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Definitions and Examples

Def. An acyclic coloring is a proper vertex coloring such that the
union of any two color classes induces a forest.
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union of any two color classes induces a forest.

Thm. [Grinbaum 1970]

Every planar G has acyclic chromatic number, y,(G), at most 9.
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Thm. [Borodin 1979]
Every planar G has acyclic chromatic number, y,(G), at most

Def. A star coloring is a proper vertex coloring such that the union
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Definitions and Examples

Def. An acyclic coloring is a proper vertex coloring such that the
union of any two color classes induces a forest.

Thm. [Borodin 1979]
Every planar G has acyclic chromatic number, y,(G), at most

Def. A star coloring is a proper vertex coloring such that the union
of any two color classes induces a star forest (contains no Py).

Thm. [Fetin-Raspaud-Reed 2001]
Every planar G has star chromatic number y.(G), at most 80.
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Structural Decomposition

Thm. [A-C-K-K-R] For every surface S there is a constant ~ such
that every graph G with girth > v embedded in S has \(G) < 4.
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Thm. [A-C-K-K-R] For every surface S there is a constant ~ such
that every graph G with girth > v embedded in S has \(G) < 4.

Thm. [Timmons '07] If G is planar and has girth > 14, then we

can partition V(G) into sets / and F s.t. G[F] is a forest and / is a
2-independent set in G.
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that every graph G with girth > v embedded in S has \(G) < 4.

Thm. [Timmons '07] If G is planar and has girth > 14, then we

can partition V(G) into sets / and F s.t. G[F] is a forest and / is a
2-independent set in G.

Def. A set / is 2-independent in G if ¥V u,v € [ dist(u, v) > 2.
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Structural Decomposition

Thm. [A-C-K-K-R] For every surface S there is a constant ~ such
that every graph G with girth > v embedded in S has \(G) < 4.

Thm. [Timmons '07] If G is planar and has girth > 14, then we
can partition V(G) into sets / and F s.t. G[F] is a forest and / is a
2-independent set in G.

Def. A set / is 2-independent in G if ¥V u,v € [ dist(u, v) > 2.
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Structural Decomposition

Thm. [A-C-K-K-R] For every surface S there is a constant ~ such
that every graph G with girth > v embedded in S has \(G) < 4.

Thm. [Timmons '07] If G is planar and has girth > 14, then we
can partition V(G) into sets / and F s.t. G[F] is a forest and / is a
2-independent set in G.

Def. A set / is 2-independent in G if ¥V u,v € [ dist(u, v) > 2.
Lem. If we can partition G as in Theorem, then \(G) < 4.

Pf. Choose a root in each tree of F.
If v € F is distance k from its root,
then v gets color k (mod 3).
If v €1, then v gets color 3.
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Reducibility

Pf. Assume that G is a minimal counterexample. G must not
contain any of the following subgraphs:
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Reducibility

Pf. Assume that G is a minimal counterexample. G must not
contain any of the following subgraphs:
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Partition G — v.
Put v into F. . PA
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Reducibility

Pf. Assume that G is a minimal counterexample. G must not
contain any of the following subgraphs:
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Partition G — v.
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Put v into / and’u,yw into F. Or v into / and others into F.

Or put u, v, w into F.

“no 2(2)-vertices”

u]

L)
1
u

!



Reducibility

Pf. Assume that G is a minimal counterexample. G must not
contain any of the following subgraphs:

v

—

Partition G — v.

Put v into F. o—o V. v

u v ow -
0O—o—o0—0o— Partition G — H.
Partition G — {u, v, w}. Put w into / and others into F.
Put v into / and u, w into F. Or v into / and others into F.
Or put u, v, w into F. Or all into F.

“no 2(2)-vertices”
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Discharging

Give charge 2/(f) — 28 to each face f and
charge 12d(v) — 28 to each vertex v.
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Discharging rule: each 2-vert receives 2 from each nearby 3" -vert
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Discharging

Give charge 2/(f) — 28 to each face f and

charge 12d(v) — 28 to each vertex v

> (12d(v)

Since girth > 14, each face has nonnegative charge
veV

) —28)+ ) (2I(f

feF

negative

) —28) = 28(|E| — |F| = |V]) = -

nonnegative

Discharging rule: each 2-vert receives 2 from each nearby 3" -vert

Show each vertex has nonnegative charge
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Discharging

Give charge 2/(f) — 28 to each face f and

charge 12d(v) — 28 to each vertex v

> (12d(v)

Since girth > 14, each face has nonnegative charge
veV

) —28)+ ) (2I(f

feF

negative

) —28) = 28(|E| — |F| = |V]) = -

nonnegative

Discharging rule: each 2-vert receives 2 from each nearby 3" -vert

Show each vertex has nonnegative charge
2-vert: 12(2) — 28 + 2(2)

=0
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Discharging

Give charge 2/(f) — 28 to each face f and
charge 12d(v) — 28 to each vertex v.

Since girth > 14, each face has nonnegative charge.

D (12d(v) — 28)+ > (2/(f) — 28) = 28(|E| — |F| — |V[) = —
veV feF

negative nonnegative

Discharging rule: each 2-vert receives 2 from each nearby 3" -vert.

Show each vertex has nonnegative charge.
2-vert: 12(2) —28+2(2) =0
3-vert: 12(3) —28 —4(2) =0
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Give charge 2/(f) — 26 to each face f and
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Since girth > 13, each face has nonnegative charge.
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Discharging

Give charge 2/(f) — 26 to each face f and
charge 11d(v) — 26 to each vertex v.

Since girth > 13, each face has nonnegative charge.

D (11d(v) = 26)+ > (2/(f) — 26) = 26(|E| — |F| — |V[) = —
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Discharging rule: each 2-vert receives 2 from each nearby 3" -vert.
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How to handle 3(2)-vertices

Let A= {2(1)-verts and 3(2)-verts adj. to two 2(1)-verts}; H = G[A].

Claim mad(H)< 2.
Pf. Idea Every component of H is a cycle or a tree.

Obs. Every leaf v of H is a 2(1)-vert, adjacent to a 3"-vert u, and
u can afford to give 1 to the bank for v.
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How to handle 3(2)-vertices

Let A= {2(1)-verts and 3(2)-verts adj. to two 2(1)-verts}; H = G[A].

Claim mad(H)< 2.
Pf. Idea Every component of H is a cycle or a tree.

Obs. Every leaf v of H is a 2(1)-vert, adjacent to a 3"-vert u, and
u can afford to give 1 to the bank for v.

5t-vertex: 11d(v) — 26 — 2d(v)2 — d(v) = 6d(v) —26 >0

4-vertex: 11(4) —26—-7(2) -3 =1 m

(=] = = =
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Discharging (again)

Give charge 2/(f) — 26 to each face f and
charge 11d(v) — 26 to each vertex v.
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Discharging (again)

Give charge 2/(f) — 26 to each face f and
charge 11d(v) — 26 to each vertex v.

Since girth > 13, each face has nonnegative charge.

Discharging rules: each 2-vert receives 2 from each nearby 3" -vert

each good 3(2)-vertex in H receives 1 from adj 3" -vert.
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Discharging (again)

Give charge 2/(f) — 26 to each face f and
charge 11d(v) — 26 to each vertex v.

Since girth > 13, each face has nonnegative charge.
Discharging rules: each 2-vert receives 2 from each nearby 3" -vert

each good 3(2)-vertex in H receives 1 from adj 3" -vert.
each bad 3(2)-vertex in H receives 1 from bank.

DA



Discharging (again)

Give charge 2/(f) — 26 to each face f and
charge 11d(v) — 26 to each vertex v.

Since girth > 13, each face has nonnegative charge.

Discharging rules: each 2-vert receives 2 from each nearby 3" -vert

each good 3(2)-vertex in H receives 1 from adj 3" -vert.
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Discharging (again)

Give charge 2/(f) — 26 to each face f and
charge 11d(v) — 26 to each vertex v.

Since girth > 13, each face has nonnegative charge.

Discharging rules: each 2-vert receives 2 from each nearby 3" -vert

each good 3(2)-vertex in H receives 1 from adj 3" -vert.
each bad 3(2)-vertex in H receives 1 from bank.

Show each vertex has nonnegative charge.
2-vert: 11(2) —26+2(2) =0
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Discharging (again)

Give charge 2/(f) — 26 to each face f and
charge 11d(v) — 26 to each vertex v.

Since girth > 13, each face has nonnegative charge.

Discharging rules: each 2-vert receives 2 from each nearby 3" -vert

each good 3(2)-vertex in H receives 1 from adj 3" -vert.
each bad 3(2)-vertex in H receives 1 from bank.

Show each vertex has nonnegative charge.

2-vert: 11(2) —26+2(2) =0

3(0)-vert: 11(3) —26 —3(1) >0
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Discharging (again)

Give charge 2/(f) — 26 to each face f and
charge 11d(v) — 26 to each vertex v.

Since girth > 13, each face has nonnegative charge.

Discharging rules: each 2-vert receives 2 from each nearby 37 -vert.

each good 3(2)-vertex in H receives 1 from adj 3" -vert.
each bad 3(2)-vertex in H receives 1 from bank.

Show each vertex has nonnegative charge.
2-vert: 11(2) —26+2(2) =0

3(0)-vert: 11(3) —26 —3(1) >0
3(1)-vert: 11(3) =26 —2(2) —3(1) =0
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Discharging (again)

Give charge 2/(f) — 26 to each face f and
charge 11d(v) — 26 to each vertex v.

Since girth > 13, each face has nonnegative charge.

Discharging rules: each 2-vert receives 2 from each nearby 37 -vert.

each good 3(2)-vertex in H receives 1 from adj 3" -vert.
each bad 3(2)-vertex in H receives 1 from bank.

Show each vertex has nonnegative charge.
2-vert: 11(2) —26+2(2) =0

3(0)-vert: 11(3) — 26 —3(1) >0
3(1)-vert: 11(3) =26 —2(2) —3(1) =0
3(2)-vert: 11(3) —26 —4(2) +1=0
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Discharging (again)
Give charge 2/(f) — 26 to each face f and
charge 11d(v) — 26 to each vertex v.
Since girth > 13, each face has nonnegative charge.

Discharging rules: each 2-vert receives 2 from each nearby 37 -vert.
each good 3(2)-vertex in H receives 1 from adj 3" -vert.
each bad 3(2)-vertex in H receives 1 from bank.

Show each vertex has nonnegative charge.
2-vert: 11(2) —26+2(2) =0

3(0)-vert: 11(3) — 26 — 3(1) > 0
3(1)-vert: 11(3) —26 —2(2) —3(1) =0
3(2)-vert: 11(3) — 26 — 4(2) +1 =0
3(3)-vert: 11(3) —26 —3(2) >0
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Discharging (again)

Give charge 2/(f) — 26 to each face f and
charge 11d(v) — 26 to each vertex v.

Since girth > 13, each face has nonnegative charge.

Discharging rules: each 2-vert receives 2 from each nearby 37 -vert.
each good 3(2)-vertex in H receives 1 from adj 3" -vert.
each bad 3(2)-vertex in H receives 1 from bank.

Show each vertex has nonnegative charge.
2-vert: 11(2) —26+2(2) =0

3(0)-vert: 11(3) — 26 —3(1) >0
3(1)-vert: 11(3) — 26 —2(2) — 3(1) =
3(2)-vert: 11(3) (2)
3(3)-vert: 11(3) — 26 — 3(2)

4-vertex: 11(4) —26—-7(2) -3 =1
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Discharging (again)

Give charge 2/(f) — 26 to each face f and

charge 11d(v) — 26 to each vertex v.
Since girth > 13, each face has nonnegative charge

Discharging rules: each 2-vert receives 2 from each nearby 3" -vert
2

each good 3(2)-vertex in H receives 1 from adj 3" -vert
each bad 3(2)-vertex in H receives 1 from bank

Show each vertex has nonnegative charge
2-vert: 11(2) —26+2(2) =

0
3(0)-vert: 11(3) — 26 — 3(1) > 0
3(1)-vert: 11(3) —26 —2(2) — 3(1 )
3(2)-vert: 11(3) — 26 —4(2) +1 =
3(3)-vert: 11(3) —26 —3(2) >0
4-vertex: 11(4) —26—-7(2)—3=1
5F-vertex: 11d(v) — 26 — 4d(v)

d(v) = 6d(v) — 26 > 0

[m]

=



Discharging (again)

Give charge 2/(f) — 26 to each face f and

charge 11d(v) — 26 to each vertex v.
Since girth > 13, each face has nonnegative charge

Discharging rules: each 2-vert receives 2 from each nearby 3" -vert
2

each good 3(2)-vertex in H receives 1 from adj 3" -vert
each bad 3(2)-vertex in H receives 1 from bank

Show each vertex has nonnegative charge
2-vert: 11(2) — 26 + 2(2) =

0
3(0)-vert: 11(3) — 26 — 3(1) > 0
3(1)-vert: 11(3) — 26 —2(2) — 3(1 )
3(2)-vert: 11(3) — 26 —4(2) +1 =
3(3)-vert: 11(3) —26 —3(2) >0
4-vertex: 11(4) —26—-7(2) -3 =1
5t-vertex: 11d(v) — 26 — 4d(v)

d(v) =6d(v) —26 >0
Contradiction! So G contains a reducible configuration
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If mad(G) < 22, then we can partition V/(G) into sets /
and F s.t. G[F] is a forest and / is a 2-independent set in G.
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and F s.t. G[F] is a forest and / is a 2-independent set in G.
Open Questions

» What is the minimum girth g s.t. G planar and girth > g
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Generalization

> 11d(v) — 26 < 0 = mad(G) <
Thm.
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If mad(G) < 22, then we can partition V(G) into sets /
and F s.t. G[F] is a forest and / is a 2-independent set in G.
Open Questions

» What is the minimum girth g s.t. G planar and girth > g
implies an /, F-partition?

We know that 8 < g < 13
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Generalization

> 11d(v) — 26 < 0 = mad(G) < %

Thm. If mad(G) < 2, then we can partition V/(G) into sets /
and F s.t. G[F] is a forest and / is a 2-independent set in G.

Open Questions

» What is the minimum girth g s.t. G planar and girth > g
implies an /, F-partition?
We know that 8 < g < 13

» What is the minimum girth g s.t. G planar and girth > g
implies xs(G) < 47
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Generalization

> 11d(v) — 26 < 0 = mad(G) < %

Thm. If mad(G) < 2, then we can partition V/(G) into sets /
and F s.t. G[F] is a forest and / is a 2-independent set in G.

Open Questions

» What is the minimum girth g s.t. G planar and girth > g
implies an /, F-partition?
We know that 8 < g < 13

» What is the minimum girth g s.t. G planar and girth > g
implies xs(G) < 47

» For an arbitrary surface S, what is the minimum ~s s.t.
girth > 75 and G embedded in S implies an /, F-partition?
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