Cliques in Squares of Graphs with
Maximum Average Degree less than 4

Daniel W. Cranston
Virginia Commonwealth University
dcranston@vcu.edu

Joint with Gexin Yu

AMS Sectional Meeting
9 September 2023



Maximum Average Degree, Squares, and Degeneracy



Maximum Average Degree, Squares, and Degeneracy

Q: How do we measure a graph'’s sparsity?



Maximum Average Degree, Squares, and Degeneracy

Q: How do we measure a graph'’s sparsity?
A: Maximum average degree of G, denoted mad(G), is defined as

_ - 2[E(H)]
mad(G) := max V()|




Maximum Average Degree, Squares, and Degeneracy

Q: How do we measure a graph'’s sparsity?
A: Maximum average degree of G, denoted mad(G), is defined as

_ - 2[E(H)]
mad(G) := max V()|

» mad(G) < 1iff G is edgeless



Maximum Average Degree, Squares, and Degeneracy

Q: How do we measure a graph'’s sparsity?
A: Maximum average degree of G, denoted mad(G), is defined as

_ - 2[E(H)]
mad(G) := max V()|

» mad(G) < 1iff G is edgeless °c ° e e
o o o o o o
o o o o o o

o o o o o o



Maximum Average Degree, Squares, and Degeneracy

Q: How do we measure a graph'’s sparsity?
A: Maximum average degree of G, denoted mad(G), is defined as

_ - 2[E(H)]
mad(G) := max V()|

o o o o o o

» mad(G) < 1iff G is edgeless
» mad(G) < 2 iff G is a forest ©o o o o o o



Maximum Average Degree, Squares, and Degeneracy

Q: How do we measure a graph'’s sparsity?
A: Maximum average degree of G, denoted mad(G), is defined as

_ . 2E(H)|

mad(G) := max V()|
» mad(G) < 1iff G is edgeless °
» mad(G) < 2 iff G is a forest o




Maximum Average Degree, Squares, and Degeneracy

Q: How do we measure a graph'’s sparsity?
A: Maximum average degree of G, denoted mad(G), is defined as

_ . 2E(H)|

mad(G) := max V()|
» mad(G) < 1iff G is edgeless °
» mad(G) < 2 iff G is a forest o

» mad(G) < 4 if G is planar bip.




Maximum Average Degree, Squares, and Degeneracy

Q: How do we measure a graph'’s sparsity?
A: Maximum average degree of G, denoted mad(G), is defined as

o 2lE(H))]
mad(G) := max V()|

» mad(G) < 1iff G is edgeless | | | |
» mad(G) < 2 iff G is a forest
» mad(G) < 4 if G is planar bip. | | | |




Maximum Average Degree, Squares, and Degeneracy

Q: How do we measure a graph'’s sparsity?
A: Maximum average degree of G, denoted mad(G), is defined as

o 2lE(H))]
mad(G) := max V()|

d(G) < 1iff G is edgeless | | | |
d(G)

d(G) < 4 if G is planar bip.

d(G) < 6if G is planar | | | |

< 2 iff G is a forest | | | |

vvyyy

ma
ma
ma
ma




Maximum Average Degree, Squares, and Degeneracy

Q: How do we measure a graph'’s sparsity?
A: Maximum average degree of G, denoted mad(G), is defined as

o 2lE(H))]
mad(G) := max V()|

mad(G) < 1 iff G is edgeless
mad(G) < 2 iff G is a forest

mad(G) < 4 if G is planar bip.
mad(G) < 6 if G is planar

vvyyy




Maximum Average Degree, Squares, and Degeneracy

Q: How do we measure a graph'’s sparsity?
A: Maximum average degree of G, denoted mad(G), is defined as

_ . 2E(H)|
mad(G) := max V()|
» mad(G) < 1iff G is edgeless
» mad(G) < 2 iff G is a forest
» mad(G) < 4 if G is planar bip.
» mad(G) < 6 if G is planar

Defn: The square, G2, of a graph G is formed from G
by adding each edge vw such that distg (v, w) = 2.



Maximum Average Degree, Squares, and Degeneracy

Q: How do we measure a graph'’s sparsity?
A: Maximum average degree of G, denoted mad(G), is defined as

_ . 2E(H)|
mad(G) := max V()|
» mad(G) < 1iff G is edgeless
» mad(G) < 2 iff G is a forest
» mad(G) < 4 if G is planar bip.
» mad(G) < 6 if G is planar

Defn: The square, G2, of a graph G is formed from G
by adding each edge vw such that distg (v, w) = 2.

Defn: A graph is k-degenerate if there is order o of V(G)
where each vertex has at most k neighbors later in o.



Maximum Average Degree, Squares, and Degeneracy

Q: How do we measure a graph'’s sparsity?
A: Maximum average degree of G, denoted mad(G), is defined as

_ . 2E(H)|
mad(G) := max V()|
» mad(G) < 1iff G is edgeless
» mad(G) < 2 iff G is a forest
» mad(G) < 4 if G is planar bip.
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Defn: The square, G2, of a graph G is formed from G
by adding each edge vw such that distg (v, w) = 2.

Defn: A graph is k-degenerate if there is order o of V(G)
where each vertex has at most k neighbors later in o.

Obs: If G is k-degenerate, then mad(G) < 2k.



Motivating Questions and Examples
Q: If mad(G) < 4, what is the largest possible value of y(G?)?



Motivating Questions and Examples

Q: If mad(G) < 4, what is the largest possible value of y(G?)?
A1l: Bound uses A, since X(K12,A) =A+1and mad(Kia) < 2.



Motivating Questions and Examples

Q: If mad(G) < 4, what is the largest possible value of y(G?)?
A1l: Bound uses A, since X(K12’A) =A+1and mad(Kia) < 2.
A2: If G is 2-degenerate, then G? has degeneracy < 3A — 2.



Motivating Questions and Examples

Q: If mad(G) < 4, what is the largest possible value of y(G?)?
A1l: Bound uses A, since X(K12,A) =A+1and mad(Kia) < 2.
A2: If G is 2-degenerate, then G? has degeneracy < 3A — 2.

Thm: [Kierstead—Yang-Yi]
If mad(G) < 2k, then
deg(G?) < A(2k — 1) + 2k.



Motivating Questions and Examples

Q: If mad(G) < 4, what is the largest possible value of x(G?)?
A1l: Bound uses A, since X(KiA) =A+1and mad(Kia) < 2.
A2: If G is 2-degenerate, then G? has degeneracy < 3A — 2.

Thm: [Kierstead—Yang-Yi]

If mad(G) < 2k, then

deg(G?) < A(2k — 1) + 2k.
Thm: [Hocquard-Kim-Pierron]
For every D € 7T, there is Gp
s.t. A(Gp) =D and Gp is
2-degenerate (so mad(Gp) < 4)
and w(G3) = [5D/2].



Motivating Questions and Examples

Q: If mad(G) < 4, what is the largest possible value of y(G?)?
A1l: Bound uses A, since X(Klz,A) =A+1and mad(Kia) < 2.
A2: If G is 2-degenerate, then G? has degeneracy < 3A — 2.

Thm: [Kierstead—Yang-Yi] /li\\

If mad(G) < 2k, then ’/><\‘

deg(G?) < A(2k — 1) +2k. AL NN
V D I N

Thm: [Hocquard—Kim—Pierron] ‘/'/’l?:!\\:\ N7

For every D € 7", there is Gp \,,L\.@"Q,éf

s.t. A(GD) =D and Gp is S

2-degenerate (so mad(Gp) < 4)
and w(G3) = [5D/2].



Motivating Questions and Examples

Q: If mad(G) < 4, what is the largest possible value of y(G?)?
A1l: Bound uses A, since X(Klz,A) =A+1and mad(Kia) < 2.
A2: If G is 2-degenerate, then G? has degeneracy < 3A — 2.

®
Thm: [Kierstead—Yang-Yi] /l\\

If mad(G) < 2k, then /.44/6*\@\
deg(G?) < A(2k — 1) + 2k, e SE> NN

V D I N

Thm: [Hocquard—Kim—Pierron] ‘/'/’l?:!\\:\ N7
For every D € 7", there is Gp \,,L\.@"Q,éf

s.t. A(GD) =D and Gp is S

2-degenerate (so mad(Gp) < 4)
and w(G3) = [5D/2].

Q: What is max value, \?(4, D), over graphs
G with mad(G) < 4 and A < D of \(G?)?



Motivating Questions and Examples

Q: If mad(G) < 4, what is the largest possible value of y(G?)?
A1l: Bound uses A, since X(K12’A) =A+1and mad(Kia) < 2.
A2: If G is 2-degenerate, then G? has degeneracy < 3A — 2.

®
Thm: [Kierstead—Yang-Yi] /l\\

If mad(G) < 2k, then /.44/6*\@\
deg(G?) < A(2k — 1) + 2k, e SE> NN

Q I\ N

Thm: [Hocquard—Kim—Pierron] ‘I'I/’l}:!‘\:\ N7
For every D € 7", there is Gp \”L\.@"Q,éf

s.t. A(GD) =D and Gp is S

2-degenerate (so mad(Gp) < 4)
and w(G3) = [5D/2].

Q: What is max value, \?(4, D), over graphs
G with mad(G) < 4 and A < D of \(G?)?

A: |5D/2] < x?(4,D) < 3D +5.



Motivating Questions and Examples

Q: If mad(G) < 4, what is the largest possible value of y(G?)?
A1l: Bound uses A, since X(Klz,A) =A+1and mad(Kia) < 2.
A2: If G is 2-degenerate, then G? has degeneracy < 3A — 2.
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2-degenerate (so mad(Gp) < 4) \ />

Q: What is max value, \?(4, D), over graphs
G with mad(G) < 4 and A < D of \(G?)?

A: |5D/2] < x?(4,D) < 3D +5.

Rem: Upper bound on degeneracy sharp up to constant.
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w(G?) <5D/2 +72. (b) If G has mad(G) < 4 and A < D, then
w(G?) < 5D/2 + 532. (Neither additive constant is sharp.)

Two Questions of Hocquard, Kim, and Pierron:
1. Is there Dy s.t. every 2-degenerate graph
G with A > Dy has \(G?) < 5A/2?
2. |Is there Dy s.t. every G with A > Dy
and mad(G) < 4 has \(G?) < 5A/2?

Pf Outline:
1. Construction of HKP above is best
possible among graphs that “look similar”.
2. “Edit" arbitrary 2-degenerate graph G to
type above, shrinking w(G?) at most 72.

3. "Edit" arbitrary G with mad(G) < 4 to
2-degenerate, shrinking w(G?) at most 460.
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Defn: A 2-degeneracy order for G is order of V/(G) where each
vertex has < 2 later neighbors. Now G is nice w.r.t. a clique S in
G?if (a) Sis anind. set in G and (b) G has a 2-degeneracy order
o s.t. all vertices of S appear consecutively in o. (Below is nice.)

Thm 1: If G is nice w.r.t. maximum clique S
in G2 and A(G) < D, then w(G?) < 5D/2.
Thm 1': Let H be a multigraph with A(H) <
D. If each edge of H shares at least one end-
point with all but at most D — 2 other edges
of H, then |E(H)| < 5D/2.

Rem: Thm 1" implies Thm 1.

Pf: Given G, S, o, delete all vertices before
S in order o, and contract one edge incident
to each vertex of S. Now |E(H)| = |S].
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