basic := {v ∈ S : tok(v) < D/4}
Basic := S \Basic

Lem: Each v ∈ Basic has 2 later neighbors in Big.

Lem:
∑

v tok(v) 6 6|S | 6 18D. So |Basic ∪Big| 6 18D/(D/4) 6 72.

Cor: Basic is independent set of size at least |S | − 72.
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Open Questions

Defn: Let ω2(2k ,D) and χ2(2k,D) be max ω(G 2) and max
χ(G 2) over all G such that mad(G ) < 2k and ∆(G ) 6 D.

Conj: For D big enough χ2(4,D) = 5D/2.

Q: What is χ2(2k,D) for each k > 2?

Q: What is ω2(2k ,D) for each k > 2?
Is this achieved by k-degenerate graphs?

Rem: Don’t even have good guess for this value.

Conj: For each k > 1, for D big enough w.r.t. k ,

χ2(2k ,D) 6 ω2(2k ,D) + ck .

(Possibly ck = 0 works.)
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Summary
Q: What is max of χ(G 2) for G
with mad(G ) < 4 and ∆ 6 D?

A: b5D/2c 6 χ2(4,D) 6 3D + 5
Up: degeneracy; Low: construction
Rem: Degeneracy bound nearly sharp
Q: Can we improve clique bound?

Main Thm:
(a) If G is 2-degenerate with ∆ 6 D, then ω(G 2) 6 5D/2 + 72.
(b) If G has mad(G ) < 4 and ∆ 6 D, then ω(G 2) 6 5D/2 + 532.

Pf Outline:
(i) Construction above best for “nice” graphs. (ii) Edit arbitrary
2-degenerate G to nice graph, shrinking ω(G 2) at most 72.
(iii) Edit arbitrary G with mad(G ) < 4 to 2-degenerate, shrinking
ω(G 2) at most 460.

Rem: Many interesting open questions!
Read more: arXiv:2305.11763
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