Star-coloring planar graphs with high girth

Daniel W. Cranston

DIMACS, Rutgers dcransto@dimacs.rutgers.edu Joint with Craig Timmons and Andre Kundgen

Def. An acyclic coloring is a proper vertex coloring such that the union of any two color classes induces a forest.

Def. An acyclic coloring is a proper vertex coloring such that the union of any two color classes induces a forest.

Thm. [Grünbaum 1970]

Every planar G has acyclic chromatic number, $\chi_a(G)$, at most 9.

Def. An acyclic coloring is a proper vertex coloring such that the union of any two color classes induces a forest.

Thm. [Borodin 1979]

Every planar G has acyclic chromatic number, $\chi_a(G)$, at most 5.

Def. An acyclic coloring is a proper vertex coloring such that the union of any two color classes induces a forest.

Thm. [Borodin 1979]

Every planar G has acyclic chromatic number, $\chi_a(G)$, at most 5.

Def. A star coloring is a proper vertex coloring such that the union of any two color classes induces a star forest (contains no P_4).

Def. An acyclic coloring is a proper vertex coloring such that the union of any two color classes induces a forest.

Thm. [Borodin 1979]

Every planar G has acyclic chromatic number, $\chi_a(G)$, at most 5.

Def. A star coloring is a proper vertex coloring such that the union of any two color classes induces a star forest (contains no P_4).

Thm. [Fetin-Raspaud-Reed 2001] Every planar *G* has star chromatic number $\chi_s(G)$, at most 80.

Def. An acyclic coloring is a proper vertex coloring such that the union of any two color classes induces a forest.

Thm. [Borodin 1979]

Every planar G has acyclic chromatic number, $\chi_a(G)$, at most 5.

Def. A star coloring is a proper vertex coloring such that the union of any two color classes induces a star forest (contains no P_4).

Thm. [Albertson-Chappell-Kierstead-Kündgen-Ramamurthi '04] Every planar *G* has star chromatic number $\chi_s(G)$, at most 20.

Def. An acyclic coloring is a proper vertex coloring such that the union of any two color classes induces a forest.

Thm. [Borodin 1979]

Every planar G has acyclic chromatic number, $\chi_a(G)$, at most 5.

Def. A star coloring is a proper vertex coloring such that the union of any two color classes induces a star forest (contains no P_4).

Thm. [Albertson-Chappell-Kierstead-Kündgen-Ramamurthi '04] Every planar *G* has star chromatic number $\chi_s(G)$, at most 20.

Def. An acyclic coloring is a proper vertex coloring such that the union of any two color classes induces a forest.

Thm. [Borodin 1979]

Every planar G has acyclic chromatic number, $\chi_a(G)$, at most 5.

Def. A star coloring is a proper vertex coloring such that the union of any two color classes induces a star forest (contains no P_4).

Thm. [Albertson-Chappell-Kierstead-Kündgen-Ramamurthi '04] Every planar *G* has star chromatic number $\chi_s(G)$, at most 20.

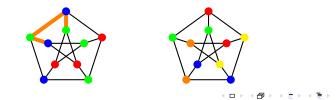
Def. An acyclic coloring is a proper vertex coloring such that the union of any two color classes induces a forest.

Thm. [Borodin 1979]

Every planar G has acyclic chromatic number, $\chi_a(G)$, at most 5.

Def. A star coloring is a proper vertex coloring such that the union of any two color classes induces a star forest (contains no P_4).

Thm. [Albertson-Chappell-Kierstead-Kündgen-Ramamurthi '04] Every planar *G* has star chromatic number $\chi_s(G)$, at most 20.



Thm. [A-C-K-K-R] For every surface S there is a constant γ such that every graph G with girth $\geq \gamma$ embedded in S has $\chi_s(G) \leq 4$.

Thm. [A-C-K-K-R] For every surface S there is a constant γ such that every graph G with girth $\geq \gamma$ embedded in S has $\chi_s(G) \leq 4$.

Thm. [Timmons '07] If G is planar and has girth \geq 14, then we can partition V(G) into sets I and F s.t. G[F] is a forest and I is a 2-independent set in G.

Thm. [A-C-K-K-R] For every surface S there is a constant γ such that every graph G with girth $\geq \gamma$ embedded in S has $\chi_s(G) \leq 4$.

Thm. [Timmons '07] If G is planar and has girth \geq 14, then we can partition V(G) into sets I and F s.t. G[F] is a forest and I is a 2-independent set in G.

(ロ) (同) (三) (三) (三) (0) (0)

Def. A set *I* is 2-independent in *G* if $\forall u, v \in I$ dist(u, v) > 2.

Thm. [A-C-K-K-R] For every surface S there is a constant γ such that every graph G with girth $\geq \gamma$ embedded in S has $\chi_s(G) \leq 4$.

Thm. [Timmons '07] If G is planar and has girth ≥ 14 , then we can partition V(G) into sets I and F s.t. G[F] is a forest and I is a 2-independent set in G.

(ロ) (同) (三) (三) (三) (0) (0)

Def. A set *I* is 2-independent in *G* if $\forall u, v \in I$ dist(u, v) > 2.

Lem. If we can partition G as in Theorem, then $\chi_s(G) \leq 4$.

Thm. [A-C-K-K-R] For every surface S there is a constant γ such that every graph G with girth $\geq \gamma$ embedded in S has $\chi_s(G) \leq 4$.

Thm. [Timmons '07] If G is planar and has girth ≥ 14 , then we can partition V(G) into sets I and F s.t. G[F] is a forest and I is a 2-independent set in G.

(ロ) (同) (三) (三) (三) (0) (0)

Def. A set *I* is 2-independent in *G* if $\forall u, v \in I$ dist(u, v) > 2.

Lem. If we can partition G as in Theorem, then $\chi_s(G) \leq 4$.

Pf. Choose a root in each tree of *F*. If $v \in F$ is distance *k* from its root, then *v* gets color *k* (mod 3). If $v \in I$, then *v* gets color 3.

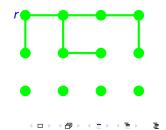
Thm. [A-C-K-K-R] For every surface S there is a constant γ such that every graph G with girth $\geq \gamma$ embedded in S has $\chi_s(G) \leq 4$.

Thm. [Timmons '07] If G is planar and has girth ≥ 14 , then we can partition V(G) into sets I and F s.t. G[F] is a forest and I is a 2-independent set in G.

Def. A set *I* is 2-independent in *G* if $\forall u, v \in I$ dist(u, v) > 2.

Lem. If we can partition G as in Theorem, then $\chi_s(G) \leq 4$.

Pf. Choose a root in each tree of F. If $v \in F$ is distance k from its root, then v gets color $k \pmod{3}$. If $v \in I$, then v gets color 3.



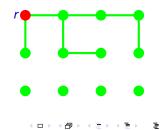
Thm. [A-C-K-K-R] For every surface S there is a constant γ such that every graph G with girth $\geq \gamma$ embedded in S has $\chi_s(G) \leq 4$.

Thm. [Timmons '07] If G is planar and has girth ≥ 14 , then we can partition V(G) into sets I and F s.t. G[F] is a forest and I is a 2-independent set in G.

Def. A set *I* is 2-independent in *G* if $\forall u, v \in I$ dist(u, v) > 2.

Lem. If we can partition G as in Theorem, then $\chi_s(G) \leq 4$.

Pf. Choose a root in each tree of F. If $v \in F$ is distance k from its root, then v gets color $k \pmod{3}$. If $v \in I$, then v gets color 3.



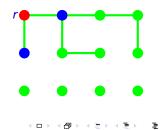
Thm. [A-C-K-K-R] For every surface S there is a constant γ such that every graph G with girth $\geq \gamma$ embedded in S has $\chi_s(G) \leq 4$.

Thm. [Timmons '07] If G is planar and has girth ≥ 14 , then we can partition V(G) into sets I and F s.t. G[F] is a forest and I is a 2-independent set in G.

Def. A set *I* is 2-independent in *G* if $\forall u, v \in I$ dist(u, v) > 2.

Lem. If we can partition G as in Theorem, then $\chi_s(G) \leq 4$.

Pf. Choose a root in each tree of F. If $v \in F$ is distance k from its root, then v gets color $k \pmod{3}$. If $v \in I$, then v gets color 3.



Sac

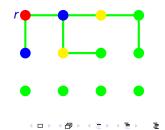
Thm. [A-C-K-K-R] For every surface S there is a constant γ such that every graph G with girth $\geq \gamma$ embedded in S has $\chi_s(G) \leq 4$.

Thm. [Timmons '07] If G is planar and has girth ≥ 14 , then we can partition V(G) into sets I and F s.t. G[F] is a forest and I is a 2-independent set in G.

Def. A set *I* is 2-independent in *G* if $\forall u, v \in I$ dist(u, v) > 2.

Lem. If we can partition G as in Theorem, then $\chi_s(G) \leq 4$.

Pf. Choose a root in each tree of F. If $v \in F$ is distance k from its root, then v gets color $k \pmod{3}$. If $v \in I$, then v gets color 3.



Sac

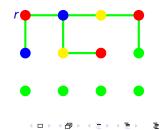
Thm. [A-C-K-K-R] For every surface S there is a constant γ such that every graph G with girth $\geq \gamma$ embedded in S has $\chi_s(G) \leq 4$.

Thm. [Timmons '07] If G is planar and has girth ≥ 14 , then we can partition V(G) into sets I and F s.t. G[F] is a forest and I is a 2-independent set in G.

Def. A set *I* is 2-independent in *G* if $\forall u, v \in I$ dist(u, v) > 2.

Lem. If we can partition G as in Theorem, then $\chi_s(G) \leq 4$.

Pf. Choose a root in each tree of F. If $v \in F$ is distance k from its root, then v gets color $k \pmod{3}$. If $v \in I$, then v gets color 3.



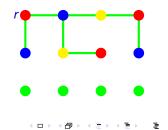
Thm. [A-C-K-K-R] For every surface S there is a constant γ such that every graph G with girth $\geq \gamma$ embedded in S has $\chi_s(G) \leq 4$.

Thm. [Timmons '07] If G is planar and has girth ≥ 14 , then we can partition V(G) into sets I and F s.t. G[F] is a forest and I is a 2-independent set in G.

Def. A set *I* is 2-independent in *G* if $\forall u, v \in I$ dist(u, v) > 2.

Lem. If we can partition G as in Theorem, then $\chi_s(G) \leq 4$.

Pf. Choose a root in each tree of F. If $v \in F$ is distance k from its root, then v gets color $k \pmod{3}$. If $v \in I$, then v gets color 3.



Sac

Pf. Assume that *G* is a minimal counterexample. *G* must not contain any of the following subgraphs:

Pf. Assume that *G* is a minimal counterexample. *G* must not contain any of the following subgraphs:



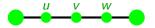
Pf. Assume that *G* is a minimal counterexample. *G* must not contain any of the following subgraphs:

Pf. Assume that *G* is a minimal counterexample. *G* must not contain any of the following subgraphs:

Partition G - v. Put v into F.

Pf. Assume that *G* is a minimal counterexample. *G* must not contain any of the following subgraphs:

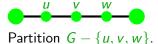
Partition G - v. Put v into F.



Pf. Assume that *G* is a minimal counterexample. *G* must not contain any of the following subgraphs:

Jac.

Partition G - v. Put v into F.



Pf. Assume that G is a minimal counterexample. G must not contain any of the following subgraphs:

Sac

Partition G - v. Put v into F.



Partition $G - \{u, v, w\}$. Put v into I and u, w into F.

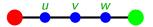
Pf. Assume that G is a minimal counterexample. G must not contain any of the following subgraphs:

(ㅁ) (귀) (흔) (흔)

3

Sac

Partition G - v. Put v into F.

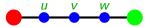


Partition $G - \{u, v, w\}$. Put v into I and u, w into F. Or put u, v, w into F.

Pf. Assume that G is a minimal counterexample. G must not contain any of the following subgraphs:

Sac

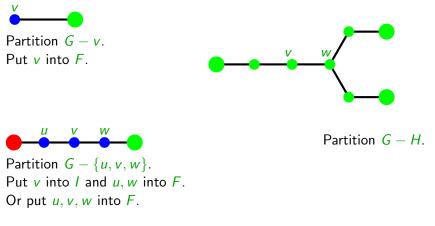
Partition G - v. Put v into F.



Partition $G - \{u, v, w\}$. Put v into I and u, w into F. Or put u, v, w into F.

"no 2(2)-vertices"

Pf. Assume that G is a minimal counterexample. G must not contain any of the following subgraphs:



< ロ > < 同 > < 三 > < 三 >

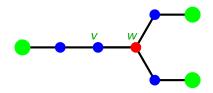
nac

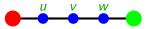
"no 2(2)-vertices"

Pf. Assume that G is a minimal counterexample. G must not contain any of the following subgraphs:

Partition G - v.

Put v into F.





Partition $G - \{u, v, w\}$. Put v into I and u, w into F. Or put u, v, w into F.

"no 2(2)-vertices"

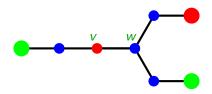
Partition G - H. Put w into I and others into F.

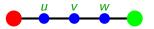
< ロ > < 同 > < 三 > < 三 >

Pf. Assume that G is a minimal counterexample. G must not contain any of the following subgraphs:

•**•**••••••

Partition G - v. Put v into F.





Partition $G - \{u, v, w\}$. Put v into l and u, w into F. Or put u, v, w into F.

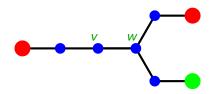
"no 2(2)-vertices"

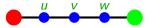
Partition G - H. Put w into I and others into F. Or v into I and others into F.

< ロ > < 同 > < 三 > < 三 >

Pf. Assume that G is a minimal counterexample. G must not contain any of the following subgraphs:

Partition G - v. Put v into F.





Partition $G - \{u, v, w\}$. Put v into l and u, w into F. Or put u, v, w into F.

"no 2(2)-vertices"

Partition G - H. Put w into I and others into F. Or v into I and others into F. Or all into F.

< ロ > < 同 > < 三 > < 三 >

Discharging

Give charge 2l(f) - 28 to each face f and charge 12d(v) - 28 to each vertex v.

Discharging

Give charge 2l(f) - 28 to each face f and charge 12d(v) - 28 to each vertex v.

Since girth \geq 14, each face has nonnegative charge.

Give charge 2l(f) - 28 to each face f and charge 12d(v) - 28 to each vertex v.

Since girth \geq 14, each face has nonnegative charge.

$$\sum_{v \in V} (12d(v) - 28) + \sum_{f \in F} (2I(f) - 28) = 28(|E| - |F| - |V|) = -56$$

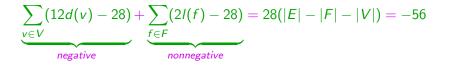
Give charge 2l(f) - 28 to each face f and charge 12d(v) - 28 to each vertex v.

Since girth \geq 14, each face has nonnegative charge.

$$\sum_{v \in V} (12d(v) - 28) + \sum_{\substack{f \in F \\ nonnegative}} (2I(f) - 28) = 28(|E| - |F| - |V|) = -56$$

Give charge 2l(f) - 28 to each face f and charge 12d(v) - 28 to each vertex v.

Since girth \geq 14, each face has nonnegative charge.

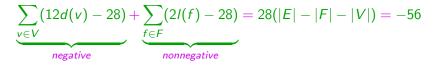


< ロ > < 同 > < 三 > < 三 > -

Sac

Give charge 2l(f) - 28 to each face f and charge 12d(v) - 28 to each vertex v.

Since girth \geq 14, each face has nonnegative charge.



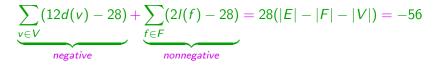
Discharging rule: each 2-vert receives 2 from each nearby 3⁺-vert.

(日) (四) (三) (三)

Jac.

Give charge 2l(f) - 28 to each face f and charge 12d(v) - 28 to each vertex v.

Since girth \geq 14, each face has nonnegative charge.



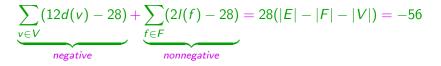
Discharging rule: each 2-vert receives 2 from each nearby 3⁺-vert.

Jac.

Show each vertex has nonnegative charge.

Give charge 2l(f) - 28 to each face f and charge 12d(v) - 28 to each vertex v.

Since girth \geq 14, each face has nonnegative charge.



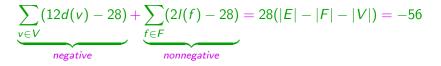
Discharging rule: each 2-vert receives 2 from each nearby 3⁺-vert.

Jac.

Show each vertex has nonnegative charge. 2-vert: 12(2) - 28 + 2(2) = 0

Give charge 2l(f) - 28 to each face f and charge 12d(v) - 28 to each vertex v.

Since girth \geq 14, each face has nonnegative charge.



Discharging rule: each 2-vert receives 2 from each nearby 3⁺-vert.

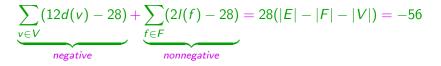
Jac.

Show each vertex has nonnegative charge.

2-vert: 12(2) - 28 + 2(2) = 03-vert: 12(3) - 28 - 4(2) = 0

Give charge 2l(f) - 28 to each face f and charge 12d(v) - 28 to each vertex v.

Since girth \geq 14, each face has nonnegative charge.



Discharging rule: each 2-vert receives 2 from each nearby 3⁺-vert.

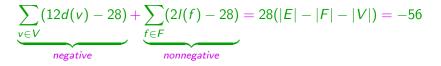
Jac.

Show each vertex has nonnegative charge.

2-vert: 12(2) - 28 + 2(2) = 03-vert: 12(3) - 28 - 4(2) = 0 4^+ -vert: 12d(v) - 28 - 2d(v)2 = 8d(v) - 28 > 0

Give charge 2l(f) - 28 to each face f and charge 12d(v) - 28 to each vertex v.

Since girth \geq 14, each face has nonnegative charge.



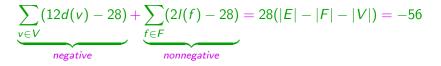
Discharging rule: each 2-vert receives 2 from each nearby 3⁺-vert.

Show each vertex has nonnegative charge.

2-vert: 12(2) - 28 + 2(2) = 03-vert: 12(3) - 28 - 4(2) = 04⁺-vert: 12d(v) - 28 - 2d(v)2 = 8d(v) - 28 > 0Contradiction! So *G* contains a reducible configuration.

Give charge 2l(f) - 26 to each face f and charge 11d(v) - 26 to each vertex v.

Since girth \geq 13, each face has nonnegative charge.



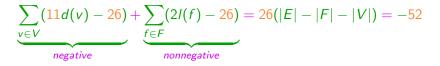
Discharging rule: each 2-vert receives 2 from each nearby 3⁺-vert.

Show each vertex has nonnegative charge.

2-vert: 12(2) - 28 + 2(2) = 03-vert: 12(3) - 28 - 4(2) = 04⁺-vert: 12d(v) - 28 - 2d(v)2 = 8d(v) - 28 > 0Contradiction! So *G* contains a reducible configuration.

Give charge 2l(f) - 26 to each face f and charge 11d(v) - 26 to each vertex v.

Since girth \geq 13, each face has nonnegative charge.



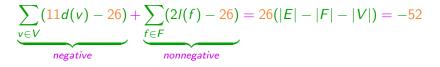
Discharging rule: each 2-vert receives 2 from each nearby 3⁺-vert.

Show each vertex has nonnegative charge.

2-vert: 12(2) - 28 + 2(2) = 03-vert: 12(3) - 28 - 4(2) = 04⁺-vert: 12d(v) - 28 - 2d(v)2 = 8d(v) - 28 > 0Contradiction! So *G* contains a reducible configuration.

Give charge 2l(f) - 26 to each face f and charge 11d(v) - 26 to each vertex v.

Since girth \geq 13, each face has nonnegative charge.



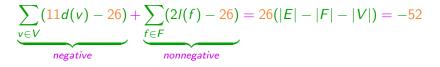
Discharging rule: each 2-vert receives 2 from each nearby 3⁺-vert.

Show each vertex has nonnegative charge.

2-vert: 11(2) - 26 + 2(2) = 03-vert: 12(3) - 28 - 4(2) = 0 4^+ -vert: 12d(v) - 28 - 2d(v)2 = 8d(v) - 28 > 0Contradiction! So *G* contains a reducible configuration.

Give charge 2l(f) - 26 to each face f and charge 11d(v) - 26 to each vertex v.

Since girth \geq 13, each face has nonnegative charge.



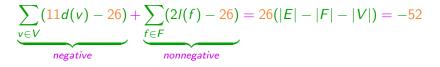
Discharging rule: each 2-vert receives 2 from each nearby 3⁺-vert.

Show each vertex has nonnegative charge.

2-vert: 11(2) - 26 + 2(2) = 03-vert: 11(3) - 26 - 4(2) = -14⁺-vert: 12d(v) - 28 - 2d(v)2 = 8d(v) - 28 > 0Contradiction! So *G* contains a reducible configuration.

Give charge 2l(f) - 26 to each face f and charge 11d(v) - 26 to each vertex v.

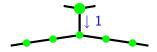
Since girth \geq 13, each face has nonnegative charge.

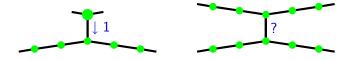


Discharging rule: each 2-vert receives 2 from each nearby 3⁺-vert.

Show each vertex has nonnegative charge.

2-vert: 11(2) - 26 + 2(2) = 03-vert: 11(3) - 26 - 4(2) = -14⁺-vert: 11d(v) - 26 - 2d(v)2 = 7d(v) - 26 > 0Contradiction! So *G* contains a reducible configuration.





Let $A = \{2(1) \text{-verts and } 3(2) \text{-verts adj. to two } 2(1) \text{-verts}\}; H = G[A].$

500

< □ ▶ < 骨 ▶

Let $A = \{2(1) \text{-verts and } 3(2) \text{-verts adj. to two } 2(1) \text{-verts} \}$; H = G[A].

500

< ≣⇒

Claim $mad(H) \le 2$.

Let $A = \{2(1) \text{-verts and } 3(2) \text{-verts adj. to two } 2(1) \text{-verts}\}; H = G[A].$

Jac.

< □ ▶ < / ₽ ▶

Claim $mad(H) \le 2$. Pf. Idea Every component of H is a cycle or a tree.

Let $A = \{2(1) \text{-verts and } 3(2) \text{-verts adj. to two } 2(1) \text{-verts}\}; H = G[A].$

Claim $mad(H) \le 2$. Pf. Idea Every component of H is a cycle or a tree.

Obs. Every leaf v of H is a 2(1)-vert, adjacent to a 3^+ -vert u, and u can afford to give 1 to the bank for v.

Let $A = \{2(1) \text{-verts and } 3(2) \text{-verts adj. to two } 2(1) \text{-verts}\}; H = G[A].$

Claim $mad(H) \le 2$. Pf. Idea Every component of H is a cycle or a tree.

Obs. Every leaf v of H is a 2(1)-vert, adjacent to a 3^+ -vert u, and u can afford to give 1 to the bank for v.

< ロ > < 同 > < 三 > < 三 >

5⁺-vertex: 11d(v) - 26 - 2d(v)2 - d(v) = 6d(v) - 26 > 0

Let $A = \{2(1) \text{-verts and } 3(2) \text{-verts adj. to two } 2(1) \text{-verts}\}$; H = G[A].

Claim $mad(H) \le 2$. Pf. Idea Every component of H is a cycle or a tree.

Obs. Every leaf v of H is a 2(1)-vert, adjacent to a 3^+ -vert u, and u can afford to give 1 to the bank for v.

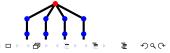
5⁺-vertex: 11d(v) - 26 - 2d(v)2 - d(v) = 6d(v) - 26 > 0

Let $A = \{2(1) \text{-verts and } 3(2) \text{-verts adj. to two } 2(1) \text{-verts}\}$; H = G[A].

Claim $mad(H) \le 2$. Pf. Idea Every component of H is a cycle or a tree.

Obs. Every leaf v of H is a 2(1)-vert, adjacent to a 3^+ -vert u, and u can afford to give 1 to the bank for v.

5⁺-vertex: 11d(v) - 26 - 2d(v)2 - d(v) = 6d(v) - 26 > 0

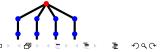


Let $A = \{2(1) \text{-verts and } 3(2) \text{-verts adj. to two } 2(1) \text{-verts}\}$; H = G[A].

Claim $mad(H) \le 2$. Pf. Idea Every component of H is a cycle or a tree.

Obs. Every leaf v of H is a 2(1)-vert, adjacent to a 3^+ -vert u, and u can afford to give 1 to the bank for v.

5⁺-vertex: 11d(v) - 26 - 2d(v)2 - d(v) = 6d(v) - 26 > 04-vertex: 11(4) - 26 - 7(2) - 3 = 1



Give charge 2l(f) - 26 to each face f and charge 11d(v) - 26 to each vertex v.

Give charge 2l(f) - 26 to each face f and charge 11d(v) - 26 to each vertex v.

Since girth \geq 13, each face has nonnegative charge.

Sac

Give charge 2l(f) - 26 to each face f and charge 11d(v) - 26 to each vertex v.

Since girth \geq 13, each face has nonnegative charge.

Discharging rules: each 2-vert receives 2 from each nearby 3⁺-vert.

= √Q (~

Give charge 2l(f) - 26 to each face f and charge 11d(v) - 26 to each vertex v.

Since girth \geq 13, each face has nonnegative charge.

Discharging rules: each 2-vert receives 2 from each nearby 3^+ -vert. each good 3(2)-vertex in H receives 1 from adj 3^+ -vert.

Sac

Give charge 2l(f) - 26 to each face f and charge 11d(v) - 26 to each vertex v.

Since girth \geq 13, each face has nonnegative charge.

Discharging rules: each 2-vert receives 2 from each nearby 3^+ -vert. each good 3(2)-vertex in H receives 1 from adj 3^+ -vert. each bad 3(2)-vertex in H receives 1 from bank.

Sac

Give charge 2l(f) - 26 to each face f and charge 11d(v) - 26 to each vertex v.

Since girth \geq 13, each face has nonnegative charge.

Discharging rules: each 2-vert receives 2 from each nearby 3^+ -vert. each good 3(2)-vertex in H receives 1 from adj 3^+ -vert. each bad 3(2)-vertex in H receives 1 from bank.

Jac.

Show each vertex has nonnegative charge.

Give charge 2l(f) - 26 to each face f and charge 11d(v) - 26 to each vertex v.

Since girth \geq 13, each face has nonnegative charge.

Discharging rules: each 2-vert receives 2 from each nearby 3^+ -vert. each good 3(2)-vertex in H receives 1 from adj 3^+ -vert. each bad 3(2)-vertex in H receives 1 from bank.

< 口 > < 同 > < 三 > < 三 > < 三 > < 三 > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ = ○ < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○

Show each vertex has nonnegative charge.

2-vert: 11(2) - 26 + 2(2) = 0

Give charge 2l(f) - 26 to each face f and charge 11d(v) - 26 to each vertex v.

Since girth \geq 13, each face has nonnegative charge.

Discharging rules: each 2-vert receives 2 from each nearby 3^+ -vert. each good 3(2)-vertex in H receives 1 from adj 3^+ -vert. each bad 3(2)-vertex in H receives 1 from bank.

< 口 > < 同 > < 三 > < 三 > < 三 > < 三 > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ = ○ < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○

Show each vertex has nonnegative charge.

2-vert: 11(2) - 26 + 2(2) = 03(0)-vert: 11(3) - 26 - 3(1) > 0

Give charge 2l(f) - 26 to each face f and charge 11d(v) - 26 to each vertex v.

Since girth \geq 13, each face has nonnegative charge.

Discharging rules: each 2-vert receives 2 from each nearby 3^+ -vert. each good 3(2)-vertex in H receives 1 from adj 3^+ -vert. each bad 3(2)-vertex in H receives 1 from bank.

< 口 > < 同 > < 三 > < 三 > < 三 > < 三 > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ = ○ < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○

Show each vertex has nonnegative charge.

2-vert: 11(2) - 26 + 2(2) = 03(0)-vert: 11(3) - 26 - 3(1) > 03(1)-vert: 11(3) - 26 - 2(2) - 3(1) = 0

Give charge 2l(f) - 26 to each face f and charge 11d(v) - 26 to each vertex v.

Since girth \geq 13, each face has nonnegative charge.

Discharging rules: each 2-vert receives 2 from each nearby 3^+ -vert. each good 3(2)-vertex in H receives 1 from adj 3^+ -vert. each bad 3(2)-vertex in H receives 1 from bank.

< 口 > < 同 > < 三 > < 三 > < 三 > < 三 > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ = ○ < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○

Show each vertex has nonnegative charge.

2-vert: 11(2) - 26 + 2(2) = 0 3(0)-vert: 11(3) - 26 - 3(1) > 0 3(1)-vert: 11(3) - 26 - 2(2) - 3(1) = 03(2)-vert: 11(3) - 26 - 4(2) + 1 = 0

Give charge 2l(f) - 26 to each face f and charge 11d(v) - 26 to each vertex v.

Since girth \geq 13, each face has nonnegative charge.

Discharging rules: each 2-vert receives 2 from each nearby 3^+ -vert. each good 3(2)-vertex in H receives 1 from adj 3^+ -vert. each bad 3(2)-vertex in H receives 1 from bank.

< 口 > < 同 > < 三 > < 三 > < 三 > < 三 > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ = ○ < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○

Show each vertex has nonnegative charge.

2-vert: 11(2) - 26 + 2(2) = 0 3(0)-vert: 11(3) - 26 - 3(1) > 0 3(1)-vert: 11(3) - 26 - 2(2) - 3(1) = 0 3(2)-vert: 11(3) - 26 - 4(2) + 1 = 03(3)-vert: 11(3) - 26 - 3(2) > 0

Give charge 2l(f) - 26 to each face f and charge 11d(v) - 26 to each vertex v.

Since girth \geq 13, each face has nonnegative charge.

Discharging rules: each 2-vert receives 2 from each nearby 3^+ -vert. each good 3(2)-vertex in H receives 1 from adj 3^+ -vert. each bad 3(2)-vertex in H receives 1 from bank.

< 口 > < 同 > < 三 > < 三 > < 三 > < 三 > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ = ○ < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○

Show each vertex has nonnegative charge.

2-vert: 11(2) - 26 + 2(2) = 0 3(0)-vert: 11(3) - 26 - 3(1) > 0 3(1)-vert: 11(3) - 26 - 2(2) - 3(1) = 0 3(2)-vert: 11(3) - 26 - 4(2) + 1 = 0 3(3)-vert: 11(3) - 26 - 3(2) > 04-vertex: 11(4) - 26 - 7(2) - 3 = 1

Give charge 2l(f) - 26 to each face f and charge 11d(v) - 26 to each vertex v.

Since girth \geq 13, each face has nonnegative charge.

Discharging rules: each 2-vert receives 2 from each nearby 3^+ -vert. each good 3(2)-vertex in H receives 1 from adj 3^+ -vert. each bad 3(2)-vertex in H receives 1 from bank.

Show each vertex has nonnegative charge.

2-vert: 11(2) - 26 + 2(2) = 03(0)-vert: 11(3) - 26 - 3(1) > 03(1)-vert: 11(3) - 26 - 2(2) - 3(1) = 03(2)-vert: 11(3) - 26 - 4(2) + 1 = 03(3)-vert: 11(3) - 26 - 3(2) > 04-vertex: 11(4) - 26 - 7(2) - 3 = 15⁺-vertex: 11d(v) - 26 - 4d(v) - d(v) = 6d(v) - 26 > 0

Give charge 2l(f) - 26 to each face f and charge 11d(v) - 26 to each vertex v.

Since girth \geq 13, each face has nonnegative charge.

Discharging rules: each 2-vert receives 2 from each nearby 3^+ -vert. each good 3(2)-vertex in H receives 1 from adj 3^+ -vert. each bad 3(2)-vertex in H receives 1 from bank.

Show each vertex has nonnegative charge.

2-vert: 11(2) - 26 + 2(2) = 0 3(0)-vert: 11(3) - 26 - 3(1) > 0 3(1)-vert: 11(3) - 26 - 2(2) - 3(1) = 0 3(2)-vert: 11(3) - 26 - 4(2) + 1 = 0 3(3)-vert: 11(3) - 26 - 3(2) > 04-vertex: 11(4) - 26 - 7(2) - 3 = 1 5^+ -vertex: 11d(v) - 26 - 4d(v) - d(v) = 6d(v) - 26 > 0Contradiction! So *G* contains a reducible configuration.

$$\sum 11d(v)-26<0$$

<ロ> < 四> < 回> < 三> < 三> < 三> < 三 > < 三 > < への

$$\sum 11d(v) - 26 < 0 \Rightarrow mad(G) < \frac{26}{11}$$

<ロ> < 四> < 回> < 三> < 三> < 三> < 三 > < 三 > < への

$$\sum 11 d(v) - 26 < 0 \Rightarrow \mathit{mad}(\mathcal{G}) < rac{26}{11}$$

Thm. If $mad(G) < \frac{26}{11}$, then we can partition V(G) into sets *I* and *F* s.t. G[F] is a forest and *I* is a 2-independent set in *G*.

$\sum 11d(v) - 26 < 0 \Rightarrow mad(G) < rac{26}{11}$

Thm. If $mad(G) < \frac{26}{11}$, then we can partition V(G) into sets *I* and *F* s.t. G[F] is a forest and *I* is a 2-independent set in *G*.

Open Questions

▶ What is the minimum girth g s.t. G planar and girth ≥ g implies an I, F-partition?

(ロ) (同) (三) (三) (三) (0) (0)

$\sum 11d(v) - 26 < 0 \Rightarrow mad(G) < rac{26}{11}$

Thm. If $mad(G) < \frac{26}{11}$, then we can partition V(G) into sets *I* and *F* s.t. G[F] is a forest and *I* is a 2-independent set in *G*.

Open Questions

 What is the minimum girth g s.t. G planar and girth ≥ g implies an I, F-partition? We know that 8 ≤ g

(ロ) (同) (三) (三) (三) (0) (0)

$\sum 11d(v) - 26 < 0 \Rightarrow mad(G) < rac{26}{11}$

Thm. If $mad(G) < \frac{26}{11}$, then we can partition V(G) into sets *I* and *F* s.t. G[F] is a forest and *I* is a 2-independent set in *G*.

Open Questions

 What is the minimum girth g s.t. G planar and girth ≥ g implies an I, F-partition?
 We know that 8 ≤ g ≤ 13

(ロ) (同) (三) (三) (三) (0) (0)

$\sum 11d(v) - 26 < 0 \Rightarrow mad(G) < rac{26}{11}$

Thm. If $mad(G) < \frac{26}{11}$, then we can partition V(G) into sets *I* and *F* s.t. G[F] is a forest and *I* is a 2-independent set in *G*.

Open Questions

- What is the minimum girth g s.t. G planar and girth ≥ g implies an I, F-partition? We know that 8 ≤ g ≤ 13
- What is the minimum girth g s.t. G planar and girth ≥ g implies χ_s(G) ≤ 4?

< 口 > < 同 > < 三 > < 三 > < 三 > < 三 > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ = ○ < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○

$\sum 11d(v) - 26 < 0 \Rightarrow mad(G) < rac{26}{11}$

Thm. If $mad(G) < \frac{26}{11}$, then we can partition V(G) into sets *I* and *F* s.t. G[F] is a forest and *I* is a 2-independent set in *G*.

Open Questions

- What is the minimum girth g s.t. G planar and girth ≥ g implies an I, F-partition?
 We know that 8 ≤ g ≤ 13
- What is the minimum girth g s.t. G planar and girth ≥ g implies χ_s(G) ≤ 4?
- For an arbitrary surface S, what is the minimum γ_S s.t. girth ≥ γ_S and G embedded in S implies an I, F-partition?