Cliques in Squares of Graphs with Maximum Average Degree less than 4

Daniel W. Cranston Virginia Commonwealth University dcranston@vcu.edu

Joint with Gexin Yu

AMS Sectional Meeting 9 September 2023

Q: How do we measure a graph's sparsity?

Q: How do we measure a graph's sparsity?

$$\mathsf{mad}(G) := \max_{H \subseteq G} \frac{2|E(H)|}{|V(H)|}.$$

Q: How do we measure a graph's sparsity?

A: Maximum average degree of G, denoted mad(G), is defined as

$$\mathsf{mad}(G) := \max_{H \subseteq G} \frac{2|E(H)|}{|V(H)|}.$$

• mad(G) < 1 iff G is edgeless

Q: How do we measure a graph's sparsity?

A: Maximum average degree of G, denoted mad(G), is defined as

$$\operatorname{mad}(G) := \max_{H \subseteq G} \frac{2|E(H)|}{|V(H)|}.$$

• mad(G) < 1 iff G is edgeless

0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0

Q: How do we measure a graph's sparsity?

A: Maximum average degree of G, denoted mad(G), is defined as

$$\operatorname{mad}(G) := \max_{H \subseteq G} \frac{2|E(H)|}{|V(H)|}.$$

mad(G) < 1 iff G is edgeless
 mad(G) < 2 iff G is a forest

0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0

Q: How do we measure a graph's sparsity?

A: Maximum average degree of G, denoted mad(G), is defined as

$$\operatorname{mad}(G) := \max_{H \subseteq G} \frac{2|E(H)|}{|V(H)|}.$$

mad(G) < 1 iff G is edgeless
mad(G) < 2 iff G is a forest

Q: How do we measure a graph's sparsity?

$$\operatorname{mad}(G) := \max_{H \subseteq G} \frac{2|E(H)|}{|V(H)|}.$$

- ▶ mad(G) < 1 iff G is edgeless</p>
- ▶ mad(G) < 2 iff G is a forest
- mad(G) < 4 if G is planar bip.

Q: How do we measure a graph's sparsity?

$$\operatorname{mad}(G) := \max_{H \subseteq G} \frac{2|E(H)|}{|V(H)|}.$$

- ▶ mad(G) < 1 iff G is edgeless</p>
- ▶ mad(G) < 2 iff G is a forest
- mad(G) < 4 if G is planar bip.

Q: How do we measure a graph's sparsity?

$$\operatorname{mad}(G) := \max_{H \subseteq G} \frac{2|E(H)|}{|V(H)|}.$$

- ▶ mad(G) < 1 iff G is edgeless</p>
- ▶ mad(G) < 2 iff G is a forest
- mad(G) < 4 if G is planar bip.
- mad(G) < 6 if G is planar

Q: How do we measure a graph's sparsity?

$$\operatorname{mad}(G) := \max_{H \subseteq G} \frac{2|E(H)|}{|V(H)|}.$$

- ▶ mad(G) < 1 iff G is edgeless</p>
- ▶ mad(G) < 2 iff G is a forest
- mad(G) < 4 if G is planar bip.
- mad(G) < 6 if G is planar

Q: How do we measure a graph's sparsity?

A: Maximum average degree of G, denoted mad(G), is defined as

$$\operatorname{mad}(G) := \max_{H \subseteq G} \frac{2|E(H)|}{|V(H)|}.$$

- ▶ mad(G) < 1 iff G is edgeless</p>
- ▶ mad(G) < 2 iff G is a forest
- mad(G) < 4 if G is planar bip.
- mad(G) < 6 if G is planar

Defn: The square, G^2 , of a graph G is formed from G by adding each edge vw such that $dist_G(v, w) = 2$.

Q: How do we measure a graph's sparsity?

A: Maximum average degree of G, denoted mad(G), is defined as

$$\operatorname{mad}(G) := \max_{H \subseteq G} \frac{2|E(H)|}{|V(H)|}.$$

- ▶ mad(G) < 1 iff G is edgeless</p>
- ▶ mad(G) < 2 iff G is a forest
- mad(G) < 4 if G is planar bip.
- mad(G) < 6 if G is planar

Defn: The square, G^2 , of a graph G is formed from G by adding each edge vw such that $dist_G(v, w) = 2$.

Defn: A graph is *k*-degenerate if there is order σ of V(G) where each vertex has at most *k* neighbors later in σ .

Q: How do we measure a graph's sparsity?

A: Maximum average degree of G, denoted mad(G), is defined as

$$\operatorname{mad}(G) := \max_{H \subseteq G} \frac{2|E(H)|}{|V(H)|}.$$

- ▶ mad(G) < 1 iff G is edgeless</p>
- mad(G) < 2 iff G is a forest
- mad(G) < 4 if G is planar bip.
- mad(G) < 6 if G is planar

Defn: The square, G^2 , of a graph G is formed from G by adding each edge vw such that $dist_G(v, w) = 2$.

Defn: A graph is *k*-degenerate if there is order σ of V(G) where each vertex has at most *k* neighbors later in σ .

Obs: If G is k-degenerate, then mad(G) < 2k.

Q: If mad(G) < 4, what is the largest possible value of $\chi(G^2)$?

Q: If mad(G) < 4, what is the largest possible value of $\chi(G^2)$? **A1:** Bound uses Δ , since $\chi(\mathcal{K}_{1,\Delta}^2) = \Delta + 1$ and mad($\mathcal{K}_{1,\Delta}$) < 2.

Q: If mad(*G*) < 4, what is the largest possible value of $\chi(G^2)$? **A1:** Bound uses Δ , since $\chi(K_{1,\Delta}^2) = \Delta + 1$ and mad($K_{1,\Delta}$) < 2.

A2: If G is 2-degenerate, then G^2 has degeneracy $\leq 3\Delta - 2$.

Q: If mad(G) < 4, what is the largest possible value of $\chi(G^2)$? **A1:** Bound uses Δ , since $\chi(K_{1,\Delta}^2) = \Delta + 1$ and mad($K_{1,\Delta}$) < 2. **A2:** If G is 2-degenerate, then G^2 has degeneracy $\leq 3\Delta - 2$.

Thm: [Kierstead–Yang–Yi] If mad(G) $\leq 2k$, then deg(G^2) $\leq \Delta(2k - 1) + 2k$.

Q: If mad(G) < 4, what is the largest possible value of $\chi(G^2)$? **A1:** Bound uses Δ , since $\chi(K_{1,\Delta}^2) = \Delta + 1$ and mad($K_{1,\Delta}$) < 2. **A2:** If G is 2-degenerate, then G^2 has degeneracy $\leq 3\Delta - 2$.

Thm: [Kierstead–Yang–Yi] If mad(G) $\leq 2k$, then deg(G^2) $\leq \Delta(2k - 1) + 2k$. **Thm:** [Hocquard–Kim–Pierron] For every $D \in \mathbb{Z}^+$, there is G_D s.t. $\Delta(G_D) = D$ and G_D is 2-degenerate (so mad(G_D) < 4) and $\omega(G_D^2) = \lfloor 5D/2 \rfloor$.

Q: If mad(G) < 4, what is the largest possible value of $\chi(G^2)$? **A1:** Bound uses Δ , since $\chi(K_{1,\Delta}^2) = \Delta + 1$ and mad($K_{1,\Delta}$) < 2. **A2:** If G is 2-degenerate, then G^2 has degeneracy $\leq 3\Delta - 2$.

Thm: [Kierstead–Yang–Yi] If mad(G) $\leq 2k$, then deg(G^2) $\leq \Delta(2k - 1) + 2k$. **Thm:** [Hocquard–Kim–Pierron] For every $D \in \mathbb{Z}^+$, there is G_D s.t. $\Delta(G_D) = D$ and G_D is 2-degenerate (so mad(G_D) < 4) and $\omega(G_D^2) = |5D/2|$.

Q: If mad(G) < 4, what is the largest possible value of $\chi(G^2)$? **A1:** Bound uses Δ , since $\chi(K_{1,\Delta}^2) = \Delta + 1$ and mad($K_{1,\Delta}$) < 2. **A2:** If G is 2-degenerate, then G^2 has degeneracy $\leq 3\Delta - 2$.

Thm: [Kierstead–Yang–Yi] If mad(G) $\leq 2k$, then deg(G^2) $\leq \Delta(2k - 1) + 2k$. **Thm:** [Hocquard–Kim–Pierron] For every $D \in \mathbb{Z}^+$, there is G_D s.t. $\Delta(G_D) = D$ and G_D is 2-degenerate (so mad(G_D) < 4) and $\omega(G_D^2) = \lfloor 5D/2 \rfloor$.

Q: What is max value, $\chi^2(4, D)$, over graphs *G* with mad(*G*) < 4 and $\Delta \leq D$ of $\chi(G^2)$?

Q: If mad(G) < 4, what is the largest possible value of $\chi(G^2)$? **A1:** Bound uses Δ , since $\chi(K_{1,\Delta}^2) = \Delta + 1$ and mad($K_{1,\Delta}$) < 2. **A2:** If G is 2-degenerate, then G^2 has degeneracy $\leq 3\Delta - 2$.

Thm: [Kierstead–Yang–Yi] If mad(G) $\leq 2k$, then deg(G^2) $\leq \Delta(2k - 1) + 2k$. **Thm:** [Hocquard–Kim–Pierron] For every $D \in \mathbb{Z}^+$, there is G_D s.t. $\Delta(G_D) = D$ and G_D is 2-degenerate (so mad(G_D) < 4) and $\omega(G_D^2) = \lfloor 5D/2 \rfloor$.

Q: What is max value, $\chi^2(4, D)$, over graphs *G* with mad(*G*) < 4 and $\Delta \leq D$ of $\chi(G^2)$? **A**: $|5D/2| \leq \chi^2(4, D) \leq 3D + 5$.

Q: If mad(G) < 4, what is the largest possible value of $\chi(G^2)$? **A1:** Bound uses Δ , since $\chi(K_{1,\Delta}^2) = \Delta + 1$ and mad($K_{1,\Delta}$) < 2. **A2:** If G is 2-degenerate, then G^2 has degeneracy $\leq 3\Delta - 2$.

Thm: [Kierstead–Yang–Yi] If mad(G) $\leq 2k$, then deg(G^2) $\leq \Delta(2k - 1) + 2k$. **Thm:** [Hocquard–Kim–Pierron] For every $D \in \mathbb{Z}^+$, there is G_D s.t. $\Delta(G_D) = D$ and G_D is 2-degenerate (so mad(G_D) < 4) and $\omega(G_D^2) = \lfloor 5D/2 \rfloor$.

Q: What is max value, $\chi^2(4, D)$, over graphs *G* with mad(*G*) < 4 and $\Delta \leq D$ of $\chi(G^2)$?

A: $\lfloor 5D/2 \rfloor \leq \chi^2(4, D) \leq 3D + 5.$

Rem: Upper bound on degeneracy sharp up to constant.

Main Thm: (a) If G is 2-degenerate with $\Delta \leq D$, then $\omega(G^2) \leq 5D/2 + 72$.

Main Thm: (a) If G is 2-degenerate with $\Delta \leq D$, then $\omega(G^2) \leq 5D/2 + 72$. (b) If G has mad(G) < 4 and $\Delta \leq D$, then $\omega(G^2) \leq 5D/2 + 532$.

Main Thm: (a) If G is 2-degenerate with $\Delta \leq D$, then $\omega(G^2) \leq 5D/2 + 72$. (b) If G has mad(G) < 4 and $\Delta \leq D$, then $\omega(G^2) \leq 5D/2 + 532$. (Neither additive constant is sharp.)

Main Thm: (a) If G is 2-degenerate with $\Delta \leq D$, then $\omega(G^2) \leq 5D/2 + 72$. (b) If G has mad(G) < 4 and $\Delta \leq D$, then $\omega(G^2) \leq 5D/2 + 532$. (Neither additive constant is sharp.)

Two Questions of Hocquard, Kim, and Pierron:

Main Thm: (a) If G is 2-degenerate with $\Delta \leq D$, then $\omega(G^2) \leq 5D/2 + 72$. (b) If G has mad(G) < 4 and $\Delta \leq D$, then $\omega(G^2) \leq 5D/2 + 532$. (Neither additive constant is sharp.)

Two Questions of Hocquard, Kim, and Pierron:

- 1. Is there D_0 s.t. every 2-degenerate graph
 - G with $\Delta \geqslant D_0$ has $\chi(G^2) \leqslant 5\Delta/2$?

Main Thm: (a) If G is 2-degenerate with $\Delta \leq D$, then $\omega(G^2) \leq 5D/2 + 72$. (b) If G has mad(G) < 4 and $\Delta \leq D$, then $\omega(G^2) \leq 5D/2 + 532$. (Neither additive constant is sharp.)

Two Questions of Hocquard, Kim, and Pierron:

- 1. Is there D_0 s.t. every 2-degenerate graph *G* with $\Delta \ge D_0$ has $\chi(G^2) \le 5\Delta/2$?
- 2. Is there D_0 s.t. every G with $\Delta \ge D_0$ and mad(G) < 4 has $\chi(G^2) \le 5\Delta/2$?

Main Thm: (a) If G is 2-degenerate with $\Delta \leq D$, then $\omega(G^2) \leq 5D/2 + 72$. (b) If G has mad(G) < 4 and $\Delta \leq D$, then $\omega(G^2) \leq 5D/2 + 532$. (Neither additive constant is sharp.)

Two Questions of Hocquard, Kim, and Pierron:

- 1. Is there D_0 s.t. every 2-degenerate graph *G* with $\Delta \ge D_0$ has $\chi(G^2) \le 5\Delta/2$?
- 2. Is there D_0 s.t. every G with $\Delta \ge D_0$ and mad(G) < 4 has $\chi(G^2) \le 5\Delta/2$?

Pf Outline:

Main Thm: (a) If G is 2-degenerate with $\Delta \leq D$, then $\omega(G^2) \leq 5D/2 + 72$. (b) If G has mad(G) < 4 and $\Delta \leq D$, then $\omega(G^2) \leq 5D/2 + 532$. (Neither additive constant is sharp.)

Two Questions of Hocquard, Kim, and Pierron:

- 1. Is there D_0 s.t. every 2-degenerate graph G with $\Delta \ge D_0$ has $\chi(G^2) \le 5\Delta/2$?
- 2. Is there D_0 s.t. every G with $\Delta \ge D_0$ and mad(G) < 4 has $\chi(G^2) \le 5\Delta/2$?

Pf Outline:

 Construction of HKP above is best possible among graphs that "look similar".

Main Thm: (a) If G is 2-degenerate with $\Delta \leq D$, then $\omega(G^2) \leq 5D/2 + 72$. (b) If G has mad(G) < 4 and $\Delta \leq D$, then $\omega(G^2) \leq 5D/2 + 532$. (Neither additive constant is sharp.)

Two Questions of Hocquard, Kim, and Pierron:

- 1. Is there D_0 s.t. every 2-degenerate graph *G* with $\Delta \ge D_0$ has $\chi(G^2) \le 5\Delta/2$?
- 2. Is there D_0 s.t. every G with $\Delta \ge D_0$ and mad(G) < 4 has $\chi(G^2) \le 5\Delta/2$?

Pf Outline:

- Construction of HKP above is best possible among graphs that "look similar".
- 2. "Edit" arbitrary 2-degenerate graph G to type above, shrinking $\omega(G^2)$ at most 72.

Main Thm: (a) If G is 2-degenerate with $\Delta \leq D$, then $\omega(G^2) \leq 5D/2 + 72$. (b) If G has mad(G) < 4 and $\Delta \leq D$, then $\omega(G^2) \leq 5D/2 + 532$. (Neither additive constant is sharp.)

Two Questions of Hocquard, Kim, and Pierron:

- 1. Is there D_0 s.t. every 2-degenerate graph G with $\Delta \ge D_0$ has $\chi(G^2) \le 5\Delta/2$?
- 2. Is there D_0 s.t. every G with $\Delta \ge D_0$ and mad(G) < 4 has $\chi(G^2) \le 5\Delta/2$?

Pf Outline:

- Construction of HKP above is best possible among graphs that "look similar".
- 2. "Edit" arbitrary 2-degenerate graph G to type above, shrinking $\omega(G^2)$ at most 72.
- "Edit" arbitrary G with mad(G) < 4 to 2-degenerate, shrinking ω(G²) at most 460.

Which Graphs "Look Similar" to our Construction?

Defn: A 2-degeneracy order for *G* is order of V(G) where each vertex has ≤ 2 later neighbors.

Which Graphs "Look Similar" to our Construction?

Defn: A 2-degeneracy order for *G* is order of V(G) where each vertex has ≤ 2 later neighbors. Now *G* is nice w.r.t. a clique *S* in G^2 if
Defn: A 2-degeneracy order for *G* is order of V(G) where each vertex has ≤ 2 later neighbors. Now *G* is nice w.r.t. a clique *S* in G^2 if (a) *S* is an ind. set in *G*

Defn: A 2-degeneracy order for *G* is order of V(G) where each vertex has ≤ 2 later neighbors. Now *G* is nice w.r.t. a clique *S* in G^2 if (a) *S* is an ind. set in *G* and (b) *G* has a 2-degeneracy order σ s.t. all vertices of *S* appear consecutively in σ .

Defn: A 2-degeneracy order for *G* is order of V(G) where each vertex has ≤ 2 later neighbors. Now *G* is nice w.r.t. a clique *S* in G^2 if (a) *S* is an ind. set in *G* and (b) *G* has a 2-degeneracy order σ s.t. all vertices of *S* appear consecutively in σ . (Below is nice.)

Defn: A 2-degeneracy order for *G* is order of V(G) where each vertex has ≤ 2 later neighbors. Now *G* is nice w.r.t. a clique *S* in G^2 if (a) *S* is an ind. set in *G* and (b) *G* has a 2-degeneracy order σ s.t. all vertices of *S* appear consecutively in σ . (Below is nice.)

Thm 1: If G is nice w.r.t. maximum clique S in G^2 and $\Delta(G) \leq D$, then $\omega(G^2) \leq 5D/2$.

Defn: A 2-degeneracy order for *G* is order of V(G) where each vertex has ≤ 2 later neighbors. Now *G* is nice w.r.t. a clique *S* in G^2 if (a) *S* is an ind. set in *G* and (b) *G* has a 2-degeneracy order σ s.t. all vertices of *S* appear consecutively in σ . (Below is nice.)

Thm 1: If *G* is nice w.r.t. maximum clique *S* in G^2 and $\Delta(G) \leq D$, then $\omega(G^2) \leq 5D/2$. **Thm 1':** Let *H* be a multigraph with $\Delta(H) \leq D$. If each edge of *H* shares at least one endpoint with all but at most D - 2 other edges of *H*, then $|E(H)| \leq 5D/2$.

Defn: A 2-degeneracy order for *G* is order of V(G) where each vertex has ≤ 2 later neighbors. Now *G* is nice w.r.t. a clique *S* in G^2 if (a) *S* is an ind. set in *G* and (b) *G* has a 2-degeneracy order σ s.t. all vertices of *S* appear consecutively in σ . (Below is nice.)

Thm 1: If G is nice w.r.t. maximum clique S in G^2 and $\Delta(G) \leq D$, then $\omega(G^2) \leq 5D/2$. **Thm 1':** Let H be a multigraph with $\Delta(H) \leq D$. If each edge of H shares at least one endpoint with all but at most D - 2 other edges of H, then $|E(H)| \leq 5D/2$.

Rem: Thm 1' implies Thm 1.

Defn: A 2-degeneracy order for *G* is order of V(G) where each vertex has ≤ 2 later neighbors. Now *G* is nice w.r.t. a clique *S* in G^2 if (a) *S* is an ind. set in *G* and (b) *G* has a 2-degeneracy order σ s.t. all vertices of *S* appear consecutively in σ . (Below is nice.)

Thm 1: If G is nice w.r.t. maximum clique S in G^2 and $\Delta(G) \leq D$, then $\omega(G^2) \leq 5D/2$. **Thm 1':** Let H be a multigraph with $\Delta(H) \leq D$. If each edge of H shares at least one endpoint with all but at most D - 2 other edges of H, then $|E(H)| \leq 5D/2$.

Rem: Thm 1' implies Thm 1.

Pf: Given *G*, *S*, σ , delete all vertices before *S* in order σ , and contract one edge incident to each vertex of *S*. Now |E(H)| = |S|.

Main Thm (a):

If G is 2-degenerate with $\Delta(G) \leq D$, then $\omega(G^2) \leq 5D/2 + 72$.

Main Thm (a):

If G is 2-degenerate with $\Delta(G) \leq D$, then $\omega(G^2) \leq 5D/2 + 72$.

Big Idea: Given G, S, σ , show all but constant subset of S is ind. set.

Main Thm (a): If G is 2-degenerate with $\Delta(G) \leq D$, then $\omega(G^2) \leq 5D/2 + 72$.

Big Idea: Given G, S, σ , show all but constant subset of S is ind. set. Delete exceptions from S to get S' with $|S'| \ge |S| - 72$ and $(G')^2[S']$ complete.

Main Thm (a): If G is 2-degenerate with $\Delta(G) \leq D$, then $\omega(G^2) \leq 5D/2 + 72$.

Main Thm (a): If G is 2-degenerate with $\Delta(G) \leq D$, then $\omega(G^2) \leq 5D/2 + 72$.

Big Idea: Given G, S, σ , show all but constant subset of S is ind. set. Delete exceptions from S to get S' with $|S'| \ge |S| - 72$ and $(G')^2[S']$ complete. Alter σ to σ' so G' nice w.r.t. S' and σ' .

Intuition: If $v \in S$ doesn't get adjacency (in G^2) to lots of S via vertices earlier in σ , then both neighbors of S later in σ give v lots of adjacencies in G^2 to verts of S.

Main Thm (a): If G is 2-degenerate with $\Delta(G) \leq D$, then $\omega(G^2) \leq 5D/2 + 72$.

Big Idea: Given G, S, σ , show all but constant subset of S is ind. set. Delete exceptions from S to get S' with $|S'| \ge |S| - 72$ and $(G')^2[S']$ complete. Alter σ to σ' so G' nice w.r.t. S' and σ' .

Intuition: If $v \in S$ doesn't get adjacency (in G^2) to lots of S via vertices earlier in σ , then both neighbors of S later in σ give v lots of adjacencies in G^2 to verts of S. So 2 later neighbors act like white vertices (last in σ) in construction.

Main Thm (a): If G is 2-degenerate with $\Delta(G) \leq D$, then $\omega(G^2) \leq 5D/2 + 72$.

Big Idea: Given G, S, σ , show all but constant subset of S is ind. set. Delete exceptions from S to get S' with $|S'| \ge |S| - 72$ and $(G')^2[S']$ complete. Alter σ to σ' so G' nice w.r.t. S' and σ' .

Intuition: If $v \in S$ doesn't get adjacency (in G^2) to lots of S via vertices earlier in σ , then both neighbors of S later in σ give v lots of adjacencies in G^2 to verts of S. So 2 later neighbors act like white vertices (last in σ) in construction.

Q: Why can't most verts in S get much help from verts earlier in σ ?

Main Thm (a): If G is 2-degenerate with $\Delta(G) \leq D$, then $\omega(G^2) \leq 5D/2 + 72$.

Big Idea: Given G, S, σ , show all but constant subset of S is ind. set. Delete exceptions from S to get S' with $|S'| \ge |S| - 72$ and $(G')^2[S']$ complete. Alter σ to σ' so G' nice w.r.t. S' and σ' .

Intuition: If $v \in S$ doesn't get adjacency (in G^2) to lots of S via vertices earlier in σ , then both neighbors of S later in σ give v lots of adjacencies in G^2 to verts of S. So 2 later neighbors act like white vertices (last in σ) in construction.

Q: Why can't most verts in *S* get much help from verts earlier in σ ? **A**: Because *G* is 2-degenerate.

Main Thm (a): If G is 2-degenerate with $\Delta(G) \leq D$, then $\omega(G^2) \leq 5D/2 + 72$.

Big Idea: Given G, S, σ , show all but constant subset of S is ind. set. Delete exceptions from S to get S' with $|S'| \ge |S| - 72$ and $(G')^2[S']$ complete. Alter σ to σ' so G' nice w.r.t. S' and σ' .

Intuition: If $v \in S$ doesn't get adjacency (in G^2) to lots of S via vertices earlier in σ , then both neighbors of S later in σ give v lots of adjacencies in G^2 to verts of S. So 2 later neighbors act like white vertices (last in σ) in construction.

Q: Why can't most verts in *S* get much help from verts earlier in σ ? **A**: Because *G* is 2-degenerate.

Q: How to formalize all of this?

Main Thm (a): If G is 2-degenerate with $\Delta(G) \leq D$, then $\omega(G^2) \leq 5D/2 + 72$.

Big Idea: Given G, S, σ , show all but constant subset of S is ind. set. Delete exceptions from S to get S' with $|S'| \ge |S| - 72$ and $(G')^2[S']$ complete. Alter σ to σ' so G' nice w.r.t. S' and σ' .

Intuition: If $v \in S$ doesn't get adjacency (in G^2) to lots of S via vertices earlier in σ , then both neighbors of S later in σ give v lots of adjacencies in G^2 to verts of S. So 2 later neighbors act like white vertices (last in σ) in construction.

Q: Why can't most verts in *S* get much help from verts earlier in σ ? **A**: Because *G* is 2-degenerate.

- Q: How to formalize all of this?
- A: Tokens!

If G is 2-degenerate with $\Delta(G) \leq D$, then $\omega(G^2) \leq 5D/2 + 72$.

If G is 2-degenerate with $\Delta(G) \leq D$, then $\omega(G^2) \leq 5D/2 + 72$.

If G is 2-degenerate with $\Delta(G) \leq D$, then $\omega(G^2) \leq 5D/2 + 72$.

If G is 2-degenerate with $\Delta(G) \leq D$, then $\omega(G^2) \leq 5D/2 + 72$.

If G is 2-degenerate with $\Delta(G) \leq D$, then $\omega(G^2) \leq 5D/2 + 72$.

If G is 2-degenerate with $\Delta(G) \leq D$, then $\omega(G^2) \leq 5D/2 + 72$.

If G is 2-degenerate with $\Delta(G) \leq D$, then $\omega(G^2) \leq 5D/2 + 72$.

Defn: Let tok(v) and prim(v) denote number of tokens and number of primary tokens held by v when v is deleted.

Defn: Let tok(v) and prim(v) denote number of tokens and number of primary tokens held by v when v is deleted. **Lem:** If $v \in S$ and w_1, w_2 are neighbors later in σ , then

Defn: Let tok(v) and prim(v) denote number of tokens and number of primary tokens held by v when v is deleted. **Lem:** If $v \in S$ and w_1, w_2 are neighbors later in σ , then

 $1 + \operatorname{tok}(v) + D + \operatorname{prim}(w_1) + \operatorname{prim}(w_2) + 6 \ge |S| \ge 5D/2 + 60.$

Defn: Let tok(v) and prim(v) denote number of tokens and number of primary tokens held by v when v is deleted. **Lem:** If $v \in S$ and w_1, w_2 are neighbors later in σ , then

 $1 + \operatorname{tok}(v) + D + \operatorname{prim}(w_1) + \operatorname{prim}(w_2) + 6 \ge |S| \ge 5D/2 + 60.$

Pf: Orient each edge of G towards endpoint later in σ .

Defn: Let tok(v) and prim(v) denote number of tokens and number of primary tokens held by v when v is deleted. **Lem:** If $v \in S$ and w_1, w_2 are neighbors later in σ , then

 $1 + \operatorname{tok}(v) + D + \operatorname{prim}(w_1) + \operatorname{prim}(w_2) + 6 \ge |S| \ge 5D/2 + 60.$

Pf: Orient each edge of *G* towards endpoint later in σ . *v* : 1;

Defn: Let tok(v) and prim(v) denote number of tokens and number of primary tokens held by v when v is deleted. **Lem:** If $v \in S$ and w_1, w_2 are neighbors later in σ , then

 $1 + \operatorname{tok}(v) + D + \operatorname{prim}(w_1) + \operatorname{prim}(w_2) + 6 \ge |S| \ge 5D/2 + 60.$

Pf: Orient each edge of *G* towards endpoint later in σ . v : 1; -: tok(v);

Defn: Let tok(v) and prim(v) denote number of tokens and number of primary tokens held by v when v is deleted. **Lem:** If $v \in S$ and w_1, w_2 are neighbors later in σ , then

 $1 + \operatorname{tok}(v) + D + \operatorname{prim}(w_1) + \operatorname{prim}(w_2) + 6 \ge |S| \ge 5D/2 + 60.$

Pf: Orient each edge of *G* towards endpoint later in σ . v : 1; -: tok(v); --: tok(v);

Defn: Let tok(v) and prim(v) denote number of tokens and number of primary tokens held by v when v is deleted. **Lem:** If $v \in S$ and w_1, w_2 are neighbors later in σ , then

 $1 + \operatorname{tok}(v) + D + \operatorname{prim}(w_1) + \operatorname{prim}(w_2) + 6 \ge |S| \ge 5D/2 + 60.$

Pf: Orient each edge of *G* towards endpoint later in σ . v : 1; -: tok(v); --: tok(v); -+: D

Defn: Let tok(v) and prim(v) denote number of tokens and number of primary tokens held by v when v is deleted. **Lem:** If $v \in S$ and w_1, w_2 are neighbors later in σ , then

 $1 + \operatorname{tok}(v) + D + \operatorname{prim}(w_1) + \operatorname{prim}(w_2) + 6 \ge |S| \ge 5D/2 + 60.$

Pf: Orient each edge of *G* towards endpoint later in σ . v : 1; -: tok(v); --: tok(v); -+: D+: 2;

Defn: Let tok(v) and prim(v) denote number of tokens and number of primary tokens held by v when v is deleted. **Lem:** If $v \in S$ and w_1, w_2 are neighbors later in σ , then

 $1 + \operatorname{tok}(v) + D + \operatorname{prim}(w_1) + \operatorname{prim}(w_2) + 6 \ge |S| \ge 5D/2 + 60.$

Pf: Orient each edge of *G* towards endpoint later in σ . v : 1; -: tok(v); --: tok(v); -+: D+: 2; ++: 4;

Defn: Let tok(v) and prim(v) denote number of tokens and number of primary tokens held by v when v is deleted. **Lem:** If $v \in S$ and w_1, w_2 are neighbors later in σ , then

 $1 + \operatorname{tok}(v) + D + \operatorname{prim}(w_1) + \operatorname{prim}(w_2) + 6 \ge |S| \ge 5D/2 + 60.$

Pf: Orient each edge of *G* towards endpoint later in σ . v : 1; -: tok(v); --: tok(v); -+: D $+: 2; ++: 4; +-: prim(w_1) + prim(w_2);$

Defn: Let tok(v) and prim(v) denote number of tokens and number of primary tokens held by v when v is deleted. **Lem:** If $v \in S$ and w_1, w_2 are neighbors later in σ , then

 $1 + \operatorname{tok}(v) + D + \operatorname{prim}(w_1) + \operatorname{prim}(w_2) + 6 \ge |S| \ge 5D/2 + 60.$

Pf: Orient each edge of *G* towards endpoint later in σ . v : 1; -: tok(v); --: tok(v); -+: D $+: 2; ++: 4; +-: prim(w_1) + prim(w_2);$

Defn: BIG := { $v \in V(G) : prim(v) > D/4$ }
Defn: Let tok(v) and prim(v) denote number of tokens and number of primary tokens held by v when v is deleted. **Lem:** If $v \in S$ and w_1, w_2 are neighbors later in σ , then

 $1 + \operatorname{tok}(v) + D + \operatorname{prim}(w_1) + \operatorname{prim}(w_2) + 6 \ge |S| \ge 5D/2 + 60.$

Pf: Orient each edge of *G* towards endpoint later in σ . v : 1; -: tok(v); --: tok(v); -+: D $+: 2; ++: 4; +-: prim(w_1) + prim(w_2);$

Defn: BIG := { $v \in V(G) : prim(v) > D/4$ } BASIC := { $v \in S : tok(v) < D/4$ }

Defn: Let tok(v) and prim(v) denote number of tokens and number of primary tokens held by v when v is deleted. **Lem:** If $v \in S$ and w_1, w_2 are neighbors later in σ , then

 $1 + \operatorname{tok}(v) + D + \operatorname{prim}(w_1) + \operatorname{prim}(w_2) + 6 \ge |S| \ge 5D/2 + 60.$

Pf: Orient each edge of *G* towards endpoint later in σ . v : 1; -: tok(v); --: tok(v); -+: D $+: 2; ++: 4; +-: prim(w_1) + prim(w_2);$

Defn: BIG := { $v \in V(G)$: prim(v) > D/4} BASIC := { $v \in S$: tok(v) < D/4} BASIC := $S \setminus BASIC$

Defn: Let tok(v) and prim(v) denote number of tokens and number of primary tokens held by v when v is deleted. **Lem:** If $v \in S$ and w_1, w_2 are neighbors later in σ , then

 $1 + \operatorname{tok}(v) + D + \operatorname{prim}(w_1) + \operatorname{prim}(w_2) + 6 \ge |S| \ge 5D/2 + 60.$

Pf: Orient each edge of *G* towards endpoint later in σ . v : 1; -: tok(v); --: tok(v); -+: D $+: 2; ++: 4; +-: prim(w_1) + prim(w_2);$

Defn: BIG := { $v \in V(G)$: prim(v) > D/4} BASIC := { $v \in S$: tok(v) < D/4} BASIC := $S \setminus BASIC$

Lem: Each $v \in BASIC$ has 2 later neighbors in BIG.

Defn: Let tok(v) and prim(v) denote number of tokens and number of primary tokens held by v when v is deleted. **Lem:** If $v \in S$ and w_1, w_2 are neighbors later in σ , then

 $1 + \operatorname{tok}(v) + D + \operatorname{prim}(w_1) + \operatorname{prim}(w_2) + 6 \ge |S| \ge 5D/2 + 60.$

Pf: Orient each edge of *G* towards endpoint later in σ . v : 1; -: tok(v); --: tok(v); -+: D $+: 2; ++: 4; +-: prim(w_1) + prim(w_2);$

Defn: BIG := { $v \in V(G)$: prim(v) > D/4} BASIC := { $v \in S$: tok(v) < D/4} BASIC := $S \setminus BASIC$

Lem: Each $v \in BASIC$ has 2 later neighbors in BIG. **Lem:** $\sum_{v} \operatorname{tok}(v) \leq 6|S| \leq 18D$.

Defn: Let tok(v) and prim(v) denote number of tokens and number of primary tokens held by v when v is deleted. **Lem:** If $v \in S$ and w_1, w_2 are neighbors later in σ , then

 $1 + \operatorname{tok}(v) + D + \operatorname{prim}(w_1) + \operatorname{prim}(w_2) + 6 \ge |S| \ge 5D/2 + 60.$

Pf: Orient each edge of *G* towards endpoint later in σ . v : 1; -: tok(v); --: tok(v); -+: D $+: 2; ++: 4; +-: prim(w_1) + prim(w_2);$

Defn: BIG := { $v \in V(G)$: prim(v) > D/4} BASIC := { $v \in S$: tok(v) < D/4} BASIC := $S \setminus BASIC$

Lem: Each $v \in BASIC$ has 2 later neighbors in BIG. **Lem:** $\sum_{v} tok(v) \leq 6|S| \leq 18D$. So $|\overline{BASIC} \cup BIG| \leq 18D/(D/4) \leq 72$.

Defn: Let tok(v) and prim(v) denote number of tokens and number of primary tokens held by v when v is deleted. **Lem:** If $v \in S$ and w_1, w_2 are neighbors later in σ , then

 $1 + \operatorname{tok}(v) + D + \operatorname{prim}(w_1) + \operatorname{prim}(w_2) + 6 \ge |S| \ge 5D/2 + 60.$

Pf: Orient each edge of *G* towards endpoint later in σ . v : 1; -: tok(v); --: tok(v); -+: D $+: 2; ++: 4; +-: prim(w_1) + prim(w_2);$

Defn: BIG := { $v \in V(G)$: prim(v) > D/4} BASIC := { $v \in S$: tok(v) < D/4} BASIC := $S \setminus BASIC$

Lem: Each $v \in BASIC$ has 2 later neighbors in BIG. **Lem:** $\sum_{v} \operatorname{tok}(v) \leq 6|S| \leq 18D$. So $|\overline{BASIC} \cup BIG| \leq 18D/(D/4) \leq 72$. **Cor:** BASIC is independent set of size at least |S| - 72.

Defn: Let $\omega^2(2k, D)$ and $\chi^2(2k, D)$ be max $\omega(G^2)$ and max $\chi(G^2)$ over all G such that mad(G) < 2k and $\Delta(G) \leq D$.

Defn: Let $\omega^2(2k, D)$ and $\chi^2(2k, D)$ be max $\omega(G^2)$ and max $\chi(G^2)$ over all G such that mad(G) < 2k and $\Delta(G) \leq D$.

Conj: For *D* big enough $\chi^2(4, D) = 5D/2$.

Defn: Let $\omega^2(2k, D)$ and $\chi^2(2k, D)$ be max $\omega(G^2)$ and max $\chi(G^2)$ over all G such that mad(G) < 2k and $\Delta(G) \leq D$.

Conj: For *D* big enough $\chi^2(4, D) = 5D/2$.

Q: What is $\chi^2(2k, D)$ for each $k \ge 2$?

Defn: Let $\omega^2(2k, D)$ and $\chi^2(2k, D)$ be max $\omega(G^2)$ and max $\chi(G^2)$ over all G such that mad(G) < 2k and $\Delta(G) \leq D$.

Conj: For *D* big enough $\chi^2(4, D) = 5D/2$.

Q: What is $\chi^2(2k, D)$ for each $k \ge 2$? **Q**: What is $\omega^2(2k, D)$ for each $k \ge 2$?

Defn: Let $\omega^2(2k, D)$ and $\chi^2(2k, D)$ be max $\omega(G^2)$ and max $\chi(G^2)$ over all G such that mad(G) < 2k and $\Delta(G) \leq D$.

Conj: For *D* big enough $\chi^2(4, D) = 5D/2$.

Q: What is $\chi^2(2k, D)$ for each $k \ge 2$? **Q**: What is $\omega^2(2k, D)$ for each $k \ge 2$? Is this achieved by k-degenerate graphs?

Defn: Let $\omega^2(2k, D)$ and $\chi^2(2k, D)$ be max $\omega(G^2)$ and max $\chi(G^2)$ over all G such that mad(G) < 2k and $\Delta(G) \leq D$.

Conj: For *D* big enough $\chi^2(4, D) = 5D/2$.

Q: What is $\chi^2(2k, D)$ for each $k \ge 2$? **Q:** What is $\omega^2(2k, D)$ for each $k \ge 2$? Is this achieved by *k*-degenerate graphs? **Rem:** Don't even have good guess for this value.

Defn: Let $\omega^2(2k, D)$ and $\chi^2(2k, D)$ be max $\omega(G^2)$ and max $\chi(G^2)$ over all G such that mad(G) < 2k and $\Delta(G) \leq D$.

Conj: For *D* big enough $\chi^2(4, D) = 5D/2$.

Q: What is $\chi^2(2k, D)$ for each $k \ge 2$? **Q**: What is $\omega^2(2k, D)$ for each $k \ge 2$? Is this achieved by *k*-degenerate graphs? **Rem:** Don't even have good guess for this value.

Conj: For each $k \ge 1$, for D big enough w.r.t. k,

 $\chi^2(2k,D) \leqslant \omega^2(2k,D) + c_k.$

Defn: Let $\omega^2(2k, D)$ and $\chi^2(2k, D)$ be max $\omega(G^2)$ and max $\chi(G^2)$ over all G such that mad(G) < 2k and $\Delta(G) \leq D$.

Conj: For *D* big enough $\chi^2(4, D) = 5D/2$.

Q: What is $\chi^2(2k, D)$ for each $k \ge 2$? **Q**: What is $\omega^2(2k, D)$ for each $k \ge 2$? Is this achieved by *k*-degenerate graphs? **Rem:** Don't even have good guess for this value.

Conj: For each $k \ge 1$, for *D* big enough w.r.t. *k*,

 $\chi^2(2k,D) \leqslant \omega^2(2k,D) + c_k.$

(Possibly $c_k = 0$ works.)

Q: What is max of $\chi(G^2)$ for G with mad(G) < 4 and $\Delta \leq D$?

Q: What is max of $\chi(G^2)$ for G with mad(G) < 4 and $\Delta \leq D$? **A**: $\lfloor 5D/2 \rfloor \leq \chi^2(4, D) \leq 3D + 5$

Q: What is max of $\chi(G^2)$ for G with mad(G) < 4 and $\Delta \leq D$? **A**: $\lfloor 5D/2 \rfloor \leq \chi^2(4, D) \leq 3D + 5$ Up: degeneracy; Low: construction

Q: What is max of $\chi(G^2)$ for G with mad(G) < 4 and $\Delta \leq D$? **A**: $\lfloor 5D/2 \rfloor \leq \chi^2(4, D) \leq 3D + 5$ Up: degeneracy; Low: construction

Q: What is max of $\chi(G^2)$ for G with mad(G) < 4 and $\Delta \leq D$? **A**: $\lfloor 5D/2 \rfloor \leq \chi^2(4, D) \leq 3D + 5$ Up: degeneracy; Low: construction **Rem:** Degeneracy bound nearly sharp

Q: What is max of $\chi(G^2)$ for *G* with mad(*G*) < 4 and $\Delta \leq D$? **A**: $\lfloor 5D/2 \rfloor \leq \chi^2(4, D) \leq 3D + 5$ Up: degeneracy; Low: construction **Rem:** Degeneracy bound nearly sharp **Q**: Can we improve clique bound?

Q: What is max of $\chi(G^2)$ for *G* with mad(*G*) < 4 and $\Delta \leq D$? **A**: $\lfloor 5D/2 \rfloor \leq \chi^2(4, D) \leq 3D + 5$ Up: degeneracy; Low: construction **Rem:** Degeneracy bound nearly sharp **Q**: Can we improve clique bound?

Main Thm:

(a) If G is 2-degenerate with $\Delta \leq D$, then $\omega(G^2) \leq 5D/2 + 72$.

Q: What is max of $\chi(G^2)$ for *G* with mad(*G*) < 4 and $\Delta \leq D$? **A**: $\lfloor 5D/2 \rfloor \leq \chi^2(4, D) \leq 3D + 5$ Up: degeneracy; Low: construction **Rem:** Degeneracy bound nearly sharp **Q**: Can we improve clique bound?

Main Thm:

(a) If G is 2-degenerate with $\Delta \leqslant D$, then $\omega(G^2) \leqslant 5D/2 + 72$.

(b) If G has mad(G) < 4 and $\Delta \leq D$, then $\omega(G^2) \leq 5D/2 + 532$.

Q: What is max of $\chi(G^2)$ for *G* with mad(*G*) < 4 and $\Delta \leq D$? **A**: $\lfloor 5D/2 \rfloor \leq \chi^2(4, D) \leq 3D + 5$ Up: degeneracy; Low: construction **Rem:** Degeneracy bound nearly sharp **Q**: Can we improve clique bound?

Main Thm:

(a) If G is 2-degenerate with $\Delta \leq D$, then $\omega(G^2) \leq 5D/2 + 72$.

(b) If G has mad(G) < 4 and $\Delta \leq D$, then $\omega(G^2) \leq 5D/2 + 532$.

Pf Outline:

Q: What is max of $\chi(G^2)$ for *G* with mad(*G*) < 4 and $\Delta \leq D$? **A**: $\lfloor 5D/2 \rfloor \leq \chi^2(4, D) \leq 3D + 5$ Up: degeneracy; Low: construction **Rem:** Degeneracy bound nearly sharp **Q**: Can we improve clique bound?

Main Thm:

(a) If G is 2-degenerate with $\Delta \leq D$, then $\omega(G^2) \leq 5D/2 + 72$. (b) If G has mad(G) < 4 and $\Delta \leq D$, then $\omega(G^2) \leq 5D/2 + 532$.

Pf Outline:

(i) Construction above best for "nice" graphs.

Q: What is max of $\chi(G^2)$ for *G* with mad(*G*) < 4 and $\Delta \leq D$? **A**: $\lfloor 5D/2 \rfloor \leq \chi^2(4, D) \leq 3D + 5$ Up: degeneracy; Low: construction **Rem:** Degeneracy bound nearly sharp **Q**: Can we improve clique bound?

Main Thm:

(a) If G is 2-degenerate with $\Delta \leq D$, then $\omega(G^2) \leq 5D/2 + 72$. (b) If G has mad(G) < 4 and $\Delta \leq D$, then $\omega(G^2) \leq 5D/2 + 532$.

Pf Outline:

(i) Construction above best for "nice" graphs. (ii) Edit arbitrary 2-degenerate G to nice graph, shrinking $\omega(G^2)$ at most 72.

Q: What is max of $\chi(G^2)$ for *G* with mad(*G*) < 4 and $\Delta \leq D$? **A**: $\lfloor 5D/2 \rfloor \leq \chi^2(4, D) \leq 3D + 5$ Up: degeneracy; Low: construction **Rem:** Degeneracy bound nearly sharp **Q**: Can we improve clique bound?

Main Thm:

(a) If G is 2-degenerate with $\Delta \leq D$, then $\omega(G^2) \leq 5D/2 + 72$. (b) If G has mad(G) < 4 and $\Delta \leq D$, then $\omega(G^2) \leq 5D/2 + 532$.

Pf Outline:

(i) Construction above best for "nice" graphs. (ii) Edit arbitrary 2-degenerate G to nice graph, shrinking $\omega(G^2)$ at most 72. (iii) Edit arbitrary G with mad(G) < 4 to 2-degenerate, shrinking $\omega(G^2)$ at most 460.

Q: What is max of $\chi(G^2)$ for *G* with mad(*G*) < 4 and $\Delta \leq D$? **A**: $\lfloor 5D/2 \rfloor \leq \chi^2(4, D) \leq 3D + 5$ Up: degeneracy; Low: construction **Rem:** Degeneracy bound nearly sharp **Q**: Can we improve clique bound?

Main Thm:

(a) If G is 2-degenerate with $\Delta \leq D$, then $\omega(G^2) \leq 5D/2 + 72$. (b) If G has mad(G) < 4 and $\Delta \leq D$, then $\omega(G^2) \leq 5D/2 + 532$.

Pf Outline:

(i) Construction above best for "nice" graphs. (ii) Edit arbitrary 2-degenerate G to nice graph, shrinking $\omega(G^2)$ at most 72. (iii) Edit arbitrary G with mad(G) < 4 to 2-degenerate, shrinking $\omega(G^2)$ at most 460.

Rem: Many interesting open questions!

Q: What is max of $\chi(G^2)$ for *G* with mad(*G*) < 4 and $\Delta \leq D$? **A**: $\lfloor 5D/2 \rfloor \leq \chi^2(4, D) \leq 3D + 5$ Up: degeneracy; Low: construction **Rem:** Degeneracy bound nearly sharp **Q**: Can we improve clique bound?

Main Thm:

(a) If G is 2-degenerate with $\Delta \leq D$, then $\omega(G^2) \leq 5D/2 + 72$. (b) If G has mad(G) < 4 and $\Delta \leq D$, then $\omega(G^2) \leq 5D/2 + 532$.

Pf Outline:

(i) Construction above best for "nice" graphs. (ii) Edit arbitrary 2-degenerate G to nice graph, shrinking $\omega(G^2)$ at most 72. (iii) Edit arbitrary G with mad(G) < 4 to 2-degenerate, shrinking $\omega(G^2)$ at most 460.

Rem: Many interesting open questions! Read more: arXiv:2305.11763