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Thm. [Grünbaum 1970]
Every planar G has acyclic chromatic number, χa(G ), at most 9.



Definitions and Examples

Def. An acyclic coloring is a proper vertex coloring such that the
union of any two color classes induces a forest.

Thm. [Borodin 1979]
Every planar G has acyclic chromatic number, χa(G ), at most 5.



Definitions and Examples

Def. An acyclic coloring is a proper vertex coloring such that the
union of any two color classes induces a forest.

Thm. [Borodin 1979]
Every planar G has acyclic chromatic number, χa(G ), at most 5.

Def. A star coloring is a proper vertex coloring such that the union
of any two color classes induces a star forest (contains no P4).



Definitions and Examples

Def. An acyclic coloring is a proper vertex coloring such that the
union of any two color classes induces a forest.

Thm. [Borodin 1979]
Every planar G has acyclic chromatic number, χa(G ), at most 5.

Def. A star coloring is a proper vertex coloring such that the union
of any two color classes induces a star forest (contains no P4).

Thm. [Fetin-Raspaud-Reed 2001]
Every planar G has star chromatic number χs(G ), at most 80.



Definitions and Examples

Def. An acyclic coloring is a proper vertex coloring such that the
union of any two color classes induces a forest.

Thm. [Borodin 1979]
Every planar G has acyclic chromatic number, χa(G ), at most 5.

Def. A star coloring is a proper vertex coloring such that the union
of any two color classes induces a star forest (contains no P4).

Thm. [Albertson-Chappell-Kierstead-Kündgen-Ramamurthi ’04]
Every planar G has star chromatic number χs(G ), at most 20.



Definitions and Examples

Def. An acyclic coloring is a proper vertex coloring such that the
union of any two color classes induces a forest.

Thm. [Borodin 1979]
Every planar G has acyclic chromatic number, χa(G ), at most 5.

Def. A star coloring is a proper vertex coloring such that the union
of any two color classes induces a star forest (contains no P4).

Thm. [Albertson-Chappell-Kierstead-Kündgen-Ramamurthi ’04]
Every planar G has star chromatic number χs(G ), at most 20.



Definitions and Examples

Def. An acyclic coloring is a proper vertex coloring such that the
union of any two color classes induces a forest.

Thm. [Borodin 1979]
Every planar G has acyclic chromatic number, χa(G ), at most 5.

Def. A star coloring is a proper vertex coloring such that the union
of any two color classes induces a star forest (contains no P4).

Thm. [Albertson-Chappell-Kierstead-Kündgen-Ramamurthi ’04]
Every planar G has star chromatic number χs(G ), at most 20.



Definitions and Examples

Def. An acyclic coloring is a proper vertex coloring such that the
union of any two color classes induces a forest.

Thm. [Borodin 1979]
Every planar G has acyclic chromatic number, χa(G ), at most 5.

Def. A star coloring is a proper vertex coloring such that the union
of any two color classes induces a star forest (contains no P4).

Thm. [Albertson-Chappell-Kierstead-Kündgen-Ramamurthi ’04]
Every planar G has star chromatic number χs(G ), at most 20.



Structural Decomposition

Thm. [A-C-K-K-R] For every surface S there is a constant γ such
that every graph G with girth ≥ γ embedded in S has χs(G ) ≤ 4.



Structural Decomposition

Thm. [A-C-K-K-R] For every surface S there is a constant γ such
that every graph G with girth ≥ γ embedded in S has χs(G ) ≤ 4.

Thm. [Timmons ’07] If G is planar and has girth ≥ 14, then we
can partition V (G ) into sets I and F s.t. G [F ] is a forest and I is a
2-independent set in G .



Structural Decomposition

Thm. [A-C-K-K-R] For every surface S there is a constant γ such
that every graph G with girth ≥ γ embedded in S has χs(G ) ≤ 4.

Thm. [Timmons ’07] If G is planar and has girth ≥ 14, then we
can partition V (G ) into sets I and F s.t. G [F ] is a forest and I is a
2-independent set in G .

Def. A set I is 2-independent in G if ∀ u, v ∈ I dist(u, v) > 2.



Structural Decomposition

Thm. [A-C-K-K-R] For every surface S there is a constant γ such
that every graph G with girth ≥ γ embedded in S has χs(G ) ≤ 4.

Thm. [Timmons ’07] If G is planar and has girth ≥ 14, then we
can partition V (G ) into sets I and F s.t. G [F ] is a forest and I is a
2-independent set in G .

Def. A set I is 2-independent in G if ∀ u, v ∈ I dist(u, v) > 2.

Lem. If we can partition G as in Theorem, then χs(G ) ≤ 4.



Structural Decomposition

Thm. [A-C-K-K-R] For every surface S there is a constant γ such
that every graph G with girth ≥ γ embedded in S has χs(G ) ≤ 4.

Thm. [Timmons ’07] If G is planar and has girth ≥ 14, then we
can partition V (G ) into sets I and F s.t. G [F ] is a forest and I is a
2-independent set in G .

Def. A set I is 2-independent in G if ∀ u, v ∈ I dist(u, v) > 2.

Lem. If we can partition G as in Theorem, then χs(G ) ≤ 4.

Pf. Choose a root in each tree of F .
If v ∈ F is distance k from its root,
then v gets color k (mod 3).
If v ∈ I , then v gets color 3.



Structural Decomposition

Thm. [A-C-K-K-R] For every surface S there is a constant γ such
that every graph G with girth ≥ γ embedded in S has χs(G ) ≤ 4.

Thm. [Timmons ’07] If G is planar and has girth ≥ 14, then we
can partition V (G ) into sets I and F s.t. G [F ] is a forest and I is a
2-independent set in G .

Def. A set I is 2-independent in G if ∀ u, v ∈ I dist(u, v) > 2.

Lem. If we can partition G as in Theorem, then χs(G ) ≤ 4.

Pf. Choose a root in each tree of F .
If v ∈ F is distance k from its root,
then v gets color k (mod 3).
If v ∈ I , then v gets color 3.

r



Structural Decomposition

Thm. [A-C-K-K-R] For every surface S there is a constant γ such
that every graph G with girth ≥ γ embedded in S has χs(G ) ≤ 4.

Thm. [Timmons ’07] If G is planar and has girth ≥ 14, then we
can partition V (G ) into sets I and F s.t. G [F ] is a forest and I is a
2-independent set in G .

Def. A set I is 2-independent in G if ∀ u, v ∈ I dist(u, v) > 2.

Lem. If we can partition G as in Theorem, then χs(G ) ≤ 4.

Pf. Choose a root in each tree of F .
If v ∈ F is distance k from its root,
then v gets color k (mod 3).
If v ∈ I , then v gets color 3.

r



Structural Decomposition

Thm. [A-C-K-K-R] For every surface S there is a constant γ such
that every graph G with girth ≥ γ embedded in S has χs(G ) ≤ 4.

Thm. [Timmons ’07] If G is planar and has girth ≥ 14, then we
can partition V (G ) into sets I and F s.t. G [F ] is a forest and I is a
2-independent set in G .

Def. A set I is 2-independent in G if ∀ u, v ∈ I dist(u, v) > 2.

Lem. If we can partition G as in Theorem, then χs(G ) ≤ 4.

Pf. Choose a root in each tree of F .
If v ∈ F is distance k from its root,
then v gets color k (mod 3).
If v ∈ I , then v gets color 3.

r



Structural Decomposition

Thm. [A-C-K-K-R] For every surface S there is a constant γ such
that every graph G with girth ≥ γ embedded in S has χs(G ) ≤ 4.

Thm. [Timmons ’07] If G is planar and has girth ≥ 14, then we
can partition V (G ) into sets I and F s.t. G [F ] is a forest and I is a
2-independent set in G .

Def. A set I is 2-independent in G if ∀ u, v ∈ I dist(u, v) > 2.

Lem. If we can partition G as in Theorem, then χs(G ) ≤ 4.

Pf. Choose a root in each tree of F .
If v ∈ F is distance k from its root,
then v gets color k (mod 3).
If v ∈ I , then v gets color 3.

r



Structural Decomposition

Thm. [A-C-K-K-R] For every surface S there is a constant γ such
that every graph G with girth ≥ γ embedded in S has χs(G ) ≤ 4.

Thm. [Timmons ’07] If G is planar and has girth ≥ 14, then we
can partition V (G ) into sets I and F s.t. G [F ] is a forest and I is a
2-independent set in G .

Def. A set I is 2-independent in G if ∀ u, v ∈ I dist(u, v) > 2.

Lem. If we can partition G as in Theorem, then χs(G ) ≤ 4.

Pf. Choose a root in each tree of F .
If v ∈ F is distance k from its root,
then v gets color k (mod 3).
If v ∈ I , then v gets color 3.

r



Structural Decomposition

Thm. [A-C-K-K-R] For every surface S there is a constant γ such
that every graph G with girth ≥ γ embedded in S has χs(G ) ≤ 4.

Thm. [Timmons ’07] If G is planar and has girth ≥ 14, then we
can partition V (G ) into sets I and F s.t. G [F ] is a forest and I is a
2-independent set in G .

Def. A set I is 2-independent in G if ∀ u, v ∈ I dist(u, v) > 2.

Lem. If we can partition G as in Theorem, then χs(G ) ≤ 4.

Pf. Choose a root in each tree of F .
If v ∈ F is distance k from its root,
then v gets color k (mod 3).
If v ∈ I , then v gets color 3.

r



Reducibility

Pf. Assume that G is a minimal counterexample. G must not
contain any of the following subgraphs:



Reducibility

Pf. Assume that G is a minimal counterexample. G must not
contain any of the following subgraphs:

v



Reducibility

Pf. Assume that G is a minimal counterexample. G must not
contain any of the following subgraphs:

v

Partition G − v .



Reducibility

Pf. Assume that G is a minimal counterexample. G must not
contain any of the following subgraphs:

v

Partition G − v .
Put v into F .



Reducibility

Pf. Assume that G is a minimal counterexample. G must not
contain any of the following subgraphs:

v

Partition G − v .
Put v into F .

u v w



Reducibility

Pf. Assume that G is a minimal counterexample. G must not
contain any of the following subgraphs:

v

Partition G − v .
Put v into F .

u v w

Partition G − {u, v ,w}.



Reducibility

Pf. Assume that G is a minimal counterexample. G must not
contain any of the following subgraphs:

v

Partition G − v .
Put v into F .

u v w

Partition G − {u, v ,w}.
Put v into I and u,w into F .



Reducibility

Pf. Assume that G is a minimal counterexample. G must not
contain any of the following subgraphs:

v

Partition G − v .
Put v into F .

u v w

Partition G − {u, v ,w}.
Put v into I and u,w into F .
Or put u, v ,w into F .



Reducibility

Pf. Assume that G is a minimal counterexample. G must not
contain any of the following subgraphs:

v

Partition G − v .
Put v into F .

u v w

Partition G − {u, v ,w}.
Put v into I and u,w into F .
Or put u, v ,w into F .

“no 2(2)-vertices”



Reducibility

Pf. Assume that G is a minimal counterexample. G must not
contain any of the following subgraphs:

v

Partition G − v .
Put v into F .

u v w

Partition G − {u, v ,w}.
Put v into I and u,w into F .
Or put u, v ,w into F .

“no 2(2)-vertices”

Partition G − H.

wv



Reducibility

Pf. Assume that G is a minimal counterexample. G must not
contain any of the following subgraphs:

v

Partition G − v .
Put v into F .

u v w

Partition G − {u, v ,w}.
Put v into I and u,w into F .
Or put u, v ,w into F .

“no 2(2)-vertices”

Partition G − H.

Put w into I and others into F .

wv



Reducibility

Pf. Assume that G is a minimal counterexample. G must not
contain any of the following subgraphs:

v

Partition G − v .
Put v into F .

u v w

Partition G − {u, v ,w}.
Put v into I and u,w into F .
Or put u, v ,w into F .

“no 2(2)-vertices”

Partition G − H.

Put w into I and others into F .

Or v into I and others into F .

wv



Reducibility

Pf. Assume that G is a minimal counterexample. G must not
contain any of the following subgraphs:

v

Partition G − v .
Put v into F .

u v w

Partition G − {u, v ,w}.
Put v into I and u,w into F .
Or put u, v ,w into F .

“no 2(2)-vertices”

Partition G − H.

Put w into I and others into F .

Or v into I and others into F .

Or all into F .

wv



Discharging

Give charge 2l(f ) − 28 to each face f and
charge 12d(v) − 28 to each vertex v .



Discharging

Give charge 2l(f ) − 28 to each face f and
charge 12d(v) − 28 to each vertex v .

Since girth ≥ 14, each face has nonnegative charge.



Discharging

Give charge 2l(f ) − 28 to each face f and
charge 12d(v) − 28 to each vertex v .

Since girth ≥ 14, each face has nonnegative charge.

∑

v∈V

(12d(v) − 28) +
∑

f ∈F

(2l(f ) − 28) = 28(|E | − |F | − |V |) = −56



Discharging

Give charge 2l(f ) − 28 to each face f and
charge 12d(v) − 28 to each vertex v .

Since girth ≥ 14, each face has nonnegative charge.

∑

v∈V

(12d(v) − 28) +
∑

f ∈F

(2l(f ) − 28)

︸ ︷︷ ︸

nonnegative

= 28(|E | − |F | − |V |) = −56



Discharging

Give charge 2l(f ) − 28 to each face f and
charge 12d(v) − 28 to each vertex v .

Since girth ≥ 14, each face has nonnegative charge.

∑

v∈V

(12d(v) − 28)

︸ ︷︷ ︸

negative

+
∑

f ∈F

(2l(f ) − 28)

︸ ︷︷ ︸

nonnegative

= 28(|E | − |F | − |V |) = −56



Discharging

Give charge 2l(f ) − 28 to each face f and
charge 12d(v) − 28 to each vertex v .

Since girth ≥ 14, each face has nonnegative charge.

∑

v∈V

(12d(v) − 28)

︸ ︷︷ ︸

negative

+
∑

f ∈F

(2l(f ) − 28)

︸ ︷︷ ︸

nonnegative

= 28(|E | − |F | − |V |) = −56

Discharging rule: each 2-vert receives 2 from each nearby 3+-vert.



Discharging

Give charge 2l(f ) − 28 to each face f and
charge 12d(v) − 28 to each vertex v .

Since girth ≥ 14, each face has nonnegative charge.

∑

v∈V

(12d(v) − 28)

︸ ︷︷ ︸

negative

+
∑

f ∈F

(2l(f ) − 28)

︸ ︷︷ ︸

nonnegative

= 28(|E | − |F | − |V |) = −56

Discharging rule: each 2-vert receives 2 from each nearby 3+-vert.

Show each vertex has nonnegative charge.



Discharging

Give charge 2l(f ) − 28 to each face f and
charge 12d(v) − 28 to each vertex v .

Since girth ≥ 14, each face has nonnegative charge.

∑

v∈V

(12d(v) − 28)

︸ ︷︷ ︸

negative

+
∑

f ∈F

(2l(f ) − 28)

︸ ︷︷ ︸

nonnegative

= 28(|E | − |F | − |V |) = −56

Discharging rule: each 2-vert receives 2 from each nearby 3+-vert.

Show each vertex has nonnegative charge.

2-vert: 12(2) − 28 + 2(2) = 0



Discharging

Give charge 2l(f ) − 28 to each face f and
charge 12d(v) − 28 to each vertex v .

Since girth ≥ 14, each face has nonnegative charge.

∑

v∈V

(12d(v) − 28)

︸ ︷︷ ︸

negative

+
∑

f ∈F

(2l(f ) − 28)

︸ ︷︷ ︸

nonnegative

= 28(|E | − |F | − |V |) = −56

Discharging rule: each 2-vert receives 2 from each nearby 3+-vert.

Show each vertex has nonnegative charge.

2-vert: 12(2) − 28 + 2(2) = 0
3-vert: 12(3) − 28 − 4(2) = 0



Discharging

Give charge 2l(f ) − 28 to each face f and
charge 12d(v) − 28 to each vertex v .

Since girth ≥ 14, each face has nonnegative charge.

∑

v∈V

(12d(v) − 28)

︸ ︷︷ ︸

negative

+
∑

f ∈F

(2l(f ) − 28)

︸ ︷︷ ︸

nonnegative

= 28(|E | − |F | − |V |) = −56

Discharging rule: each 2-vert receives 2 from each nearby 3+-vert.

Show each vertex has nonnegative charge.

2-vert: 12(2) − 28 + 2(2) = 0
3-vert: 12(3) − 28 − 4(2) = 0
4+-vert: 12d(v) − 28 − 2d(v)2 = 8d(v) − 28 > 0



Discharging

Give charge 2l(f ) − 28 to each face f and
charge 12d(v) − 28 to each vertex v .

Since girth ≥ 14, each face has nonnegative charge.

∑

v∈V

(12d(v) − 28)

︸ ︷︷ ︸

negative

+
∑

f ∈F

(2l(f ) − 28)

︸ ︷︷ ︸

nonnegative

= 28(|E | − |F | − |V |) = −56

Discharging rule: each 2-vert receives 2 from each nearby 3+-vert.

Show each vertex has nonnegative charge.

2-vert: 12(2) − 28 + 2(2) = 0
3-vert: 12(3) − 28 − 4(2) = 0
4+-vert: 12d(v) − 28 − 2d(v)2 = 8d(v) − 28 > 0

Contradiction! So G contains a reducible configuration.



Discharging

Give charge 2l(f ) − 26 to each face f and
charge 11d(v) − 26 to each vertex v .

Since girth ≥ 13, each face has nonnegative charge.

∑

v∈V

(12d(v) − 28)

︸ ︷︷ ︸

negative

+
∑

f ∈F

(2l(f ) − 28)

︸ ︷︷ ︸

nonnegative

= 28(|E | − |F | − |V |) = −56

Discharging rule: each 2-vert receives 2 from each nearby 3+-vert.

Show each vertex has nonnegative charge.

2-vert: 12(2) − 28 + 2(2) = 0
3-vert: 12(3) − 28 − 4(2) = 0
4+-vert: 12d(v) − 28 − 2d(v)2 = 8d(v) − 28 > 0

Contradiction! So G contains a reducible configuration.



Discharging

Give charge 2l(f ) − 26 to each face f and
charge 11d(v) − 26 to each vertex v .

Since girth ≥ 13, each face has nonnegative charge.

∑

v∈V

(11d(v) − 26)

︸ ︷︷ ︸

negative

+
∑

f ∈F

(2l(f ) − 26)

︸ ︷︷ ︸

nonnegative

= 26(|E | − |F | − |V |) = −52

Discharging rule: each 2-vert receives 2 from each nearby 3+-vert.

Show each vertex has nonnegative charge.

2-vert: 12(2) − 28 + 2(2) = 0
3-vert: 12(3) − 28 − 4(2) = 0
4+-vert: 12d(v) − 28 − 2d(v)2 = 8d(v) − 28 > 0

Contradiction! So G contains a reducible configuration.



Discharging

Give charge 2l(f ) − 26 to each face f and
charge 11d(v) − 26 to each vertex v .

Since girth ≥ 13, each face has nonnegative charge.

∑

v∈V

(11d(v) − 26)

︸ ︷︷ ︸

negative

+
∑

f ∈F

(2l(f ) − 26)

︸ ︷︷ ︸

nonnegative

= 26(|E | − |F | − |V |) = −52

Discharging rule: each 2-vert receives 2 from each nearby 3+-vert.

Show each vertex has nonnegative charge.

2-vert: 11(2) − 26 + 2(2) = 0
3-vert: 12(3) − 28 − 4(2) = 0
4+-vert: 12d(v) − 28 − 2d(v)2 = 8d(v) − 28 > 0

Contradiction! So G contains a reducible configuration.



Discharging

Give charge 2l(f ) − 26 to each face f and
charge 11d(v) − 26 to each vertex v .

Since girth ≥ 13, each face has nonnegative charge.

∑

v∈V

(11d(v) − 26)

︸ ︷︷ ︸

negative

+
∑

f ∈F

(2l(f ) − 26)

︸ ︷︷ ︸

nonnegative

= 26(|E | − |F | − |V |) = −52

Discharging rule: each 2-vert receives 2 from each nearby 3+-vert.

Show each vertex has nonnegative charge.

2-vert: 11(2) − 26 + 2(2) = 0
3-vert: 11(3) − 26 − 4(2) = −1
4+-vert: 12d(v) − 28 − 2d(v)2 = 8d(v) − 28 > 0

Contradiction! So G contains a reducible configuration.



Discharging

Give charge 2l(f ) − 26 to each face f and
charge 11d(v) − 26 to each vertex v .

Since girth ≥ 13, each face has nonnegative charge.

∑

v∈V

(11d(v) − 26)

︸ ︷︷ ︸

negative

+
∑

f ∈F

(2l(f ) − 26)

︸ ︷︷ ︸

nonnegative

= 26(|E | − |F | − |V |) = −52

Discharging rule: each 2-vert receives 2 from each nearby 3+-vert.

Show each vertex has nonnegative charge.

2-vert: 11(2) − 26 + 2(2) = 0
3-vert: 11(3) − 26 − 4(2) = −1
4+-vert: 11d(v) − 26 − 2d(v)2 = 7d(v) − 26 > 0

Contradiction! So G contains a reducible configuration.



How to handle 3(2)-vertices

↓ 1



How to handle 3(2)-vertices

↓ 1 ?



How to handle 3(2)-vertices

↓ 1 ?

Let A = {2(1)-verts and 3(2)-verts adj. to two 2(1)-verts}; H = G [A].



How to handle 3(2)-vertices

↓ 1 ?

Let A = {2(1)-verts and 3(2)-verts adj. to two 2(1)-verts}; H = G [A].

Claim mad(H)≤ 2.



How to handle 3(2)-vertices

↓ 1 ?

Let A = {2(1)-verts and 3(2)-verts adj. to two 2(1)-verts}; H = G [A].

Claim mad(H)≤ 2.

Pf. Idea Every component of H is a cycle or a tree.



How to handle 3(2)-vertices

↓ 1 ?

Let A = {2(1)-verts and 3(2)-verts adj. to two 2(1)-verts}; H = G [A].

Claim mad(H)≤ 2.

Pf. Idea Every component of H is a cycle or a tree.

Obs. Every leaf v of H is a 2(1)-vert, adjacent to a 3+-vert u, and
u can afford to give 1 to the bank for v .



How to handle 3(2)-vertices

↓ 1 ?

Let A = {2(1)-verts and 3(2)-verts adj. to two 2(1)-verts}; H = G [A].

Claim mad(H)≤ 2.

Pf. Idea Every component of H is a cycle or a tree.

Obs. Every leaf v of H is a 2(1)-vert, adjacent to a 3+-vert u, and
u can afford to give 1 to the bank for v .

5+-vertex: 11d(v) − 26 − 2d(v)2 − d(v) = 6d(v) − 26 > 0



How to handle 3(2)-vertices

↓ 1 ?

Let A = {2(1)-verts and 3(2)-verts adj. to two 2(1)-verts}; H = G [A].

Claim mad(H)≤ 2.

Pf. Idea Every component of H is a cycle or a tree.

Obs. Every leaf v of H is a 2(1)-vert, adjacent to a 3+-vert u, and
u can afford to give 1 to the bank for v .

5+-vertex: 11d(v) − 26 − 2d(v)2 − d(v) = 6d(v) − 26 > 0



How to handle 3(2)-vertices

↓ 1 ?

Let A = {2(1)-verts and 3(2)-verts adj. to two 2(1)-verts}; H = G [A].

Claim mad(H)≤ 2.

Pf. Idea Every component of H is a cycle or a tree.

Obs. Every leaf v of H is a 2(1)-vert, adjacent to a 3+-vert u, and
u can afford to give 1 to the bank for v .

5+-vertex: 11d(v) − 26 − 2d(v)2 − d(v) = 6d(v) − 26 > 0



How to handle 3(2)-vertices

↓ 1 ?

Let A = {2(1)-verts and 3(2)-verts adj. to two 2(1)-verts}; H = G [A].

Claim mad(H)≤ 2.

Pf. Idea Every component of H is a cycle or a tree.

Obs. Every leaf v of H is a 2(1)-vert, adjacent to a 3+-vert u, and
u can afford to give 1 to the bank for v .

5+-vertex: 11d(v) − 26 − 2d(v)2 − d(v) = 6d(v) − 26 > 0
4-vertex: 11(4) − 26 − 7(2) − 3 = 1
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Give charge 2l(f ) − 26 to each face f and
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Discharging (again)

Give charge 2l(f ) − 26 to each face f and
charge 11d(v) − 26 to each vertex v .

Since girth ≥ 13, each face has nonnegative charge.
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3(1)-vert: 11(3) − 26 − 2(2) − 3(1) = 0
3(2)-vert: 11(3) − 26 − 4(2) + 1 = 0
3(3)-vert: 11(3) − 26 − 3(2) > 0
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Discharging (again)

Give charge 2l(f ) − 26 to each face f and
charge 11d(v) − 26 to each vertex v .

Since girth ≥ 13, each face has nonnegative charge.

Discharging rules: each 2-vert receives 2 from each nearby 3+-vert.
each good 3(2)-vertex in H receives 1 from adj 3+-vert.
each bad 3(2)-vertex in H receives 1 from bank.

Show each vertex has nonnegative charge.

2-vert: 11(2) − 26 + 2(2) = 0
3(0)-vert: 11(3) − 26 − 3(1) > 0
3(1)-vert: 11(3) − 26 − 2(2) − 3(1) = 0
3(2)-vert: 11(3) − 26 − 4(2) + 1 = 0
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Discharging (again)

Give charge 2l(f ) − 26 to each face f and
charge 11d(v) − 26 to each vertex v .

Since girth ≥ 13, each face has nonnegative charge.

Discharging rules: each 2-vert receives 2 from each nearby 3+-vert.
each good 3(2)-vertex in H receives 1 from adj 3+-vert.
each bad 3(2)-vertex in H receives 1 from bank.

Show each vertex has nonnegative charge.

2-vert: 11(2) − 26 + 2(2) = 0
3(0)-vert: 11(3) − 26 − 3(1) > 0
3(1)-vert: 11(3) − 26 − 2(2) − 3(1) = 0
3(2)-vert: 11(3) − 26 − 4(2) + 1 = 0
3(3)-vert: 11(3) − 26 − 3(2) > 0
4-vertex: 11(4) − 26 − 7(2) − 3 = 1

5+-vertex: 11d(v) − 26 − 4d(v) − d(v) = 6d(v) − 26 > 0
Contradiction! So G contains a reducible configuration.
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Generalization
∑

11d(v) − 26 < 0 ⇒ mad(G ) <
26
11

Thm. If mad(G ) <
26
11

, then we can partition V (G ) into sets I

and F s.t. G [F ] is a forest and I is a 2-independent set in G .

Open Questions
◮ What is the minimum girth g s.t. G planar and girth ≥ g

implies an I ,F -partition?
We know that 8 ≤ g ≤ 13

◮ What is the minimum girth g s.t. G planar and girth ≥ g

implies χs(G ) ≤ 4?

◮ For an arbitrary surface S , what is the minimum γS s.t.
girth ≥ γS and G embedded in S implies an I ,F -partition?
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