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Def. list assignment: L(v) is the set of colors available at vertex v

Def. L-coloring: proper coloring where each vertex gets a color
from its assigned list

Def. k-choosable: there exists an L-coloring whenever all
IL(v)| = K

Def. /(G): minimum k such that G is k-choosable

Def. G2 (square of G): formed from G by adding edges between
vertices at distance 2.
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Results: Old and New

Thm. [Thomassen '08?] x(G?) < 7 if G is planar and A(G) = 3.
Conj. [Kostochka & Woodall '01] x(G?) = x(G?) for all G.
Cor. /(G?) < 7if Gisplanar and A(G) = 3.

Thm. If A(G) =3 and G is Petersen-free, then y(G?) < 8.

Thm. If A(G) =3, G is planar, and girth > 7, then y,(G?) < 7.

Thm. If A(G) =3, G is planar, and girth > 9, then y,(G?) < 6.
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The Main Lemma

Def. ex(v) = 1+ (# colors free at v) —( # uncolored nbrs in G?)
ex(v) >14+8-9=0

Lem. Suppose that G has a partial coloring from its lists. Let H
be the subgraph induced by uncolored vertices. Suppose that H is
connected. If H contains adjacent vertices v and v such that
ex(u)> 1 and ex(v)> 2, then we can complete the coloring.

Pf. Color greedily toward wuv.

Cor. If G is Petersen-free and §(G) < 3, then \,(G?) < 8.

Cor. If G is Petersen-free and girth(G)=3, then \,(G?) < 8.
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XI(C62/<) =3
[Juvan, Mohar, Skrekovski '98]
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Large girth

Obs. If girth(G)> 7 and C is a shortest cycle in G, then any two
vertices that are each adjacent to the cycle are nonadjacent.

Lem. If girth(G)> 7, then y/(G?) < 8.

Pf. Let H be a shortest cycle and neighbors. Color G?\ V/(H).
Two cases depending on whether

there exist / # j s.t. |/ —j| <2 and L(u;) N L(uj) # 0

or there exists i s.t. L(uj—1) U L(uj)U L(ujr1) < L(vy)

1) Suppose so: We can color more vertices so that for some 7,
ex(v;)> 1 and ex(vj+1)> 2. Then use our main lemma.
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Large girth

Lem. If girth(G)> 7, then y/(G?) < 8.

Pf. Let H be a shortest cycle and neighbors. Color G2\ V/(H)
Two cases depending on whether

there exist / # j s.t. |/ —j| <2 and L(u;) N L(uj) # 0
or there exists i s.t. L(uj—1) U L(uj)U L(ujr1) < L(vy)

1) Suppose so: We can color more vertices so that for some 7,
ex(v;)> 1 and ex(vj1)> 2. Then use our main lemma.

2) Suppose not: Choose c(u;) arbitarily from L(uj). Choose c(v;)
from L(u;) — c(u;).
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Thank you!

Any Questions?
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