Cliques in Squares of Graphs with
Maximum Average Degree less than 4

Daniel W. Cranston
Virginia Commonwealth University
dcranston@vcu.edu

Joint with Gexin Yu

AMS Sectional Meeting
9 September 2023

Maximum Average Degree, Squares, and Degeneracy

Maximum Average Degree, Squares, and Degeneracy

Q: How do we measure a graph'’s sparsity?

Maximum Average Degree, Squares, and Degeneracy

Q: How do we measure a graph'’s sparsity?
A: Maximum average degree of G, denoted mad(G), is defined as

_ - 2[E(H)]
mad(G) := max V()|

Maximum Average Degree, Squares, and Degeneracy

Q: How do we measure a graph'’s sparsity?
A: Maximum average degree of G, denoted mad(G), is defined as

_ - 2[E(H)]
mad(G) := max V()|

» mad(G) < 1iff G is edgeless

Maximum Average Degree, Squares, and Degeneracy

Q: How do we measure a graph'’s sparsity?
A: Maximum average degree of G, denoted mad(G), is defined as

_ - 2[E(H)]
mad(G) := max V()|

» mad(G) < 1iff G is edgeless °c ° e e
o o o o o o
o o o o o o

o o o o o o

Maximum Average Degree, Squares, and Degeneracy

Q: How do we measure a graph'’s sparsity?
A: Maximum average degree of G, denoted mad(G), is defined as

_ - 2[E(H)]
mad(G) := max V()|

o o o o o o

» mad(G) < 1iff G is edgeless
» mad(G) < 2 iff G is a forest ©o o o o o o

Maximum Average Degree, Squares, and Degeneracy

Q: How do we measure a graph'’s sparsity?
A: Maximum average degree of G, denoted mad(G), is defined as

_ . 2E(H)|

mad(G) := max V()|
» mad(G) < 1iff G is edgeless °
» mad(G) < 2 iff G is a forest o

Maximum Average Degree, Squares, and Degeneracy

Q: How do we measure a graph'’s sparsity?
A: Maximum average degree of G, denoted mad(G), is defined as

_ . 2E(H)|

mad(G) := max V()|
» mad(G) < 1iff G is edgeless °
» mad(G) < 2 iff G is a forest o

» mad(G) < 4 if G is planar bip.

Maximum Average Degree, Squares, and Degeneracy

Q: How do we measure a graph'’s sparsity?
A: Maximum average degree of G, denoted mad(G), is defined as

o 2lE(H))]
mad(G) := max V()|

» mad(G) < 1iff G is edgeless | | | |
» mad(G) < 2 iff G is a forest
» mad(G) < 4 if G is planar bip. | | | |

Maximum Average Degree, Squares, and Degeneracy

Q: How do we measure a graph'’s sparsity?
A: Maximum average degree of G, denoted mad(G), is defined as

o 2lE(H))]
mad(G) := max V()|

d(G) < 1iff G is edgeless | | | |
d(G)

d(G) < 4 if G is planar bip.

d(G) < 6if G is planar | | | |

< 2 iff G is a forest | | | |

vvyyy

ma
ma
ma
ma

Maximum Average Degree, Squares, and Degeneracy

Q: How do we measure a graph'’s sparsity?
A: Maximum average degree of G, denoted mad(G), is defined as

o 2lE(H))]
mad(G) := max V()|

mad(G) < 1 iff G is edgeless
mad(G) < 2 iff G is a forest

mad(G) < 4 if G is planar bip.
mad(G) < 6 if G is planar

vvyyy

Maximum Average Degree, Squares, and Degeneracy

Q: How do we measure a graph'’s sparsity?
A: Maximum average degree of G, denoted mad(G), is defined as

_ . 2E(H)|
mad(G) := max V()|
» mad(G) < 1iff G is edgeless
» mad(G) < 2 iff G is a forest
» mad(G) < 4 if G is planar bip.
» mad(G) < 6 if G is planar

Defn: The square, G2, of a graph G is formed from G
by adding each edge vw such that distg (v, w) = 2.

Maximum Average Degree, Squares, and Degeneracy

Q: How do we measure a graph'’s sparsity?
A: Maximum average degree of G, denoted mad(G), is defined as

_ . 2E(H)|
mad(G) := max V()|
» mad(G) < 1iff G is edgeless
» mad(G) < 2 iff G is a forest
» mad(G) < 4 if G is planar bip.
» mad(G) < 6 if G is planar

Defn: The square, G2, of a graph G is formed from G
by adding each edge vw such that distg (v, w) = 2.

Defn: A graph is k-degenerate if there is order o of V(G)
where each vertex has at most k neighbors later in o.

Maximum Average Degree, Squares, and Degeneracy

Q: How do we measure a graph'’s sparsity?
A: Maximum average degree of G, denoted mad(G), is defined as

_ . 2E(H)|
mad(G) := max V()|
» mad(G) < 1iff G is edgeless
» mad(G) < 2 iff G is a forest
» mad(G) < 4 if G is planar bip.
» mad(G) < 6 if G is planar

Defn: The square, G2, of a graph G is formed from G
by adding each edge vw such that distg (v, w) = 2.

Defn: A graph is k-degenerate if there is order o of V(G)
where each vertex has at most k neighbors later in o.

Obs: If G is k-degenerate, then mad(G) < 2k.

Motivating Questions and Examples
Q: If mad(G) < 4, what is the largest possible value of y(G?)?

Motivating Questions and Examples

Q: If mad(G) < 4, what is the largest possible value of y(G?)?
A1l: Bound uses A, since X(K12,A) =A+1and mad(Kia) < 2.

Motivating Questions and Examples

Q: If mad(G) < 4, what is the largest possible value of y(G?)?
A1l: Bound uses A, since X(K12’A) =A+1and mad(Kia) < 2.
A2: If G is 2-degenerate, then G? has degeneracy < 3A — 2.

Motivating Questions and Examples

Q: If mad(G) < 4, what is the largest possible value of y(G?)?
A1l: Bound uses A, since X(K12,A) =A+1and mad(Kia) < 2.
A2: If G is 2-degenerate, then G? has degeneracy < 3A — 2.

Thm: [Kierstead—Yang-Yi]
If mad(G) < 2k, then
deg(G?) < A(2k — 1) + 2k.

Motivating Questions and Examples

Q: If mad(G) < 4, what is the largest possible value of x(G?)?
A1l: Bound uses A, since X(KiA) =A+1and mad(Kia) < 2.
A2: If G is 2-degenerate, then G? has degeneracy < 3A — 2.

Thm: [Kierstead—Yang-Yi]

If mad(G) < 2k, then

deg(G?) < A(2k — 1) + 2k.
Thm: [Hocquard-Kim-Pierron]
For every D € 7T, there is Gp
s.t. A(Gp) =D and Gp is
2-degenerate (so mad(Gp) < 4)
and w(G3) = [5D/2].

Motivating Questions and Examples

Q: If mad(G) < 4, what is the largest possible value of y(G?)?
A1l: Bound uses A, since X(Klz,A) =A+1and mad(Kia) < 2.
A2: If G is 2-degenerate, then G? has degeneracy < 3A — 2.

Thm: [Kierstead—Yang-Yi] /li\\

If mad(G) < 2k, then ’/><\‘

deg(G?) < A(2k — 1) +2k. AL NN
V D I N

Thm: [Hocquard—Kim—Pierron] ‘/'/’l?:!\\:\ N7

For every D € 7", there is Gp \,,L\.@"Q,éf

s.t. A(GD) =D and Gp is S

2-degenerate (so mad(Gp) < 4)
and w(G3) = [5D/2].

Motivating Questions and Examples

Q: If mad(G) < 4, what is the largest possible value of y(G?)?
A1l: Bound uses A, since X(Klz,A) =A+1and mad(Kia) < 2.
A2: If G is 2-degenerate, then G? has degeneracy < 3A — 2.

®
Thm: [Kierstead—Yang-Yi] /l\\

If mad(G) < 2k, then /.44/6*\@\
deg(G?) < A(2k — 1) + 2k, e SE> NN

V D I N

Thm: [Hocquard—Kim—Pierron] ‘/'/’l?:!\\:\ N7
For every D € 7", there is Gp \,,L\.@"Q,éf

s.t. A(GD) =D and Gp is S

2-degenerate (so mad(Gp) < 4)
and w(G3) = [5D/2].

Q: What is max value, \?(4, D), over graphs
G with mad(G) < 4 and A < D of \(G?)?

Motivating Questions and Examples

Q: If mad(G) < 4, what is the largest possible value of y(G?)?
A1l: Bound uses A, since X(K12’A) =A+1and mad(Kia) < 2.
A2: If G is 2-degenerate, then G? has degeneracy < 3A — 2.

®
Thm: [Kierstead—Yang-Yi] /l\\

If mad(G) < 2k, then /.44/6*\@\
deg(G?) < A(2k — 1) + 2k, e SE> NN

Q I\ N

Thm: [Hocquard—Kim—Pierron] ‘I'I/’l}:!‘\:\ N7
For every D € 7", there is Gp \”L\.@"Q,éf

s.t. A(GD) =D and Gp is S

2-degenerate (so mad(Gp) < 4)
and w(G3) = [5D/2].

Q: What is max value, \?(4, D), over graphs
G with mad(G) < 4 and A < D of \(G?)?

A: |5D/2] < x?(4,D) < 3D +5.

Motivating Questions and Examples

Q: If mad(G) < 4, what is the largest possible value of y(G?)?
A1l: Bound uses A, since X(Klz,A) =A+1and mad(Kia) < 2.
A2: If G is 2-degenerate, then G? has degeneracy < 3A — 2.

Thm: [Kierstead—Yang-Yi]

If mad(G) < 2k, then e W,

deg(G?) < A(2k — 1) + 2k. 4/’%1%%‘%%\.
Thm: [Hocquard—Kim—Pierron] \ A I’.\:va)\\ X/
For every D € 7", there is Gp y‘%%i\.@"‘&;)\‘%f‘(/
st. A(Gp) = D and Gp is \\\/ N \\V//'
and w(G3) = [5D/2].

2-degenerate (so mad(Gp) < 4) \ />

Q: What is max value, \?(4, D), over graphs
G with mad(G) < 4 and A < D of \(G?)?

A: |5D/2] < x?(4,D) < 3D +5.

Rem: Upper bound on degeneracy sharp up to constant.

Main Theorem and Proof Outline

Main Thm: (a) If G is 2-degenerate with A < D, then
w(G?) <5D/2 +72.

Main Theorem and Proof Outline
Main Thm: (a) If G is 2-degenerate with A < D, then
w(G?) <5D/2 +72. (b) If G has mad(G) < 4 and A < D, then
w(G?) < 5D/2 +532.

Main Theorem and Proof Outline
Main Thm: (a) If G is 2-degenerate with A < D, then
w(G?) <5D/2 +72. (b) If G has mad(G) < 4 and A < D, then
w(G?) < 5D/2 +532. (Neither additive constant is sharp.)

Main Theorem and Proof Outline

Main Thm: (a) If G is 2-degenerate with A < D, then
w(G?) <5D/2 +72. (b) If G has mad(G) < 4 and A < D, then
w(G?) < 5D/2 +532. (Neither additive constant is sharp.)

Two Questions of Hocquard, Kim, and Pierron:

Main Theorem and Proof Outline
Main Thm: (a) If G is 2-degenerate with A < D, then
w(G?) <5D/2 +72. (b) If G has mad(G) < 4 and A < D, then
w(G?) < 5D/2 +532. (Neither additive constant is sharp.)

Two Questions of Hocquard, Kim, and Pierron:

1. Is there Dy s.t. every 2-degenerate graph
G with A > Dy has \(G?) < 5A/2?

Main Theorem and Proof Outline
Main Thm: (a) If G is 2-degenerate with A < D, then
w(G?) <5D/2 +72. (b) If G has mad(G) < 4 and A < D, then
w(G?) < 5D/2 +532. (Neither additive constant is sharp.)

Two Questions of Hocquard, Kim, and Pierron:
1. Is there Dy s.t. every 2-degenerate graph
G with A > Dy has \(G?) < 5A/2?
2. |Is there Dy s.t. every G with A > Dy
and mad(G) < 4 has y(G?) < 5A/27?

Main Theorem and Proof Outline
Main Thm: (a) If G is 2-degenerate with A < D, then
w(G?) <5D/2 +72. (b) If G has mad(G) < 4 and A < D, then
w(G?) < 5D/2 +532. (Neither additive constant is sharp.)

Two Questions of Hocquard, Kim, and Pierron:
1. Is there Dy s.t. every 2-degenerate graph
G with A > Dy has \(G?) < 5A/2?
2. |Is there Dy s.t. every G with A > Dy
and mad(G) < 4 has y(G?) < 5A/27?

Pf Outline:

Main Theorem and Proof Outline
Main Thm: (a) If G is 2-degenerate with A < D, then
w(G?) <5D/2 +72. (b) If G has mad(G) < 4 and A < D, then
w(G?) < 5D/2 +532. (Neither additive constant is sharp.)

Two Questions of Hocquard, Kim, and Pierron:
1. Is there Dy s.t. every 2-degenerate graph
G with A > Dy has \(G?) < 5A/2?
2. |Is there Dy s.t. every G with A > Dy
and mad(G) < 4 has y(G?) < 5A/27?

Pf Outline:

1. Construction of HKP above is best
possible among graphs that “look similar”.

Main Theorem and Proof Outline
Main Thm: (a) If G is 2-degenerate with A < D, then
w(G?) <5D/2 +72. (b) If G has mad(G) < 4 and A < D, then
w(G?) < 5D/2 + 532. (Neither additive constant is sharp.)

Two Questions of Hocquard, Kim, and Pierron:
1. Is there Dy s.t. every 2-degenerate graph
G with A > Dy has \(G?) < 5A/2?
2. |Is there Dy s.t. every G with A > Dy
and mad(G) < 4 has \(G?) < 5A/2?

Pf Outline:

1. Construction of HKP above is best
possible among graphs that “look similar”.

2. “Edit" arbitrary 2-degenerate graph G to
type above, shrinking w(G?) at most 72.

Main Theorem and Proof Outline
Main Thm: (a) If G is 2-degenerate with A < D, then
w(G?) <5D/2 +72. (b) If G has mad(G) < 4 and A < D, then
w(G?) < 5D/2 + 532. (Neither additive constant is sharp.)

Two Questions of Hocquard, Kim, and Pierron:
1. Is there Dy s.t. every 2-degenerate graph
G with A > Dy has \(G?) < 5A/2?
2. |Is there Dy s.t. every G with A > Dy
and mad(G) < 4 has \(G?) < 5A/2?

Pf Outline:
1. Construction of HKP above is best
possible among graphs that “look similar”.
2. “Edit" arbitrary 2-degenerate graph G to
type above, shrinking w(G?) at most 72.

3. "Edit" arbitrary G with mad(G) < 4 to
2-degenerate, shrinking w(G?) at most 460.

Which Graphs “Look Similar” to our Construction?

Defn: A 2-degeneracy order for G is order of V/(G) where each
vertex has < 2 later neighbors.

Which Graphs “Look Similar” to our Construction?

Defn: A 2-degeneracy order for G is order of V/(G) where each
vertex has < 2 later neighbors. Now G is nice w.r.t. a clique S in
G? if

Which Graphs “Look Similar” to our Construction?

Defn: A 2-degeneracy order for G is order of V/(G) where each
vertex has < 2 later neighbors. Now G is nice w.r.t. a clique S in
G?if (a) Sisanind. setin G

Which Graphs “Look Similar” to our Construction?

Defn: A 2-degeneracy order for G is order of V/(G) where each
vertex has < 2 later neighbors. Now G is nice w.r.t. a clique S in
G?if (a) Sis anind. set in G and (b) G has a 2-degeneracy order
o s.t. all vertices of S appear consecutively in o.

Which Graphs “Look Similar” to our Construction?

Defn: A 2-degeneracy order for G is order of V/(G) where each
vertex has < 2 later neighbors. Now G is nice w.r.t. a clique S in
G?if (a) Sis anind. set in G and (b) G has a 2-degeneracy order
o s.t. all vertices of S appear consecutively in o. (Below is nice.)

Which Graphs “Look Similar” to our Construction?

Defn: A 2-degeneracy order for G is order of V/(G) where each
vertex has < 2 later neighbors. Now G is nice w.r.t. a clique S in
G?if (a) Sis anind. set in G and (b) G has a 2-degeneracy order
o s.t. all vertices of S appear consecutively in o. (Below is nice.)

Thm 1: If G is nice w.r.t. maximum clique S
in G2 and A(G) < D, then w(G?) < 5D/2.

Which Graphs “Look Similar” to our Construction?

Defn: A 2-degeneracy order for G is order of V/(G) where each
vertex has < 2 later neighbors. Now G is nice w.r.t. a clique S in
G?if (a) Sis anind. set in G and (b) G has a 2-degeneracy order
o s.t. all vertices of S appear consecutively in o. (Below is nice.)

Thm 1: If G is nice w.r.t. maximum clique S
in G2 and A(G) < D, then w(G?) < 5D/2.

Thm 1': Let H be a multigraph with A(H) <
D. If each edge of H shares at least one end-

point with all but at most D — 2 other edges
of H, then |E(H)| < 5D/2.

Which Graphs “Look Similar” to our Construction?

Defn: A 2-degeneracy order for G is order of V/(G) where each
vertex has < 2 later neighbors. Now G is nice w.r.t. a clique S in
G?if (a) Sis anind. set in G and (b) G has a 2-degeneracy order
o s.t. all vertices of S appear consecutively in o. (Below is nice.)

Thm 1: If G is nice w.r.t. maximum clique S
in G2 and A(G) < D, then w(G?) < 5D/2.

Thm 1': Let H be a multigraph with A(H) <
D. If each edge of H shares at least one end-

point with all but at most D — 2 other edges
of H, then |E(H)| < 5D/2.

Rem: Thm 1" implies Thm 1.

Which Graphs “Look Similar” to our Construction?

Defn: A 2-degeneracy order for G is order of V/(G) where each
vertex has < 2 later neighbors. Now G is nice w.r.t. a clique S in
G?if (a) Sis anind. set in G and (b) G has a 2-degeneracy order
o s.t. all vertices of S appear consecutively in o. (Below is nice.)

Thm 1: If G is nice w.r.t. maximum clique S
in G2 and A(G) < D, then w(G?) < 5D/2.
Thm 1': Let H be a multigraph with A(H) <
D. If each edge of H shares at least one end-
point with all but at most D — 2 other edges
of H, then |E(H)| < 5D/2.

Rem: Thm 1" implies Thm 1.

Pf: Given G, S, o, delete all vertices before
S in order o, and contract one edge incident
to each vertex of S. Now |E(H)| = |S].

Proving Main Theorem (for 2-Degenerate Graphs)

Main Thm (a):
If G is 2-degenerate with A(G) < D, then w(G?) < 5D/2 + 72.

Proving Main Theorem (for 2-Degenerate Graphs)

Main Thm (a):
If G is 2-degenerate with A(G) < D, then w(G?) < 5D/2 + 72.

Big Idea: Given G, S, o, show all but constant subset of S is
ind. set.

Proving Main Theorem (for 2-Degenerate Graphs)

Main Thm (a):
If G is 2-degenerate with A(G) < D, then w(G?) < 5D/2 + 72.

Big Idea: Given G, S, o, show all but constant subset of S is
ind. set. Delete exceptions from S to get 5" with |S/| > [S| — 72
and (G')?[S'] complete.

Proving Main Theorem (for 2-Degenerate Graphs)

Main Thm (a):
If G is 2-degenerate with A(G) < D, then w(G?) < 5D/2 + 72.

Big Idea: Given G, S, o, show all but constant subset of S is
ind. set. Delete exceptions from S to get 5" with |S/| > [S| — 72
and (G')?[S'] complete. Alter o to o’ so G’ nice w.r.t. S’ and o’

Proving Main Theorem (for 2-Degenerate Graphs)

Main Thm (a):
If G is 2-degenerate with A(G) < D, then w(G?) < 5D/2 + 72.

Big Idea: Given G, S, o, show all but constant subset of S is
ind. set. Delete exceptions from S to get 5" with |S/| > [S| — 72
and (G)?[S'] complete. Alter o to o’ so G’ nice w.r.t. S’ and ¢’.

Intuition: If v € S doesn’t get adjacency (in G?) to lots of S via
vertices earlier in o, then both neighbors of S later in o give v lots
of adjacencies in G2 to verts of S.

Proving Main Theorem (for 2-Degenerate Graphs)

Main Thm (a):
If G is 2-degenerate with A(G) < D, then w(G?) < 5D/2 + 72.

Big Idea: Given G, S, o, show all but constant subset of S is
ind. set. Delete exceptions from S to get 5" with |S/| > [S| — 72
and (G)?[S'] complete. Alter o to o’ so G’ nice w.r.t. S’ and ¢’.

Intuition: If v € S doesn’t get adjacency (in G?) to lots of S via
vertices earlier in o, then both neighbors of S later in o give v lots
of adjacencies in G2 to verts of S. So 2 later neighbors act like
white vertices (last in o) in construction.

Proving Main Theorem (for 2-Degenerate Graphs)

Main Thm (a):
If G is 2-degenerate with A(G) < D, then w(G?) < 5D/2 + 72.

Big Idea: Given G, S, o, show all but constant subset of S is
ind. set. Delete exceptions from S to get 5" with |S/| > [S| — 72
and (G)?[S'] complete. Alter o to o’ so G’ nice w.r.t. S’ and ¢’.

Intuition: If v € S doesn’t get adjacency (in G?) to lots of S via
vertices earlier in o, then both neighbors of S later in o give v lots
of adjacencies in G2 to verts of S. So 2 later neighbors act like
white vertices (last in o) in construction.

Q: Why can't most verts in S get much help from verts earlier in o7

Proving Main Theorem (for 2-Degenerate Graphs)

Main Thm (a):
If G is 2-degenerate with A(G) < D, then w(G?) < 5D/2 + 72.

Big Idea: Given G, S, o, show all but constant subset of S is
ind. set. Delete exceptions from S to get 5" with |S/| > [S| — 72
and (G)?[S'] complete. Alter o to o’ so G’ nice w.r.t. S’ and ¢’.

Intuition: If v € S doesn’t get adjacency (in G?) to lots of S via
vertices earlier in o, then both neighbors of S later in o give v lots
of adjacencies in G2 to verts of S. So 2 later neighbors act like
white vertices (last in o) in construction.

Q: Why can't most verts in S get much help from verts earlier in o7
A: Because G is 2-degenerate.

Proving Main Theorem (for 2-Degenerate Graphs)

Main Thm (a):
If G is 2-degenerate with A(G) < D, then w(G?) < 5D/2 + 72.

Big Idea: Given G, S, o, show all but constant subset of S is
ind. set. Delete exceptions from S to get 5" with |S/| > [S| — 72
and (G)?[S'] complete. Alter o to o’ so G’ nice w.r.t. S’ and ¢’.

Intuition: If v € S doesn’t get adjacency (in G?) to lots of S via
vertices earlier in o, then both neighbors of S later in o give v lots
of adjacencies in G2 to verts of S. So 2 later neighbors act like
white vertices (last in o) in construction.

Q: Why can't most verts in S get much help from verts earlier in o7
A: Because G is 2-degenerate.

Q: How to formalize all of this?

Proving Main Theorem (for 2-Degenerate Graphs)

Main Thm (a):
If G is 2-degenerate with A(G) < D, then w(G?) < 5D/2 + 72.

Big Idea: Given G, S, o, show all but constant subset of S is
ind. set. Delete exceptions from S to get 5" with |S/| > [S| — 72
and (G)?[S'] complete. Alter o to o’ so G’ nice w.r.t. S’ and ¢’.

Intuition: If v € S doesn’t get adjacency (in G?) to lots of S via
vertices earlier in o, then both neighbors of S later in o give v lots
of adjacencies in G2 to verts of S. So 2 later neighbors act like
white vertices (last in o) in construction.

Q: Why can't most verts in S get much help from verts earlier in o7
A: Because G is 2-degenerate.

Q: How to formalize all of this?
A: Tokens!

Proving Main Theorem (for 2-Degenerate Graphs)
Main Thm (a):
If G is 2-degenerate with A(G) < D, then w(G?) <5D/2 + 72.

Big Idea: Given G, S, o, show all but constant subset of S is
ind. set. Delete exceptions from S to get 5" with |S'| > [S| — 72
and G'[S'] is complete. Alter o to o’ so G’ is nice w.r.t. S’ and o’.

Proving Main Theorem (for 2-Degenerate Graphs)
Main Thm (a):
If G is 2-degenerate with A(G) < D, then w(G?) <5D/2 + 72.

Big Idea: Given G, S, o, show all but constant subset of S is
ind. set. Delete exceptions from S to get 5" with |S'| > [S| — 72
and G'[S'] is complete. Alter o to o’ so G’ is nice w.r.t. S’ and o’.

Proving Main Theorem (for 2-Degenerate Graphs)
Main Thm (a):
If G is 2-degenerate with A(G) < D, then w(G?) <5D/2 + 72.

Big Idea: Given G, S, o, show all but constant subset of S is
ind. set. Delete exceptions from S to get 5" with |S'| > [S| — 72
and G'[S'] is complete. Alter o to o’ so G’ is nice w.r.t. S’ and o’.

Proving Main Theorem (for 2-Degenerate Graphs)
Main Thm (a):
If G is 2-degenerate with A(G) < D, then w(G?) <5D/2 + 72.

Big Idea: Given G, S, o, show all but constant subset of S is
ind. set. Delete exceptions from S to get 5" with |S'| > [S| — 72
and G'[S'] is complete. Alter o to o’ so G’ is nice w.r.t. S’ and o’.

Proving Main Theorem (for 2-Degenerate Graphs)
Main Thm (a):
If G is 2-degenerate with A(G) < D, then w(G?) <5D/2 + 72.

Big Idea: Given G, S, o, show all but constant subset of S is
ind. set. Delete exceptions from S to get 5" with |S'| > [S| — 72
and G'[S'] is complete. Alter o to o’ so G’ is nice w.r.t. S’ and o’.

12 12
R
9‘@
i
1234 123 12
(5) 4)

Proving Main Theorem (for 2-Degenerate Graphs)
Main Thm (a):
If G is 2-degenerate with A(G) < D, then w(G?) <5D/2 + 72.

Big Idea: Given G, S, o, show all but constant subset of S is
ind. set. Delete exceptions from S to get 5" with |S'| > [S| — 72
and G'[S'] is complete. Alter o to o’ so G’ is nice w.r.t. S’ and o’.

312

Proving Main Theorem (for 2-Degenerate Graphs)
Main Thm (a):
If G is 2-degenerate with A(G) < D, then w(G?) <5D/2 + 72.

Big Idea: Given G, S, o, show all but constant subset of S is
ind. set. Delete exceptions from S to get 5" with |S'| > [S| — 72
and G'[S'] is complete. Alter o to o’ so G’ is nice w.r.t. S’ and o’.

312

123456 2345 1245 234 1

Counting Tokens

Defn: Let tok(v) and prim(v) denote number of tokens
and number of primary tokens held by v when v is deleted.

Counting Tokens

Defn: Let tok(v) and prim(v) denote number of tokens
and number of primary tokens held by v when v is deleted.

Lem: If v € S and wy, wy are neighbors later in o, then

Counting Tokens

Defn: Let tok(v) and prim(v) denote number of tokens
and number of primary tokens held by v when v is deleted.

Lem: If v € S and wy, wy are neighbors later in o, then

1+ tok(v) + D + prim(w;) + prim(wo) +6 > |S| > 5D/2 + 60.

Counting Tokens

Defn: Let tok(v) and prim(v) denote number of tokens
and number of primary tokens held by v when v is deleted.

Lem: If v € S and wy, wy are neighbors later in o, then
1+ tok(v) + D + prim(w;) + prim(wo) +6 > |S| > 5D/2 + 60.

Pf: Orient each edge of G towards endpoint later in o.

Counting Tokens

Defn: Let tok(v) and prim(v) denote number of tokens
and number of primary tokens held by v when v is deleted.

Lem: If v € S and wy, wy are neighbors later in o, then
1+ tok(v) + D + prim(w;) + prim(wo) +6 > |S| > 5D/2 + 60.

Pf: Orient each edge of G towards endpoint later in o.
v:l1;

Counting Tokens

Defn: Let tok(v) and prim(v) denote number of tokens
and number of primary tokens held by v when v is deleted.

Lem: If v € S and wy, wy are neighbors later in o, then
1+ tok(v) + D + prim(w;) + prim(wo) +6 > |S| > 5D/2 + 60.

Pf: Orient each edge of G towards endpoint later in o.
v:1; —:tok(v);

Counting Tokens

Defn: Let tok(v) and prim(v) denote number of tokens
and number of primary tokens held by v when v is deleted.

Lem: If v € S and wy, wy are neighbors later in o, then
1+ tok(v) + D + prim(w;) + prim(wo) +6 > |S| > 5D/2 + 60.

Pf: Orient each edge of G towards endpoint later in o.
v:1l, —:tok(v); —— : tok(v);

Counting Tokens

Defn: Let tok(v) and prim(v) denote number of tokens
and number of primary tokens held by v when v is deleted.

Lem: If v € S and wy, wy are neighbors later in o, then
1+ tok(v) + D + prim(w;) + prim(wo) +6 > |S| > 5D/2 + 60.

Pf: Orient each edge of G towards endpoint later in o.
v:1l, —:tok(v); —— :tok(v); —+: D

Counting Tokens

Defn: Let tok(v) and prim(v) denote number of tokens
and number of primary tokens held by v when v is deleted.

Lem: If v € S and wy, wy are neighbors later in o, then
1+ tok(v) + D + prim(w;) + prim(wo) +6 > |S| > 5D/2 + 60.

Pf: Orient each edge of G towards endpoint later in o.
v:1l, —:tok(v); —— :tok(v); —+: D
+:2;

Counting Tokens

Defn: Let tok(v) and prim(v) denote number of tokens
and number of primary tokens held by v when v is deleted.

Lem: If v € S and wy, wy are neighbors later in o, then
1+ tok(v) + D + prim(w;) + prim(wo) +6 > |S| > 5D/2 + 60.

Pf: Orient each edge of G towards endpoint later in o.
v:1l, —:tok(v); —— :tok(v); —+: D
+:2; +4: 4

Counting Tokens

Defn: Let tok(v) and prim(v) denote number of tokens
and number of primary tokens held by v when v is deleted.

Lem: If v € S and wy, wy are neighbors later in o, then
1+ tok(v) + D + prim(w;) + prim(wo) +6 > |S| > 5D/2 + 60.

Pf: Orient each edge of G towards endpoint later in o.
v:1l, —:tok(v); —— :tok(v); —+: D
+:2; ++ 1 4; +— : prim(wy) + prim(wy);

Counting Tokens

Defn: Let tok(v) and prim(v) denote number of tokens
and number of primary tokens held by v when v is deleted.

Lem: If v € S and wy, wy are neighbors later in o, then

1+ tok(v) + D + prim(w;) + prim(wo) +6 > |S| > 5D/2 + 60.
Pf: Orient each edge of G towards endpoint later in o.

v:1l, —:tok(v); —— :tok(v); —+: D

+:2; ++ 1 4; +— : prim(wy) + prim(wy);

Defn: BiG := {v € V(G) : prim(v) > D/4}

Counting Tokens

Defn: Let tok(v) and prim(v) denote number of tokens
and number of primary tokens held by v when v is deleted.

Lem: If v € S and wy, wy are neighbors later in o, then
1+ tok(v) + D + prim(w;) + prim(wo) +6 > |S| > 5D/2 + 60.

Pf: Orient each edge of G towards endpoint later in o.
v:1l, —:tok(v); —— :tok(v); —+: D
+:2; ++ 1 4; +— : prim(wy) + prim(wy);

Defn: BiG := {v € V(G) : prim(v) > D/4}
Basic := {v € §:tok(v) < D/4}

Counting Tokens

Defn: Let tok(v) and prim(v) denote number of tokens
and number of primary tokens held by v when v is deleted.

Lem: If v € S and wy, wy are neighbors later in o, then
1+ tok(v) + D + prim(w;) + prim(wo) +6 > |S| > 5D/2 + 60.

Pf: Orient each edge of G towards endpoint later in o.
v:1l, —:tok(v); —— :tok(v); —+: D
+:2; ++ 1 4; +— : prim(wy) + prim(wy);

Defn: BiG := {v € V(G) : prim(v) > D/4}
Basic := {v € S : tok(v) < D/4}
Basic := S\ Basic

Counting Tokens

Defn: Let tok(v) and prim(v) denote number of tokens
and number of primary tokens held by v when v is deleted.

Lem: If v € S and wy, wy are neighbors later in o, then
1+ tok(v) + D + prim(w;) + prim(wo) +6 > |S| > 5D/2 + 60.

Pf: Orient each edge of G towards endpoint later in o.

v:1l, —:tok(v); —— :tok(v); —+: D

+:2; ++ 1 4; +— : prim(wy) + prim(wy);

Defn: BiG := {v € V(G) : prim(v) > D/4}
Basic:={v e S :tok(v) < D/4}
Basic := S\ Basic

Lem: Each v € BASIC has 2 later neighbors in BiG.

Counting Tokens

Defn: Let tok(v) and prim(v) denote number of tokens
and number of primary tokens held by v when v is deleted.

Lem: If v € S and wy, wy are neighbors later in o, then
1+ tok(v) + D + prim(w;) + prim(wo) +6 > |S| > 5D/2 + 60.

Pf: Orient each edge of G towards endpoint later in o.
v:1; —:tok(v); —— :tok(v); =+ : D
+:2; ++ 1 4; +— : prim(wy) + prim(wy);

Defn: BiG := {v € V(G) : prim(v) > D/4}
Basic := {v € S : tok(v) < D/4}
Basic := S\ Basic

Lem: Each v € BASIC has 2 later neighbors in BiG.
Lem:) tok(v) < 6[S| < 18D.

Counting Tokens

Defn: Let tok(v) and prim(v) denote number of tokens
and number of primary tokens held by v when v is deleted.

Lem: If v € S and wy, wy are neighbors later in o, then
1+ tok(v) + D + prim(w;) + prim(wo) +6 > |S| > 5D/2 + 60.

Pf: Orient each edge of G towards endpoint later in o.
v:1; —:tok(v); —— :tok(v); =+ : D
+:2; ++ 1 4; +— : prim(wy) + prim(wy);

Defn: BiG := {v € V(G) : prim(v) > D/4}
Basic := {v € S : tok(v) < D/4}
Basic := S\ Basic

Lem: Each v € BASIC has 2 later neighbors in BiG.
Lem:) tok(v) < 6|S| < 18D. So |BasicUBIG| < 18D/(D/4) < 72.

Counting Tokens

Defn: Let tok(v) and prim(v) denote number of tokens
and number of primary tokens held by v when v is deleted.

Lem: If v € S and wy, wy are neighbors later in o, then
1+ tok(v) + D + prim(w;) + prim(wo) +6 > |S| > 5D/2 + 60.

Pf: Orient each edge of G towards endpoint later in o.
v:1; —:tok(v); —— :tok(v); =+ : D
+:2; ++ 1 4; +— : prim(wy) + prim(wy);

Defn: BiG := {v € V(G) : prim(v) > D/4}
Basic := {v € S : tok(v) < D/4}
Basic := S\ Basic

Lem: Each v € BASIC has 2 later neighbors in BiG.

Lem:) tok(v) < 6|S| < 18D. So |BasicUBIG| < 18D/(D/4) < 72.
Cor: BASIC is independent set of size at least |S| — 72.

Open Questions

Defn: Let w?(2k, D) and y?(2k, D) be max w(G?) and max
x(G?) over all G such that mad(G) < 2k and A(G) < D.

Open Questions

Defn: Let w?(2k, D) and y?(2k, D) be max w(G?) and max
x(G?) over all G such that mad(G) < 2k and A(G) < D.

Conj: For D big enough \?(4, D) = 5D/2.

Open Questions

Defn: Let w?(2k, D) and y?(2k, D) be max w(G?) and max
x(G?) over all G such that mad(G) < 2k and A(G) < D.

Conj: For D big enough \?(4, D) = 5D/2.

Q: What is y?(2k, D) for each k > 27

Open Questions

Defn: Let w?(2k, D) and y?(2k, D) be max w(G?) and max
x(G?) over all G such that mad(G) < 2k and A(G) < D.

Conj: For D big enough \?(4, D) = 5D/2.

?

Q: What is y?(2k, D) for each 2
Q: What is w?(2k, D) for each 27

P
>

Open Questions

Defn: Let w?(2k, D) and y?(2k, D) be max w(G?) and max
x(G?) over all G such that mad(G) < 2k and A(G) < D.

Conj: For D big enough \?(4, D) = 5D/2.

Q: What is y?(2k, D) for each k > 2

Q: What is w?(2k, D) for each k > 2
Is this achieved by k-degenerate graphs?

Open Questions

Defn: Let w?(2k, D) and y?(2k, D) be max w(G?) and max
x(G?) over all G such that mad(G) < 2k and A(G) < D.

Conj: For D big enough \?(4, D) = 5D/2.

Q: What is y?(2k, D) for each k > 2

Q: What is w?(2k, D) for each k > 2
Is this achieved by k-degenerate graphs?

Rem: Don't even have good guess for this value.

Open Questions

Defn: Let w?(2k, D) and y?(2k, D) be max w(G?) and max
x(G?) over all G such that mad(G) < 2k and A(G) < D.

Conj: For D big enough \?(4, D) = 5D/2.

Q: What is y?(2k, D) for each k > 2

Q: What is w?(2k, D) for each k > 2
Is this achieved by k-degenerate graphs?

Rem: Don’t even have good guess for this value.
Conj: For each k > 1, for D big enough w.r.t. k,

x?(2k, D) < w?(2k, D) + cx.

Open Questions

Defn: Let w?(2k, D) and y?(2k, D) be max w(G?) and max
x(G?) over all G such that mad(G) < 2k and A(G) < D.

Conj: For D big enough \?(4, D) = 5D/2.

Q: What is y?(2k, D) for each k > 2

Q: What is w?(2k, D) for each k > 2
Is this achieved by k-degenerate graphs?

Rem: Don’t even have good guess for this value.
Conj: For each k > 1, for D big enough w.r.t. k,
x?(2k, D) < w?(2k, D) + cx.

(Possibly ¢, = 0 works.)

Summary

Q: What is max of y(G?) for G
with mad(G) < 4 and A < D?

Summary
Q: What is max of y(G?) for G
with mad(G) < 4 and A < D?
A: [5D/2| < x*(4,D) < 3D +5

Summary
Q: What is max of y(G?) for G
with mad(G) < 4 and A < D?
A: [5D/2| < x*(4,D) < 3D +5
Up: degeneracy; Low: construction

Summary
Q: What is max of y(G?) for G
with mad(G) < 4 and A < D?
A: |5D/2] < x?(4,D) <3D+5
Up: degeneracy; Low: construction

Summary
Q: What is max of \(G?) for G
with mad(G) < 4 and A < D?
A: |5D/2] < x?(4,D) <3D+5
Up: degeneracy; Low: construction
Rem: Degeneracy bound nearly sharp

Summary
Q: What is max of \(G?) for G
with mad(G) < 4 and A < D?
A: |5D/2] < x?(4,D) <3D+5
Up: degeneracy; Low: construction
Rem: Degeneracy bound nearly sharp
Q: Can we improve clique bound?

Summary
Q: What is max of y(G?) for G
with mad(G) < 4 and A < D?
A: |5D/2] < x?(4,D) <3D+5
Up: degeneracy; Low: construction
Rem: Degeneracy bound nearly sharp
Q: Can we improve clique bound?

Main Thm:
(a) If G is 2-degenerate with A < D, then w(G?) < 5D/2 + 72.

Summary
Q: What is max of y(G?) for G
with mad(G) < 4 and A < D?
A: |5D/2] < x?(4,D) <3D+5
Up: degeneracy; Low: construction
Rem: Degeneracy bound nearly sharp
Q: Can we improve clique bound?

Main Thm:
(a) If G is 2-degenerate with A < D, then w(G?) < 5D/2 + 72.
(b) If G has mad(G) < 4 and A < D, then w(G?) < 5D/2 + 532,

Summary
Q: What is max of y(G?) for G
with mad(G) < 4 and A < D?
A: |5D/2] < x?(4,D) <3D+5
Up: degeneracy; Low: construction
Rem: Degeneracy bound nearly sharp
Q: Can we improve clique bound?

Main Thm:
(a) If G is 2-degenerate with A < D, then w(G?) < 5D/2 + 72.
(b) If G has mad(G) < 4 and A < D, then w(G?) < 5D/2 + 532,

Pf Outline:

Summary
Q: What is max of y(G?) for G
with mad(G) < 4 and A < D?
A: |5D/2] < x?(4,D) <3D+5
Up: degeneracy; Low: construction
Rem: Degeneracy bound nearly sharp
Q: Can we improve clique bound?

Main Thm:
(a) If G is 2-degenerate with A < D, then w(G?) < 5D/2 + 72.
(b) If G has mad(G) < 4 and A < D, then w(G?) < 5D/2 + 532,

Pf Outline:
(i) Construction above best for “nice” graphs.

Summary
Q: What is max of y(G?) for G
with mad(G) < 4 and A < D?
A: |5D/2] < x?(4,D) <3D+5
Up: degeneracy; Low: construction
Rem: Degeneracy bound nearly sharp
Q: Can we improve clique bound?

Main Thm:
(a) If G is 2-degenerate with A < D, then w(G?) < 5D/2 + 72.
(b) If G has mad(G) < 4 and A < D, then w(G?) < 5D/2 + 532,

Pf Outline:
(i) Construction above best for “nice” graphs. (ii) Edit arbitrary
2-degenerate G to nice graph, shrinking w(G?) at most 72.

Summary
Q: What is max of \(G?) for G
with mad(G) < 4 and A < D?
A: |5D/2] < x?(4,D) <3D+5
Up: degeneracy; Low: construction
Rem: Degeneracy bound nearly sharp
Q: Can we improve clique bound?

Main Thm:
(a) If G is 2-degenerate with A < D, then w(G?) < 5D/2 + 72.
(b) If G has mad(G) < 4 and A < D, then w(G?) < 5D/2 + 532,

Pf Outline:

(i) Construction above best for “nice” graphs. (ii) Edit arbitrary
2-degenerate G to nice graph, shrinking w(G?) at most 72.

(iii) Edit arbitrary G with mad(G) < 4 to 2-degenerate, shrinking
w(G?) at most 460.

Summary
Q: What is max of \(G?) for G
with mad(G) < 4 and A < D?
A: |5D/2] < x?(4,D) <3D+5
Up: degeneracy; Low: construction
Rem: Degeneracy bound nearly sharp
Q: Can we improve clique bound?

Main Thm:
(a) If G is 2-degenerate with A < D, then w(G?) < 5D/2 + 72.
(b) If G has mad(G) < 4 and A < D, then w(G?) < 5D/2 + 532,

Pf Outline:

(i) Construction above best for “nice” graphs. (ii) Edit arbitrary
2-degenerate G to nice graph, shrinking w(G?) at most 72.

(iii) Edit arbitrary G with mad(G) < 4 to 2-degenerate, shrinking
w(G?) at most 460.

Rem: Many interesting open questions!

Summary
Q: What is max of \(G?) for G
with mad(G) < 4 and A < D?
A: |5D/2] < x?(4,D) <3D+5
Up: degeneracy; Low: construction
Rem: Degeneracy bound nearly sharp
Q: Can we improve clique bound?

Main Thm:
(a) If G is 2-degenerate with A < D, then w(G?) < 5D/2 + 72.
(b) If G has mad(G) < 4 and A < D, then w(G?) < 5D/2 + 532,

Pf Outline:

(i) Construction above best for “nice” graphs. (ii) Edit arbitrary
2-degenerate G to nice graph, shrinking w(G?) at most 72.

(iii) Edit arbitrary G with mad(G) < 4 to 2-degenerate, shrinking
w(G?) at most 460.

Rem: Many interesting open questions!
Read more: arXiv:2305.11763

