Cliques in Squares of Graphs with Maximum Average Degree less than 4

Daniel W. Cranston Virginia Commonwealth University dcranston@vcu.edu

Joint with Gexin Yu

AMS Sectional Meeting 9 September 2023

Q: How do we measure a graph's sparsity?

Q: How do we measure a graph's sparsity?

$$
\textsf{mad}(G):=\max_{H\subseteq G}\frac{2|E(H)|}{|V(H)|}.
$$

Q: How do we measure a graph's sparsity?

A: Maximum average degree of G , denoted mad(G), is defined as

$$
\textsf{mad}(G):=\max_{H\subseteq G}\frac{2|E(H)|}{|V(H)|}.
$$

 \blacktriangleright mad(G) < 1 iff G is edgeless

Q: How do we measure a graph's sparsity?

A: Maximum average degree of G , denoted mad(G), is defined as

$$
mad(G) := \max_{H \subseteq G} \frac{2|E(H)|}{|V(H)|}.
$$

 \blacktriangleright mad(G) < 1 iff G is edgeless

Q: How do we measure a graph's sparsity?

$$
\text{mad}(G) := \max_{H \subseteq G} \frac{2|E(H)|}{|V(H)|}.
$$

Q: How do we measure a graph's sparsity?

A: Maximum average degree of G , denoted mad(G), is defined as

$$
\textsf{mad}(G) := \max_{H \subseteq G} \frac{2|E(H)|}{|V(H)|}.
$$

 \triangleright mad(G) < 1 iff G is edgeless \triangleright mad(G) < 2 iff G is a forest

Q: How do we measure a graph's sparsity?

$$
\textsf{mad}(G) := \max_{H \subseteq G} \frac{2|E(H)|}{|V(H)|}.
$$

- \triangleright mad(G) < 1 iff G is edgeless
- \triangleright mad(G) < 2 iff G is a forest
- \triangleright mad(G) < 4 if G is planar bip.

Q: How do we measure a graph's sparsity?

$$
\textsf{mad}(G) := \max_{H \subseteq G} \frac{2|E(H)|}{|V(H)|}.
$$

- \triangleright mad(G) < 1 iff G is edgeless
- \triangleright mad(G) < 2 iff G is a forest
- \triangleright mad(G) < 4 if G is planar bip.

Q: How do we measure a graph's sparsity?

$$
\textsf{mad}(G) := \max_{H \subseteq G} \frac{2|E(H)|}{|V(H)|}.
$$

- \triangleright mad(G) < 1 iff G is edgeless
- \triangleright mad(G) < 2 iff G is a forest
- \triangleright mad(G) < 4 if G is planar bip.
- \triangleright mad(G) $<$ 6 if G is planar

Q: How do we measure a graph's sparsity?

$$
\textsf{mad}(G) := \max_{H \subseteq G} \frac{2|E(H)|}{|V(H)|}.
$$

- \triangleright mad(G) < 1 iff G is edgeless
- \triangleright mad(G) < 2 iff G is a forest
- \triangleright mad(G) < 4 if G is planar bip.
- \triangleright mad(G) $<$ 6 if G is planar

Q: How do we measure a graph's sparsity?

A: Maximum average degree of G , denoted mad(G), is defined as

$$
\textsf{mad}(G) := \max_{H \subseteq G} \frac{2|E(H)|}{|V(H)|}.
$$

- \blacktriangleright mad(G) < 1 iff G is edgeless
- \blacktriangleright mad(G) < 2 iff G is a forest
- \triangleright mad(G) < 4 if G is planar bip.
- \triangleright mad(G) $<$ 6 if G is planar

Defn: The square, G^2 , of a graph G is formed from G by adding each edge vw such that dist_G(v, w) = 2.

Q: How do we measure a graph's sparsity?

A: Maximum average degree of G , denoted mad(G), is defined as

$$
\text{mad}(G) := \max_{H \subseteq G} \frac{2|E(H)|}{|V(H)|}.
$$

- \triangleright mad(G) < 1 iff G is edgeless
- \blacktriangleright mad(G) < 2 iff G is a forest
- \triangleright mad(G) < 4 if G is planar bip.
- \triangleright mad(G) $<$ 6 if G is planar

Defn: The square, G^2 , of a graph G is formed from G by adding each edge vw such that dist_G(v, w) = 2.

Defn: A graph is k-degenerate if there is order σ of $V(G)$ where each vertex has at most k neighbors later in σ .

Q: How do we measure a graph's sparsity?

A: Maximum average degree of G , denoted mad(G), is defined as

$$
\text{mad}(G) := \max_{H \subseteq G} \frac{2|E(H)|}{|V(H)|}.
$$

- \triangleright mad(G) < 1 iff G is edgeless
- \blacktriangleright mad(G) < 2 iff G is a forest
- \triangleright mad(G) < 4 if G is planar bip.
- \triangleright mad(G) $<$ 6 if G is planar

Defn: The square, G^2 , of a graph G is formed from G by adding each edge vw such that dist_G(v, w) = 2.

Defn: A graph is k-degenerate if there is order σ of $V(G)$ where each vertex has at most k neighbors later in σ .

Obs: If G is k-degenerate, then mad(G) < 2k.

Q: If mad(G) $<$ 4, what is the largest possible value of $\chi(G^2)$?

Q: If mad(G) $<$ 4, what is the largest possible value of $\chi(G^2)$? **A1:** Bound uses Δ , since $\chi(K_{1,\Delta}^2) = \Delta + 1$ and $\text{mad}(K_{1,\Delta}) < 2$.

Q: If mad(G) $<$ 4, what is the largest possible value of $\chi(G^2)$? **A1:** Bound uses Δ , since $\chi(K_{1,\Delta}^2) = \Delta + 1$ and $\text{mad}(K_{1,\Delta}) < 2$. **A2:** If G is 2-degenerate, then G^2 has degeneracy ≤ 3∆ $-$ 2.

Q: If mad(G) $<$ 4, what is the largest possible value of $\chi(G^2)$? **A1:** Bound uses Δ , since $\chi(K_{1,\Delta}^2) = \Delta + 1$ and $\text{mad}(K_{1,\Delta}) < 2$. **A2:** If G is 2-degenerate, then G^2 has degeneracy ≤ 3∆ $-$ 2.

Thm: [Kierstead–Yang–Yi] If mad(G) $\leq 2k$, then $\operatorname{\sf deg}(G^2)\leqslant \Delta(2k-1)+2k.$

Q: If mad(G) $<$ 4, what is the largest possible value of $\chi(G^2)$? **A1:** Bound uses Δ , since $\chi(K_{1,\Delta}^2) = \Delta + 1$ and $\text{mad}(K_{1,\Delta}) < 2$. **A2:** If G is 2-degenerate, then G^2 has degeneracy ≤ 3∆ $-$ 2.

Thm: [Kierstead–Yang–Yi] If mad(G) $\leq 2k$, then $\operatorname{\sf deg}(G^2)\leqslant \Delta(2k-1)+2k.$

Thm: [Hocquard–Kim–Pierron] For every $D\in\mathbb{Z}^+$, there is G_D s.t. $\Delta(G_D) = D$ and G_D is 2-degenerate (so mad $(G_D) < 4$) and $\omega(\mathit{G}_{D}^{2}) = \lfloor 5D/2 \rfloor$.

Q: If mad(G) $<$ 4, what is the largest possible value of $\chi(G^2)$? **A1:** Bound uses Δ , since $\chi(K_{1,\Delta}^2) = \Delta + 1$ and $\text{mad}(K_{1,\Delta}) < 2$. **A2:** If G is 2-degenerate, then G^2 has degeneracy ≤ 3∆ $-$ 2.

Thm: [Kierstead–Yang–Yi] If mad(G) $\leq 2k$, then $\operatorname{\sf deg}(G^2)\leqslant \Delta(2k-1)+2k.$

Thm: [Hocquard–Kim–Pierron] For every $D\in\mathbb{Z}^+$, there is G_D s.t. $\Delta(G_D) = D$ and G_D is 2-degenerate (so mad $(G_D) < 4$) and $\omega(\mathit{G}_{D}^{2}) = \lfloor 5D/2 \rfloor$.

Q: If mad(G) $<$ 4, what is the largest possible value of $\chi(G^2)$? **A1:** Bound uses Δ , since $\chi(K_{1,\Delta}^2) = \Delta + 1$ and $\text{mad}(K_{1,\Delta}) < 2$. **A2:** If G is 2-degenerate, then G^2 has degeneracy ≤ 3∆ $-$ 2.

Thm: [Kierstead–Yang–Yi] If mad(G) $\leq 2k$, then $\operatorname{\sf deg}(G^2)\leqslant \Delta(2k-1)+2k.$

Thm: [Hocquard–Kim–Pierron] For every $D\in\mathbb{Z}^+$, there is G_D s.t. $\Delta(G_D) = D$ and G_D is 2-degenerate (so mad $(G_D) < 4$) and $\omega(\mathit{G}_{D}^{2}) = \lfloor 5D/2 \rfloor$.

Q: What is max value, $\chi^2(4, D)$, over graphs G with mad(G) < 4 and $\Delta \leqslant D$ of $\chi(G^2)$?

Q: If mad(G) $<$ 4, what is the largest possible value of $\chi(G^2)$? **A1:** Bound uses Δ , since $\chi(K_{1,\Delta}^2) = \Delta + 1$ and $\text{mad}(K_{1,\Delta}) < 2$. **A2:** If G is 2-degenerate, then G^2 has degeneracy ≤ 3∆ $-$ 2.

Thm: [Kierstead–Yang–Yi] If mad(G) $\leq 2k$, then $\operatorname{\sf deg}(G^2)\leqslant \Delta(2k-1)+2k.$

Thm: [Hocquard–Kim–Pierron] For every $D\in\mathbb{Z}^+$, there is G_D s.t. $\Delta(G_D) = D$ and G_D is 2-degenerate (so mad $(G_D) < 4$) and $\omega(\mathit{G}_{D}^{2}) = \lfloor 5D/2 \rfloor$.

Q: What is max value, $\chi^2(4, D)$, over graphs G with mad(G) < 4 and $\Delta \leqslant D$ of $\chi(G^2)$? **A:** $|5D/2| \le \chi^2(4, D) \le 3D + 5$.

Q: If mad(G) $<$ 4, what is the largest possible value of $\chi(G^2)$? **A1:** Bound uses Δ , since $\chi(K_{1,\Delta}^2) = \Delta + 1$ and $\text{mad}(K_{1,\Delta}) < 2$. **A2:** If G is 2-degenerate, then G^2 has degeneracy ≤ 3∆ $-$ 2.

Thm: [Kierstead–Yang–Yi] If mad(G) $\leq 2k$, then $\operatorname{\sf deg}(G^2)\leqslant \Delta(2k-1)+2k.$

Thm: [Hocquard–Kim–Pierron] For every $D\in\mathbb{Z}^+$, there is G_D s.t. $\Delta(G_D) = D$ and G_D is 2-degenerate (so mad $(G_D) < 4$) and $\omega(\mathit{G}_{D}^{2}) = \lfloor 5D/2 \rfloor$.

Q: What is max value, $\chi^2(4, D)$, over graphs G with mad(G) < 4 and $\Delta \leqslant D$ of $\chi(G^2)$?

A: $|5D/2| \le \chi^2(4, D) \le 3D + 5$.

Rem: Upper bound on degeneracy sharp up to constant.

Main Thm: (a) If G is 2-degenerate with $\Delta \leqslant D$, then $\omega(\textsf{G}^2)\leqslant 5D/2+72.$

Main Thm: (a) If G is 2-degenerate with $\Delta \leq D$, then $\omega(\textsf{G}^2)\leqslant 5D/2+72.$ (b) If \textsf{G} has mad $(\textsf{G}) <$ 4 and $\Delta \leqslant D,$ then $\omega(\textsf{G}^2)\leqslant 5D/2+532.$

Main Thm: (a) If G is 2-degenerate with $\Delta \leq D$, then $\omega(\textsf{G}^2)\leqslant 5D/2+72.$ (b) If \textsf{G} has mad $(\textsf{G}) <$ 4 and $\Delta \leqslant D,$ then $\omega(\textsf{G}^2)\leqslant 5D/2+532.$ (Neither additive constant is sharp.)

Main Thm: (a) If G is 2-degenerate with $\Delta \leq D$, then $\omega(\textsf{G}^2)\leqslant 5D/2+72.$ (b) If \textsf{G} has mad $(\textsf{G}) <$ 4 and $\Delta \leqslant D,$ then $\omega(\textsf{G}^2)\leqslant 5D/2+532.$ (Neither additive constant is sharp.)

Two Questions of Hocquard, Kim, and Pierron:

Main Thm: (a) If G is 2-degenerate with $\Delta \le D$, then $\omega(\textsf{G}^2)\leqslant 5D/2+72.$ (b) If \textsf{G} has mad $(\textsf{G}) <$ 4 and $\Delta \leqslant D,$ then $\omega(\textsf{G}^2)\leqslant 5D/2+532.$ (Neither additive constant is sharp.)

Two Questions of Hocquard, Kim, and Pierron:

- 1. Is there D_0 s.t. every 2-degenerate graph
	- G with $\Delta \geqslant D_0$ has $\chi(G^2) \leqslant 5\Delta/2$?

Main Thm: (a) If G is 2-degenerate with $\Delta \le D$, then $\omega(\textsf{G}^2)\leqslant 5D/2+72.$ (b) If \textsf{G} has mad $(\textsf{G}) <$ 4 and $\Delta \leqslant D,$ then $\omega(\textsf{G}^2)\leqslant 5D/2+532.$ (Neither additive constant is sharp.)

Two Questions of Hocquard, Kim, and Pierron:

- 1. Is there D_0 s.t. every 2-degenerate graph G with $\Delta \geqslant D_0$ has $\chi(G^2) \leqslant 5\Delta/2$?
- 2. Is there D_0 s.t. every G with $\Delta \geqslant D_0$ and $\mathsf{mad}(G) < 4$ has $\chi(\overline{G^2}) \leqslant 5\Delta/2?$

Main Thm: (a) If G is 2-degenerate with $\Delta \le D$, then $\omega(\textsf{G}^2)\leqslant 5D/2+72.$ (b) If \textsf{G} has mad $(\textsf{G}) <$ 4 and $\Delta \leqslant D,$ then $\omega(\textsf{G}^2)\leqslant 5D/2+532.$ (Neither additive constant is sharp.)

Two Questions of Hocquard, Kim, and Pierron:

- 1. Is there D_0 s.t. every 2-degenerate graph G with $\Delta \geqslant D_0$ has $\chi(G^2) \leqslant 5\Delta/2$?
- 2. Is there D_0 s.t. every G with $\Delta \geqslant D_0$ and $\mathsf{mad}(G) < 4$ has $\chi(\overline{G^2}) \leqslant 5\Delta/2?$

Pf Outline:

Main Thm: (a) If G is 2-degenerate with $\Delta \le D$, then $\omega(\textsf{G}^2)\leqslant 5D/2+72.$ (b) If \textsf{G} has mad $(\textsf{G}) <$ 4 and $\Delta \leqslant D,$ then $\omega(\textsf{G}^2)\leqslant 5D/2+532.$ (Neither additive constant is sharp.)

Two Questions of Hocquard, Kim, and Pierron:

- 1. Is there D_0 s.t. every 2-degenerate graph G with $\Delta \geqslant D_0$ has $\chi(G^2) \leqslant 5\Delta/2$?
- 2. Is there D_0 s.t. every G with $\Delta \geqslant D_0$ and $\mathsf{mad}(G) < 4$ has $\chi(\overline{G^2}) \leqslant 5\Delta/2?$

Pf Outline:

1. Construction of HKP above is best possible among graphs that "look similar".

Main Thm: (a) If G is 2-degenerate with $\Delta \le D$, then $\omega(\textsf{G}^2)\leqslant 5D/2+72.$ (b) If \textsf{G} has mad $(\textsf{G}) <$ 4 and $\Delta \leqslant D,$ then $\omega(\textsf{G}^2)\leqslant 5D/2+532.$ (Neither additive constant is sharp.)

Two Questions of Hocquard, Kim, and Pierron:

- 1. Is there D_0 s.t. every 2-degenerate graph G with $\Delta \geqslant D_0$ has $\chi(G^2) \leqslant 5\Delta/2$?
- 2. Is there D_0 s.t. every G with $\Delta \geqslant D_0$ and $\mathsf{mad}(G) < 4$ has $\chi(\overline{G^2}) \leqslant 5\Delta/2?$

Pf Outline:

- 1. Construction of HKP above is best possible among graphs that "look similar".
- 2. "Edit" arbitrary 2-degenerate graph G to type above, shrinking $\omega(\overline{\mathsf{G}}^2)$ at most 72.

Main Thm: (a) If G is 2-degenerate with $\Delta \le D$, then $\omega(\textsf{G}^2)\leqslant 5D/2+72.$ (b) If \textsf{G} has mad $(\textsf{G}) <$ 4 and $\Delta \leqslant D,$ then $\omega(\textsf{G}^2)\leqslant 5D/2+532.$ (Neither additive constant is sharp.)

Two Questions of Hocquard, Kim, and Pierron:

- 1. Is there D_0 s.t. every 2-degenerate graph G with $\Delta \geqslant D_0$ has $\chi(G^2) \leqslant 5\Delta/2$?
- 2. Is there D_0 s.t. every G with $\Delta \geqslant D_0$ and $\mathsf{mad}(G) < 4$ has $\chi(\overline{G^2}) \leqslant 5\Delta/2?$

Pf Outline:

- 1. Construction of HKP above is best possible among graphs that "look similar".
- 2. "Edit" arbitrary 2-degenerate graph G to type above, shrinking $\omega(\overline{\mathsf{G}}^2)$ at most 72.
- 3. "Edit" arbitrary G with mad(G) < 4 to 2-degenerate, shrinking $\omega(\sqrt{G^2})$ at most 460.

Which Graphs "Look Similar" to our Construction?

Defn: A 2-degeneracy order for G is order of $V(G)$ where each vertex has ≤ 2 later neighbors.

Which Graphs "Look Similar" to our Construction?

Defn: A 2-degeneracy order for G is order of $V(G)$ where each vertex has ≤ 2 later neighbors. Now G is nice w.r.t. a clique S in G^2 if
Defn: A 2-degeneracy order for G is order of $V(G)$ where each vertex has ≤ 2 later neighbors. Now G is nice w.r.t. a clique S in $G²$ if (a) S is an ind. set in G

Defn: A 2-degeneracy order for G is order of $V(G)$ where each vertex has ≤ 2 later neighbors. Now G is nice w.r.t. a clique S in $G²$ if (a) S is an ind. set in G and (b) G has a 2-degeneracy order σ s.t. all vertices of S appear consecutively in σ .

Defn: A 2-degeneracy order for G is order of $V(G)$ where each vertex has ≤ 2 later neighbors. Now G is nice w.r.t. a clique S in $G²$ if (a) S is an ind. set in G and (b) G has a 2-degeneracy order σ s.t. all vertices of S appear consecutively in σ . (Below is nice.)

Defn: A 2-degeneracy order for G is order of $V(G)$ where each vertex has ≤ 2 later neighbors. Now G is nice w.r.t. a clique S in $G²$ if (a) S is an ind. set in G and (b) G has a 2-degeneracy order σ s.t. all vertices of S appear consecutively in σ . (Below is nice.)

Thm 1: If G is nice w.r.t. maximum clique S in $|G^2$ and $\Delta(G) \leqslant D$, then $\omega(G^2) \leqslant 5D/2.$

Defn: A 2-degeneracy order for G is order of $V(G)$ where each vertex has ≤ 2 later neighbors. Now G is nice w.r.t. a clique S in $G²$ if (a) S is an ind. set in G and (b) G has a 2-degeneracy order σ s.t. all vertices of S appear consecutively in σ . (Below is nice.)

Thm 1: If G is nice w.r.t. maximum clique S in $|G^2$ and $\Delta(G) \leqslant D$, then $\omega(G^2) \leqslant 5D/2.$

Thm 1': Let H be a multigraph with $\Delta(H) \leq$ D. If each edge of H shares at least one endpoint with all but at most $D - 2$ other edges of H, then $|E(H)| \le 5D/2$.

Defn: A 2-degeneracy order for G is order of $V(G)$ where each vertex has ≤ 2 later neighbors. Now G is nice w.r.t. a clique S in $G²$ if (a) S is an ind. set in G and (b) G has a 2-degeneracy order σ s.t. all vertices of S appear consecutively in σ . (Below is nice.)

Thm 1: If G is nice w.r.t. maximum clique S in $|G^2$ and $\Delta(G) \leqslant D$, then $\omega(G^2) \leqslant 5D/2.$ Thm 1': Let H be a multigraph with $\Delta(H) \leq$ D. If each edge of H shares at least one endpoint with all but at most $D-2$ other edges of H, then $|E(H)| \le 5D/2$.

Rem: Thm 1' implies Thm 1.

Defn: A 2-degeneracy order for G is order of $V(G)$ where each vertex has ≤ 2 later neighbors. Now G is nice w.r.t. a clique S in $G²$ if (a) S is an ind. set in G and (b) G has a 2-degeneracy order σ s.t. all vertices of S appear consecutively in σ . (Below is nice.)

Thm 1: If G is nice w.r.t. maximum clique S in $|G^2$ and $\Delta(G) \leqslant D$, then $\omega(G^2) \leqslant 5D/2.$ Thm 1': Let H be a multigraph with $\Delta(H) \leq$ D. If each edge of H shares at least one endpoint with all but at most $D - 2$ other edges of H, then $|E(H)| \le 5D/2$.

Rem: Thm 1' implies Thm 1.

Pf: Given G, S, σ , delete all vertices before S in order σ , and contract one edge incident to each vertex of S. Now $|E(H)| = |S|$.

Main Thm (a):

If G is 2-degenerate with $\Delta(G) \leqslant D$, then $\omega(G^2) \leqslant 5D/2 + 72.$

Main Thm (a):

If G is 2-degenerate with $\Delta(G) \leqslant D$, then $\omega(G^2) \leqslant 5D/2 + 72.$

Big Idea: Given G, S, σ , show all but constant subset of S is ind. set.

Main Thm (a): If G is 2-degenerate with $\Delta(G) \leqslant D$, then $\omega(G^2) \leqslant 5D/2 + 72.$

Big Idea: Given G, S, σ , show all but constant subset of S is ind. set. Delete exceptions from S to get S' with $|S'| \geqslant |S| - 72$ and $(G')^2[S']$ complete.

Main Thm (a): If G is 2-degenerate with $\Delta(G) \leqslant D$, then $\omega(G^2) \leqslant 5D/2 + 72.$

Main Thm (a): If G is 2-degenerate with $\Delta(G) \leqslant D$, then $\omega(G^2) \leqslant 5D/2 + 72.$

Big Idea: Given G, S, σ , show all but constant subset of S is ind. set. Delete exceptions from S to get S' with $|S'| \geqslant |S| - 72$ and $(G')^2[S']$ complete. Alter σ to σ' so G' nice w.r.t. S' and $\sigma'.$

Intuition: If $v \in S$ doesn't get adjacency (in G^2) to lots of S via vertices earlier in σ , then both neighbors of S later in σ give v lots of adjacencies in G^2 to verts of S .

Main Thm (a): If G is 2-degenerate with $\Delta(G) \leqslant D$, then $\omega(G^2) \leqslant 5D/2 + 72.$

Big Idea: Given G, S, σ , show all but constant subset of S is ind. set. Delete exceptions from S to get S' with $|S'| \geqslant |S| - 72$ and $(G')^2[S']$ complete. Alter σ to σ' so G' nice w.r.t. S' and $\sigma'.$

Intuition: If $v \in S$ doesn't get adjacency (in G^2) to lots of S via vertices earlier in σ , then both neighbors of S later in σ give v lots of adjacencies in G^2 to verts of $S.$ So 2 later neighbors act like white vertices (last in σ) in construction.

Main Thm (a): If G is 2-degenerate with $\Delta(G) \leqslant D$, then $\omega(G^2) \leqslant 5D/2 + 72.$

Big Idea: Given G, S, σ , show all but constant subset of S is ind. set. Delete exceptions from S to get S' with $|S'| \geqslant |S| - 72$ and $(G')^2[S']$ complete. Alter σ to σ' so G' nice w.r.t. S' and $\sigma'.$

Intuition: If $v \in S$ doesn't get adjacency (in G^2) to lots of S via vertices earlier in σ , then both neighbors of S later in σ give v lots of adjacencies in G^2 to verts of $S.$ So 2 later neighbors act like white vertices (last in σ) in construction.

Q: Why can't most verts in S get much help from verts earlier in σ ?

Main Thm (a): If G is 2-degenerate with $\Delta(G) \leqslant D$, then $\omega(G^2) \leqslant 5D/2 + 72.$

Big Idea: Given G, S, σ , show all but constant subset of S is ind. set. Delete exceptions from S to get S' with $|S'| \geqslant |S| - 72$ and $(G')^2[S']$ complete. Alter σ to σ' so G' nice w.r.t. S' and $\sigma'.$

Intuition: If $v \in S$ doesn't get adjacency (in G^2) to lots of S via vertices earlier in σ , then both neighbors of S later in σ give v lots of adjacencies in G^2 to verts of $S.$ So 2 later neighbors act like white vertices (last in σ) in construction.

Q: Why can't most verts in S get much help from verts earlier in σ ? A: Because G is 2-degenerate.

Main Thm (a): If G is 2-degenerate with $\Delta(G) \leqslant D$, then $\omega(G^2) \leqslant 5D/2 + 72.$

Big Idea: Given G, S, σ , show all but constant subset of S is ind. set. Delete exceptions from S to get S' with $|S'| \geqslant |S| - 72$ and $(G')^2[S']$ complete. Alter σ to σ' so G' nice w.r.t. S' and $\sigma'.$

Intuition: If $v \in S$ doesn't get adjacency (in G^2) to lots of S via vertices earlier in σ , then both neighbors of S later in σ give v lots of adjacencies in G^2 to verts of $S.$ So 2 later neighbors act like white vertices (last in σ) in construction.

Q: Why can't most verts in S get much help from verts earlier in σ ? A: Because G is 2-degenerate.

Q: How to formalize all of this?

Main Thm (a): If G is 2-degenerate with $\Delta(G) \leqslant D$, then $\omega(G^2) \leqslant 5D/2 + 72.$

Big Idea: Given G, S, σ , show all but constant subset of S is ind. set. Delete exceptions from S to get S' with $|S'| \geqslant |S| - 72$ and $(G')^2[S']$ complete. Alter σ to σ' so G' nice w.r.t. S' and $\sigma'.$

Intuition: If $v \in S$ doesn't get adjacency (in G^2) to lots of S via vertices earlier in σ , then both neighbors of S later in σ give v lots of adjacencies in G^2 to verts of $S.$ So 2 later neighbors act like white vertices (last in σ) in construction.

Q: Why can't most verts in S get much help from verts earlier in σ ? A: Because G is 2-degenerate.

- Q: How to formalize all of this?
- A: Tokens!

If G is 2-degenerate with $\Delta(G) \leqslant D$, then $\omega(G^2) \leqslant 5D/2 + 72.$

If G is 2-degenerate with $\Delta(G) \leqslant D$, then $\omega(G^2) \leqslant 5D/2 + 72.$

If G is 2-degenerate with $\Delta(G) \leqslant D$, then $\omega(G^2) \leqslant 5D/2 + 72.$

If G is 2-degenerate with $\Delta(G) \leqslant D$, then $\omega(G^2) \leqslant 5D/2 + 72.$

If G is 2-degenerate with $\Delta(G) \leqslant D$, then $\omega(G^2) \leqslant 5D/2 + 72.$

If G is 2-degenerate with $\Delta(G) \leqslant D$, then $\omega(G^2) \leqslant 5D/2 + 72.$

If G is 2-degenerate with $\Delta(G) \leqslant D$, then $\omega(G^2) \leqslant 5D/2 + 72.$

Defn: Let $tok(v)$ and $prim(v)$ denote number of tokens and number of primary tokens held by v when v is deleted.

Defn: Let $tok(v)$ and $prim(v)$ denote number of tokens and number of primary tokens held by ν when ν is deleted. **Lem:** If $v \in S$ and w_1, w_2 are neighbors later in σ , then

Defn: Let $tok(v)$ and $prim(v)$ denote number of tokens and number of primary tokens held by v when v is deleted. **Lem:** If $v \in S$ and w_1, w_2 are neighbors later in σ , then

 $1 + \text{tok}(v) + D + \text{prim}(w_1) + \text{prim}(w_2) + 6 \geq |S| \geq 5D/2 + 60.$

Defn: Let $tok(v)$ and $prim(v)$ denote number of tokens and number of primary tokens held by v when v is deleted. **Lem:** If $v \in S$ and w_1, w_2 are neighbors later in σ , then

 $1 + \text{tok}(v) + D + \text{prim}(w_1) + \text{prim}(w_2) + 6 \geq |S| \geq 5D/2 + 60.$

Pf: Orient each edge of G towards endpoint later in σ .

Defn: Let $tok(v)$ and $prim(v)$ denote number of tokens and number of primary tokens held by v when v is deleted. **Lem:** If $v \in S$ and w_1, w_2 are neighbors later in σ , then

 $1 + \text{tok}(v) + D + \text{prim}(w_1) + \text{prim}(w_2) + 6 \geq |S| \geq 5D/2 + 60.$

Pf: Orient each edge of G towards endpoint later in σ . $v:1$;

Defn: Let $tok(v)$ and $prim(v)$ denote number of tokens and number of primary tokens held by \bf{v} when \bf{v} is deleted. **Lem:** If $v \in S$ and w_1, w_2 are neighbors later in σ , then

 $1 + \text{tok}(v) + D + \text{prim}(w_1) + \text{prim}(w_2) + 6 \geq |S| \geq 5D/2 + 60.$

Pf: Orient each edge of G towards endpoint later in σ . $v : 1, - :$ tok(v);

Defn: Let $tok(v)$ and $prim(v)$ denote number of tokens and number of primary tokens held by v when v is deleted. **Lem:** If $v \in S$ and w_1, w_2 are neighbors later in σ , then

 $1 + \text{tok}(v) + D + \text{prim}(w_1) + \text{prim}(w_2) + 6 \geq |S| \geq 5D/2 + 60.$

Pf: Orient each edge of G towards endpoint later in σ . $v : 1; - :$ tok(v); -- : tok(v);

Defn: Let $tok(v)$ and $prim(v)$ denote number of tokens and number of primary tokens held by \bf{v} when \bf{v} is deleted. **Lem:** If $v \in S$ and w_1, w_2 are neighbors later in σ , then

 $1 + \text{tok}(v) + D + \text{prim}(w_1) + \text{prim}(w_2) + 6 \geq |S| \geq 5D/2 + 60.$

Pf: Orient each edge of G towards endpoint later in σ . $v : 1; - :$ tok(v); -- : tok(v); -+ : D

Defn: Let $tok(v)$ and $prim(v)$ denote number of tokens and number of primary tokens held by \bf{v} when \bf{v} is deleted. **Lem:** If $v \in S$ and w_1, w_2 are neighbors later in σ , then

 $1 + \text{tok}(v) + D + \text{prim}(w_1) + \text{prim}(w_2) + 6 \geq |S| \geq 5D/2 + 60.$

Pf: Orient each edge of G towards endpoint later in σ . $v : 1$; − : tok(v); −− : tok(v); −+ : D $+ : 2:$

Defn: Let $tok(v)$ and $prim(v)$ denote number of tokens and number of primary tokens held by \bf{v} when \bf{v} is deleted. **Lem:** If $v \in S$ and w_1, w_2 are neighbors later in σ , then

 $1 + \text{tok}(v) + D + \text{prim}(w_1) + \text{prim}(w_2) + 6 \geq |S| \geq 5D/2 + 60.$

Pf: Orient each edge of G towards endpoint later in σ . $v : 1; - :$ tok(v); -- : tok(v); -+ : D $+ : 2; ++ : 4;$

Defn: Let $tok(v)$ and $prim(v)$ denote number of tokens and number of primary tokens held by \bf{v} when \bf{v} is deleted. **Lem:** If $v \in S$ and w_1, w_2 are neighbors later in σ , then

 $1 + \text{tok}(v) + D + \text{prim}(w_1) + \text{prim}(w_2) + 6 \geq |S| \geq 5D/2 + 60.$

Pf: Orient each edge of G towards endpoint later in σ . $v : 1$; − : tok(v); −− : tok(v); −+ : D $+$: 2; ++ : 4; +- : prim(w_1) + prim(w_2);

Defn: Let $tok(v)$ and $prim(v)$ denote number of tokens and number of primary tokens held by \bf{v} when \bf{v} is deleted. **Lem:** If $v \in S$ and w_1, w_2 are neighbors later in σ , then

 $1 + \text{tok}(v) + D + \text{prim}(w_1) + \text{prim}(w_2) + 6 \geq |S| \geq 5D/2 + 60.$

Pf: Orient each edge of G towards endpoint later in σ . $v : 1$; − : tok(v); −− : tok(v); −+ : D $+$: 2; ++ : 4; +- : prim(w_1) + prim(w_2);

Defn: BIG := { $v \in V(G)$: prim(v) > D/4}
Defn: Let $tok(v)$ and $prim(v)$ denote number of tokens and number of primary tokens held by \bf{v} when \bf{v} is deleted. **Lem:** If $v \in S$ and w_1, w_2 are neighbors later in σ , then

 $1 + \text{tok}(v) + D + \text{prim}(w_1) + \text{prim}(w_2) + 6 \geq |S| \geq 5D/2 + 60.$

Pf: Orient each edge of G towards endpoint later in σ . $v : 1$; − : tok(v); −− : tok(v); −+ : D $+$: 2; ++ : 4; +- : prim(w_1) + prim(w_2);

Defn: BIG := { $v \in V(G)$: prim(v) > D/4} BASIC := { $v \in S : \text{tok}(v) < D/4$ }

Defn: Let $tok(v)$ and $prim(v)$ denote number of tokens and number of primary tokens held by \bf{v} when \bf{v} is deleted. **Lem:** If $v \in S$ and w_1, w_2 are neighbors later in σ , then

 $1 + \text{tok}(v) + D + \text{prim}(w_1) + \text{prim}(w_2) + 6 \geq |S| \geq 5D/2 + 60.$

Pf: Orient each edge of G towards endpoint later in σ . $v : 1$; − : tok(v); −− : tok(v); −+ : D + : 2; + + : 4; + – : $\text{prim}(w_1) + \text{prim}(w_2)$:

Defn: BIG := { $v \in V(G)$: prim(v) > D/4} BASIC := { $v \in S : \text{tok}(v) < D/4$ } $\overline{\text{BASIC}} := S \setminus \text{BASIC}$

Defn: Let $tok(v)$ and $prim(v)$ denote number of tokens and number of primary tokens held by \bf{v} when \bf{v} is deleted. **Lem:** If $v \in S$ and w_1, w_2 are neighbors later in σ , then

 $1 + \text{tok}(v) + D + \text{prim}(w_1) + \text{prim}(w_2) + 6 \geq |S| \geq 5D/2 + 60.$

Pf: Orient each edge of G towards endpoint later in σ . $v : 1$; − : tok(v); −− : tok(v); −+ : D + : 2; + + : 4; + – : $\text{prim}(w_1) + \text{prim}(w_2)$:

Defn: BIG := { $v \in V(G)$: prim(v) > D/4} BASIC := { $v \in S : \text{tok}(v) < D/4$ } $\overline{\text{Basic}} := \mathcal{S} \setminus \text{Basic}$

Lem: Each $v \in$ BASIC has 2 later neighbors in BIG.

Defn: Let $tok(v)$ and $prim(v)$ denote number of tokens and number of primary tokens held by \bf{v} when \bf{v} is deleted. **Lem:** If $v \in S$ and w_1, w_2 are neighbors later in σ , then

 $1 + \text{tok}(v) + D + \text{prim}(w_1) + \text{prim}(w_2) + 6 \geq |S| \geq 5D/2 + 60.$

Pf: Orient each edge of G towards endpoint later in σ . $v : 1$; − : tok(v); −− : tok(v); −+ : D + : 2; + + : 4; + – : $\text{prim}(w_1) + \text{prim}(w_2)$:

Defn: BIG := { $v \in V(G)$: prim(v) > D/4} BASIC := { $v \in S : \text{tok}(v) < D/4$ } $\overline{\text{BASIC}} := S \setminus \text{BASIC}$

Lem: Each $v \in$ BASIC has 2 later neighbors in BIG. **Lem:** $\sum_{v} \text{tok}(v) \leq 6|S| \leq 18D$.

Defn: Let $tok(v)$ and $prim(v)$ denote number of tokens and number of primary tokens held by \bf{v} when \bf{v} is deleted. **Lem:** If $v \in S$ and w_1, w_2 are neighbors later in σ , then

 $1 + \text{tok}(v) + D + \text{prim}(w_1) + \text{prim}(w_2) + 6 \geq |S| \geq 5D/2 + 60.$

Pf: Orient each edge of G towards endpoint later in σ . $v : 1$; − : tok(v); −− : tok(v); −+ : D $+$: 2; ++ : 4; +- : prim(w_1) + prim(w_2);

Defn: BIG := { $v \in V(G)$: prim(v) > D/4} $BASIC := \{v \in S : tok(v) < D/4\}$ $\overline{\text{BASIC}} := S \setminus \text{BASIC}$

Lem: Each $v \in$ BASIC has 2 later neighbors in BIG. **Lem:** \sum_{v} tok(v) $\leq 6|S| \leq 18D$. So $|\overline{\text{Basic}} \cup \text{Big}| \leq 18D/(D/4) \leq 72$.

Defn: Let $tok(v)$ and $prim(v)$ denote number of tokens and number of primary tokens held by \bf{v} when \bf{v} is deleted. Lem: If $v \in S$ and w_1, w_2 are neighbors later in σ , then

 $1 + \text{tok}(v) + D + \text{prim}(w_1) + \text{prim}(w_2) + 6 \geq |S| \geq 5D/2 + 60.$

Pf: Orient each edge of G towards endpoint later in σ . $v : 1$; − : tok(v); −− : tok(v); −+ : D $+$: 2; ++ : 4; +- : prim(w_1) + prim(w_2);

Defn: BIG := { $v \in V(G)$: prim(v) > D/4} BASIC := { $v \in S : \text{tok}(v) < D/4$ } $\overline{\text{BASIC}} := S \setminus \text{BASIC}$

Lem: Each $v \in$ BASIC has 2 later neighbors in BIG. **Lem:** \sum_{v} tok(v) $\leq 6|S| \leq 18D$. So $|\overline{\text{Basic}} \cup \text{Big}| \leq 18D/(D/4) \leq 72$. **Cor:** BASIC is independent set of size at least $|S| - 72$.

Defn: Let $\omega^2(2k, D)$ and $\chi^2(2k, D)$ be max $\omega(G^2)$ and max $\chi(\,G^2)$ over all $\,G$ such that $\mathsf{mad}(\,G) < 2k$ and $\Delta(G) \leqslant D.$

Defn: Let $\omega^2(2k, D)$ and $\chi^2(2k, D)$ be max $\omega(G^2)$ and max $\chi(\,G^2)$ over all $\,G$ such that $\mathsf{mad}(\,G) < 2k$ and $\Delta(G) \leqslant D.$

Conj: For *D* big enough $\chi^2(4, D) = 5D/2$.

Defn: Let $\omega^2(2k, D)$ and $\chi^2(2k, D)$ be max $\omega(G^2)$ and max $\chi(\,G^2)$ over all $\,G$ such that $\mathsf{mad}(\,G) < 2k$ and $\Delta(G) \leqslant D.$

Conj: For *D* big enough $\chi^2(4, D) = 5D/2$.

Q: What is $\chi^2(2k, D)$ for each $k \geqslant 2$?

Defn: Let $\omega^2(2k, D)$ and $\chi^2(2k, D)$ be max $\omega(G^2)$ and max $\chi(\,G^2)$ over all $\,G$ such that $\mathsf{mad}(\,G) < 2k$ and $\Delta(G) \leqslant D.$

Conj: For *D* big enough $\chi^2(4, D) = 5D/2$.

Q: What is $\chi^2(2k, D)$ for each $k \geqslant 2$? **Q**: What is $\omega^2(2k, D)$ for each $k \geqslant 2$?

Defn: Let $\omega^2(2k, D)$ and $\chi^2(2k, D)$ be max $\omega(G^2)$ and max $\chi(\,G^2)$ over all $\,G$ such that $\mathsf{mad}(\,G) < 2k$ and $\Delta(G) \leqslant D.$

Conj: For *D* big enough $\chi^2(4, D) = 5D/2$.

Q: What is $\chi^2(2k, D)$ for each $k \geqslant 2$? **Q**: What is $\omega^2(2k, D)$ for each $k \geqslant 2$? Is this achieved by k -degenerate graphs?

Defn: Let $\omega^2(2k, D)$ and $\chi^2(2k, D)$ be max $\omega(G^2)$ and max $\chi(\,G^2)$ over all $\,G$ such that $\mathsf{mad}(\,G) < 2k$ and $\Delta(G) \leqslant D.$

Conj: For *D* big enough $\chi^2(4, D) = 5D/2$.

Q: What is $\chi^2(2k, D)$ for each $k \geqslant 2$? **Q**: What is $\omega^2(2k, D)$ for each $k \geqslant 2$? Is this achieved by k -degenerate graphs? Rem: Don't even have good guess for this value.

Defn: Let $\omega^2(2k, D)$ and $\chi^2(2k, D)$ be max $\omega(G^2)$ and max $\chi(\,G^2)$ over all $\,G$ such that $\mathsf{mad}(\,G) < 2k$ and $\Delta(G) \leqslant D.$

Conj: For *D* big enough $\chi^2(4, D) = 5D/2$.

Q: What is $\chi^2(2k, D)$ for each $k \geqslant 2$? **Q**: What is $\omega^2(2k, D)$ for each $k \geqslant 2$? Is this achieved by k -degenerate graphs? Rem: Don't even have good guess for this value.

Conj: For each $k \ge 1$, for D big enough w.r.t. k,

 $\chi^2(2k, D) \leqslant \omega^2(2k, D) + c_k.$

Defn: Let $\omega^2(2k, D)$ and $\chi^2(2k, D)$ be max $\omega(G^2)$ and max $\chi(\,G^2)$ over all $\,G$ such that $\mathsf{mad}(\,G) < 2k$ and $\Delta(G) \leqslant D.$

Conj: For *D* big enough $\chi^2(4, D) = 5D/2$.

Q: What is $\chi^2(2k, D)$ for each $k \geqslant 2$? **Q**: What is $\omega^2(2k, D)$ for each $k \geqslant 2$? Is this achieved by k -degenerate graphs? Rem: Don't even have good guess for this value.

Conj: For each $k \ge 1$, for D big enough w.r.t. k,

 $\chi^2(2k, D) \leqslant \omega^2(2k, D) + c_k.$

(Possibly $c_k = 0$ works.)

Q: What is max of $\chi(\mathsf{G}^2)$ for G with mad(G) < 4 and $\Delta \leqslant D$?

Q: What is max of $\chi(\mathsf{G}^2)$ for G with mad(G) < 4 and $\Delta \leqslant D$? **A:** $\lfloor 5D/2 \rfloor \leqslant \chi^2(4, D) \leqslant 3D + 5$

Q: What is max of $\chi(\mathsf{G}^2)$ for G with mad(G) < 4 and $\Delta \leqslant D$? **A:** $\lfloor 5D/2 \rfloor \leqslant \chi^2(4, D) \leqslant 3D + 5$ Up: degeneracy; Low: construction

Q: What is max of $\chi(\mathsf{G}^2)$ for G with mad(G) < 4 and $\Delta \leqslant D$? **A:** $\lfloor 5D/2 \rfloor \leqslant \chi^2(4, D) \leqslant 3D + 5$ Up: degeneracy; Low: construction

Q: What is max of $\chi(\mathsf{G}^2)$ for G with mad(G) < 4 and $\Delta \leqslant D$? **A:** $\lfloor 5D/2 \rfloor \leqslant \chi^2(4, D) \leqslant 3D + 5$ Up: degeneracy; Low: construction Rem: Degeneracy bound nearly sharp

Q: What is max of $\chi(\mathsf{G}^2)$ for G with mad(G) < 4 and $\Delta \leqslant D$? **A:** $\lfloor 5D/2 \rfloor \leqslant \chi^2(4, D) \leqslant 3D + 5$ Up: degeneracy; Low: construction Rem: Degeneracy bound nearly sharp Q: Can we improve clique bound?

Q: What is max of $\chi(\mathsf{G}^2)$ for G with mad(G) < 4 and $\Delta \leqslant D$? **A:** $\lfloor 5D/2 \rfloor \leqslant \chi^2(4, D) \leqslant 3D + 5$ Up: degeneracy; Low: construction Rem: Degeneracy bound nearly sharp Q: Can we improve clique bound?

Main Thm:

(a) If G is 2-degenerate with $\Delta \leqslant D$, then $\omega(\mathsf{G}^2) \leqslant 5D/2 + 72$.

Q: What is max of $\chi(\mathsf{G}^2)$ for G with mad(G) < 4 and $\Delta \leqslant D$? **A:** $\lfloor 5D/2 \rfloor \leqslant \chi^2(4, D) \leqslant 3D + 5$ Up: degeneracy; Low: construction Rem: Degeneracy bound nearly sharp Q: Can we improve clique bound?

Main Thm:

- (a) If G is 2-degenerate with $\Delta \leqslant D$, then $\omega(\mathsf{G}^2) \leqslant 5D/2 + 72$.
- (b) If G has mad $(G) < 4$ and $\Delta \leqslant D$, then $\omega(G^2) \leqslant 5D/2 + 532$.

Q: What is max of $\chi(\mathsf{G}^2)$ for G with mad(G) < 4 and $\Delta \leqslant D$? **A:** $\lfloor 5D/2 \rfloor \leqslant \chi^2(4, D) \leqslant 3D + 5$ Up: degeneracy; Low: construction Rem: Degeneracy bound nearly sharp Q: Can we improve clique bound?

Main Thm:

(a) If G is 2-degenerate with $\Delta \leqslant D$, then $\omega(\mathsf{G}^2) \leqslant 5D/2 + 72$.

(b) If G has mad $(G) < 4$ and $\Delta \leqslant D$, then $\omega(G^2) \leqslant 5D/2 + 532$.

Pf Outline:

Q: What is max of $\chi(\mathsf{G}^2)$ for G with mad(G) < 4 and $\Delta \leqslant D$? **A:** $\lfloor 5D/2 \rfloor \leqslant \chi^2(4, D) \leqslant 3D + 5$ Up: degeneracy; Low: construction Rem: Degeneracy bound nearly sharp Q: Can we improve clique bound?

Main Thm:

- (a) If G is 2-degenerate with $\Delta \leqslant D$, then $\omega(\mathsf{G}^2) \leqslant 5D/2 + 72$.
- (b) If G has mad $(G) < 4$ and $\Delta \leqslant D$, then $\omega(G^2) \leqslant 5D/2 + 532$.

Pf Outline:

(i) Construction above best for "nice" graphs.

Q: What is max of $\chi(\mathsf{G}^2)$ for G with mad(G) < 4 and $\Delta \leqslant D$? **A:** $\lfloor 5D/2 \rfloor \leqslant \chi^2(4, D) \leqslant 3D + 5$ Up: degeneracy; Low: construction Rem: Degeneracy bound nearly sharp Q: Can we improve clique bound?

Main Thm:

- (a) If G is 2-degenerate with $\Delta \leqslant D$, then $\omega(\mathsf{G}^2) \leqslant 5D/2 + 72$.
- (b) If G has mad $(G) < 4$ and $\Delta \leqslant D$, then $\omega(G^2) \leqslant 5D/2 + 532$.

Pf Outline:

(i) Construction above best for "nice" graphs. (ii) Edit arbitrary 2-degenerate \overline{G} to nice graph, shrinking $\omega(\overline{G^2})$ at most 72.

Q: What is max of $\chi(\mathsf{G}^2)$ for G with mad(G) < 4 and $\Delta \leqslant D$? **A:** $\lfloor 5D/2 \rfloor \leqslant \chi^2(4, D) \leqslant 3D + 5$ Up: degeneracy; Low: construction Rem: Degeneracy bound nearly sharp Q: Can we improve clique bound?

Main Thm:

(a) If G is 2-degenerate with $\Delta \leqslant D$, then $\omega(\mathsf{G}^2) \leqslant 5D/2 + 72$.

(b) If G has mad $(G) < 4$ and $\Delta \leqslant D$, then $\omega(G^2) \leqslant 5D/2 + 532$.

Pf Outline:

(i) Construction above best for "nice" graphs. (ii) Edit arbitrary 2-degenerate \overline{G} to nice graph, shrinking $\omega(\overline{G^2})$ at most 72. (iii) Edit arbitrary G with mad(G) $<$ 4 to 2-degenerate, shrinking $\omega(\,G^2)$ at most 460.

Q: What is max of $\chi(\mathsf{G}^2)$ for G with mad(G) < 4 and $\Delta \leqslant D$? **A:** $\lfloor 5D/2 \rfloor \leqslant \chi^2(4, D) \leqslant 3D + 5$ Up: degeneracy; Low: construction Rem: Degeneracy bound nearly sharp Q: Can we improve clique bound?

Main Thm:

(a) If G is 2-degenerate with $\Delta \leqslant D$, then $\omega(\mathsf{G}^2) \leqslant 5D/2 + 72$. (b) If G has mad $(G) < 4$ and $\Delta \leqslant D$, then $\omega(G^2) \leqslant 5D/2 + 532$.

Pf Outline:

(i) Construction above best for "nice" graphs. (ii) Edit arbitrary 2-degenerate \overline{G} to nice graph, shrinking $\omega(\overline{G^2})$ at most 72. (iii) Edit arbitrary G with mad(G) < 4 to 2-degenerate, shrinking $\omega(\,G^2)$ at most 460.

Rem: Many interesting open questions!

Q: What is max of $\chi(\mathsf{G}^2)$ for G with mad(G) < 4 and $\Delta \leqslant D$? **A:** $\lfloor 5D/2 \rfloor \leqslant \chi^2(4, D) \leqslant 3D + 5$ Up: degeneracy; Low: construction Rem: Degeneracy bound nearly sharp Q: Can we improve clique bound?

Main Thm:

- (a) If G is 2-degenerate with $\Delta \leqslant D$, then $\omega(\mathsf{G}^2) \leqslant 5D/2 + 72$.
- (b) If G has mad $(G) < 4$ and $\Delta \leqslant D$, then $\omega(G^2) \leqslant 5D/2 + 532$.

Pf Outline:

(i) Construction above best for "nice" graphs. (ii) Edit arbitrary 2-degenerate \overline{G} to nice graph, shrinking $\omega(\overline{G^2})$ at most 72. (iii) Edit arbitrary G with mad(G) $<$ 4 to 2-degenerate, shrinking $\omega(\,G^2)$ at most 460.

Rem: Many interesting open questions! Read more: arXiv:2305.11763