List-coloring the Square of a Subcubic Graph

Daniel Cranston and Seog-Jin Kim dcransto@dimacs.rutgers.edu DIMACS, Rutgers University and Bell Labs

< ロ > < 合 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Def. *L*-coloring: proper coloring where each vertex gets a color from its assigned list

Def. *L*-coloring: proper coloring where each vertex gets a color from its assigned list

Def. *k*-choosable: there exists an *L*-coloring whenever all $|L(v)| \ge k$

Def. *L*-coloring: proper coloring where each vertex gets a color from its assigned list

Def. *k*-choosable: there exists an *L*-coloring whenever all $|L(v)| \ge k$

Э

500

Def. *L*-coloring: proper coloring where each vertex gets a color from its assigned list

Def. *k*-choosable: there exists an *L*-coloring whenever all $|L(v)| \ge k$

Э

500

Def. *L*-coloring: proper coloring where each vertex gets a color from its assigned list

Def. *k*-choosable: there exists an *L*-coloring whenever all $|L(v)| \ge k$

Э

500

Def. *L*-coloring: proper coloring where each vertex gets a color from its assigned list

Def. *k*-choosable: there exists an *L*-coloring whenever all $|L(v)| \ge k$

Э

Sac

Def. *L*-coloring: proper coloring where each vertex gets a color from its assigned list

Def. *k*-choosable: there exists an *L*-coloring whenever all $|L(v)| \ge k$

Э

Sac

Def. *L*-coloring: proper coloring where each vertex gets a color from its assigned list

Def. *k*-choosable: there exists an *L*-coloring whenever all $|L(v)| \ge k$

Э

Sac

Def. *L*-coloring: proper coloring where each vertex gets a color from its assigned list

Def. *k*-choosable: there exists an *L*-coloring whenever all $|L(v)| \ge k$

Def. *L*-coloring: proper coloring where each vertex gets a color from its assigned list

Def. *k*-choosable: there exists an *L*-coloring whenever all $|L(v)| \ge k$

Def. $\chi_l(G)$: minimum k such that G is k-choosable

Jac.

Def. *L*-coloring: proper coloring where each vertex gets a color from its assigned list

Def. *k*-choosable: there exists an *L*-coloring whenever all $|L(v)| \ge k$

Def. $\chi_l(G)$: minimum k such that G is k-choosable

Def. G^2 (square of *G*): formed from *G* by adding edges between vertices at distance 2.

500

Thm. [Thomassen '08?] $\chi(G^2) \leq 7$ if G is planar and $\Delta(G) = 3$.

- **Thm.** [Thomassen '08?] $\chi(G^2) \leq 7$ if G is planar and $\Delta(G) = 3$.
- **Conj.** [Kostochka & Woodall '01] $\chi_I(G^2) = \chi(G^2)$ for all G.

Thm. [Thomassen '08?] $\chi(G^2) \leq 7$ if G is planar and $\Delta(G) = 3$.

< ロ > < 母 > < 三 > < 三 > < 三 > シ へ 三 > シ へ 回 > シ へ の

- **Conj.** [Kostochka & Woodall '01] $\chi_I(G^2) = \chi(G^2)$ for all G.
- **Cor.** $\chi_l(G^2) \leq 7$ if G is planar and $\Delta(G) = 3$.

- **Thm.** [Thomassen '08?] $\chi(G^2) \leq 7$ if G is planar and $\Delta(G) = 3$.
- **Conj.** [Kostochka & Woodall '01] $\chi_I(G^2) = \chi(G^2)$ for all G.
- **Cor.** $\chi_I(G^2) \leq 7$ if G is planar and $\Delta(G) = 3$.
- **Thm.** If $\Delta(G) = 3$ and G is Petersen-free, then $\chi_l(G^2) \leq 8$.

- ロ > - 4 目 > - 4 目 > - 4 目 > - 9 9 9 9

- **Thm.** [Thomassen '08?] $\chi(G^2) \leq 7$ if G is planar and $\Delta(G) = 3$.
- **Conj.** [Kostochka & Woodall '01] $\chi_I(G^2) = \chi(G^2)$ for all G.
- **Cor.** $\chi_I(G^2) \leq 7$ if G is planar and $\Delta(G) = 3$.
- **Thm.** If $\Delta(G) = 3$ and G is Petersen-free, then $\chi_I(G^2) \leq 8$.

(ロ) (同) (三) (三) (三) (0) (0)

- **Thm.** [Thomassen '08?] $\chi(G^2) \leq 7$ if G is planar and $\Delta(G) = 3$.
- **Conj.** [Kostochka & Woodall '01] $\chi_I(G^2) = \chi(G^2)$ for all G.
- **Cor.** $\chi_l(G^2) \leq 7$ if G is planar and $\Delta(G) = 3$.
- **Thm.** If $\Delta(G) = 3$ and G is Petersen-free, then $\chi_I(G^2) \leq 8$.

500

- **Thm.** [Thomassen '08?] $\chi(G^2) \leq 7$ if G is planar and $\Delta(G) = 3$.
- **Conj.** [Kostochka & Woodall '01] $\chi_I(G^2) = \chi(G^2)$ for all G.
- **Cor.** $\chi_l(G^2) \leq 7$ if G is planar and $\Delta(G) = 3$.
- **Thm.** If $\Delta(G) = 3$ and G is Petersen-free, then $\chi_I(G^2) \leq 8$.

Thm. If $\Delta(G) = 3$, G is planar, and girth ≥ 7 , then $\chi_l(G^2) \leq 7$.

500

- **Thm.** [Thomassen '08?] $\chi(G^2) \leq 7$ if G is planar and $\Delta(G) = 3$.
- **Conj.** [Kostochka & Woodall '01] $\chi_I(G^2) = \chi(G^2)$ for all G.
- **Cor.** $\chi_l(G^2) \leq 7$ if G is planar and $\Delta(G) = 3$.
- **Thm.** If $\Delta(G) = 3$ and G is Petersen-free, then $\chi_I(G^2) \leq 8$.

Thm. If $\Delta(G) = 3$, G is planar, and girth ≥ 7 , then $\chi_I(G^2) \leq 7$. **Thm.** If $\Delta(G) = 3$, G is planar, and girth ≥ 9 , then $\chi_I(G^2) \leq 6$.

Lem. For any edge uv in G, we have $\chi_I(G^2 \setminus \{u, v\}) \leq 8$.

Lem. For any edge uv in G, we have $\chi_l(G^2 \setminus \{u, v\}) \leq 8$.

Pf. Color the vertices greedily in order of decreasing distance from edge *uv*.

Lem. For any edge uv in G, we have $\chi_l(G^2 \setminus \{u, v\}) \leq 8$.

Pf. Color the vertices greedily in order of decreasing distance from edge *uv*.

Jac.

< ロ > < 何 >

Lem. For any edge uv in G, we have $\chi_l(G^2 \setminus \{u, v\}) \leq 8$.

Pf. Color the vertices greedily in order of decreasing distance from edge *uv*.

Jac.

< ロ > < 何 >

Def. $ex(v) = 1 + (\# \text{ colors free at } v) - (\# \text{ uncolored nbrs in } G^2)$

Def. $ex(v) = 1 + (\# \text{ colors free at } v) - (\# \text{ uncolored nbrs in } G^2)$ $ex(v) \ge 1 + 8 - 9 = 0$

Def. $ex(v) = 1 + (\# \text{ colors free at } v) - (\# \text{ uncolored nbrs in } G^2)$ $ex(v) \ge 1 + 8 - 9 = 0$

Lem. Suppose that G has a partial coloring from its lists. Let H be the subgraph induced by uncolored vertices. Suppose that H is connected. If H contains adjacent vertices u and v such that $ex(u) \ge 1$ and $ex(v) \ge 2$, then we can complete the coloring.

(ロ) (同) (三) (三) (三) (0) (0)

Def. $ex(v) = 1 + (\# \text{ colors free at } v) - (\# \text{ uncolored nbrs in } G^2)$ $ex(v) \ge 1 + 8 - 9 = 0$

Lem. Suppose that G has a partial coloring from its lists. Let H be the subgraph induced by uncolored vertices. Suppose that H is connected. If H contains adjacent vertices u and v such that $ex(u) \ge 1$ and $ex(v) \ge 2$, then we can complete the coloring.

(ロ) (同) (三) (三) (三) (0) (0)

Pf. Color greedily toward *uv*.

Def. $ex(v) = 1 + (\# \text{ colors free at } v) - (\# \text{ uncolored nbrs in } G^2)$ $ex(v) \ge 1 + 8 - 9 = 0$

Lem. Suppose that G has a partial coloring from its lists. Let H be the subgraph induced by uncolored vertices. Suppose that H is connected. If H contains adjacent vertices u and v such that $ex(u) \ge 1$ and $ex(v) \ge 2$, then we can complete the coloring.

< 口 > < 同 > < 三 > < 三 > < 三 > < 三 > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ = ○ < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○

Pf. Color greedily toward *uv*.

Cor. If G is Petersen-free and $\delta(G) < 3$, then $\chi_I(G^2) \leq 8$.

Def. $ex(v) = 1 + (\# \text{ colors free at } v) - (\# \text{ uncolored nbrs in } G^2)$ $ex(v) \ge 1 + 8 - 9 = 0$

Lem. Suppose that G has a partial coloring from its lists. Let H be the subgraph induced by uncolored vertices. Suppose that H is connected. If H contains adjacent vertices u and v such that $ex(u) \ge 1$ and $ex(v) \ge 2$, then we can complete the coloring.

Pf. Color greedily toward *uv*.

Cor. If G is Petersen-free and $\delta(G) < 3$, then $\chi_I(G^2) \le 8$.

Def. $ex(v) = 1 + (\# \text{ colors free at } v) - (\# \text{ uncolored nbrs in } G^2)$ $ex(v) \ge 1 + 8 - 9 = 0$

Lem. Suppose that G has a partial coloring from its lists. Let H be the subgraph induced by uncolored vertices. Suppose that H is connected. If H contains adjacent vertices u and v such that $ex(u) \ge 1$ and $ex(v) \ge 2$, then we can complete the coloring.

Pf. Color greedily toward *uv*.

Cor. If G is Petersen-free and $\delta(G) < 3$, then $\chi_l(G^2) \le 8$.

Cor. If G is Petersen-free and girth(G)=3, then $\chi_l(G^2) \leq 8$.

Sac

Lem. If G is Petersen-free and girth(G)=4, then $\chi_I(G^2) \leq 8$.

Lem. If G is Petersen-free and girth(G)=4, then $\chi_l(G^2) \leq 8$. **Pf.** Easy application of main lemma.

Lem. If G is Petersen-free and girth(G)=4, then $\chi_l(G^2) \leq 8$. **Pf.** Easy application of main lemma.

Lem. If G is Petersen-free and girth(G)=5, then $\chi_l(G^2) \leq 8$.

(ロ) (同) (三) (三) (三) (0) (0)

Lem. If G is Petersen-free and girth(G)=4, then $\chi_l(G^2) \le 8$. **Pf.** Easy application of main lemma.

Lem. If G is Petersen-free and girth(G)=5, then $\chi_l(G^2) \leq 8$. **Pf.** Harder application of main lemma.

(ロ) (同) (三) (三) (三) (0) (0)

Lem. If G is Petersen-free and girth(G)=4, then $\chi_l(G^2) \leq 8$. **Pf.** Easy application of main lemma.

Lem. If G is Petersen-free and girth(G)=5, then $\chi_l(G^2) \leq 8$. **Pf.** Harder application of main lemma.

Lem. If G is Petersen-free and girth(G)=6, then $\chi_I(G^2) \leq 8$.

(ロ) (同) (三) (三) (三) (0) (0)

Lem. If G is Petersen-free and girth(G)=4, then $\chi_l(G^2) \le 8$. **Pf.** Easy application of main lemma.

Lem. If G is Petersen-free and girth(G)=5, then $\chi_l(G^2) \leq 8$. **Pf.** Harder application of main lemma.

Lem. If G is Petersen-free and girth(G)=6, then $\chi_I(G^2) \le 8$. **Pf.** Color all but a 6-cycle.

(ロ) (同) (三) (三) (三) (0) (0)

Lem. If G is Petersen-free and girth(G)=4, then $\chi_l(G^2) \leq 8$. **Pf.** Easy application of main lemma.

Lem. If G is Petersen-free and girth(G)=5, then $\chi_l(G^2) \leq 8$. **Pf.** Harder application of main lemma.

Lem. If G is Petersen-free and girth(G)=6, then $\chi_l(G^2) \le 8$. **Pf.** Color all but a 6-cycle.

< ロ > < 同 > < 三 > < 三 >

Lem. If G is Petersen-free and girth(G)=4, then $\chi_l(G^2) \leq 8$. **Pf.** Easy application of main lemma.

Lem. If G is Petersen-free and girth(G)=5, then $\chi_l(G^2) \leq 8$. **Pf.** Harder application of main lemma.

Lem. If G is Petersen-free and girth(G)=6, then $\chi_l(G^2) \le 8$. **Pf.** Color all but a 6-cycle.

< ロ > < 同 > < 三 > < 三 >

Lem. If G is Petersen-free and girth(G)=4, then $\chi_l(G^2) \leq 8$. **Pf.** Easy application of main lemma.

Lem. If G is Petersen-free and girth(G)=5, then $\chi_l(G^2) \leq 8$. **Pf.** Harder application of main lemma.

Lem. If G is Petersen-free and girth(G)=6, then $\chi_l(G^2) \le 8$. **Pf.** Color all but a 6-cycle.

 $\chi_{I}(H^{2}) = 3$

< ロ > < 同 > < 三 > < 三 > -

Lem. If G is Petersen-free and girth(G)=4, then $\chi_l(G^2) \leq 8$. **Pf.** Easy application of main lemma.

Lem. If G is Petersen-free and girth(G)=5, then $\chi_l(G^2) \leq 8$. **Pf.** Harder application of main lemma.

Lem. If G is Petersen-free and girth(G)=6, then $\chi_l(G^2) \le 8$. **Pf.** Color all but a 6-cycle.

$$\chi_I(H^2) = 3$$

Cycle + Triangle Thm [Fleischner, Steibitz '92]

< ロ > < 同 > < 三 > < 三 >

Lem. If G is Petersen-free and girth(G)=4, then $\chi_l(G^2) \leq 8$. **Pf.** Easy application of main lemma.

Lem. If G is Petersen-free and girth(G)=5, then $\chi_l(G^2) \leq 8$. **Pf.** Harder application of main lemma.

Lem. If G is Petersen-free and girth(G)=6, then $\chi_l(G^2) \le 8$. **Pf.** Color all but a 6-cycle.

$$\chi_I(H^2) = 3$$

Cycle + Triangle Thm [Fleischner, Steibitz '92]

 $\chi_l(C_{6k}^2) = 3$ [Juvan, Mohar, Skrekovski '98]

Obs. If girth(G) \geq 7 and C is a shortest cycle in G, then any two vertices that are each adjacent to the cycle are nonadjacent.

< ロ > < 何 > < 三 >

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Obs. If girth(G) \geq 7 and C is a shortest cycle in G, then any two vertices that are each adjacent to the cycle are nonadjacent.

< 🗆 🕨

990

Obs. If girth(G) \geq 7 and C is a shortest cycle in G, then any two vertices that are each adjacent to the cycle are nonadjacent.

Sac

< ロ > < 同 > < 三 > < 三

Lem. If girth(G) \geq 7, then $\chi_l(G^2) \leq 8$.

Obs. If girth(G) \geq 7 and C is a shortest cycle in G, then any two vertices that are each adjacent to the cycle are nonadjacent.

Pf. Let *H* be a shortest cycle and neighbors. Color $G^2 \setminus V(H)$.

< ロ > < 同 > < 三 > < 三 >

Sac

Obs. If girth(G) \geq 7 and C is a shortest cycle in G, then any two vertices that are each adjacent to the cycle are nonadjacent.

Pf. Let *H* be a shortest cycle and neighbors. Color $G^2 \setminus V(H)$. Two cases depending on whether there exist $i \neq j$ s.t. $|i - j| \leq 2$ and $L(u_i) \cap L(u_j) \neq \emptyset$ or there exists *i* s.t. $L(u_{i-1}) \cup L(u_i) \cup L(u_{i+1}) \nsubseteq L(v_i)$

< ロ > < 同 > < 三 > < 三 > -

Obs. If girth(G) \geq 7 and C is a shortest cycle in G, then any two vertices that are each adjacent to the cycle are nonadjacent.

Pf. Let *H* be a shortest cycle and neighbors. Color $G^2 \setminus V(H)$. Two cases depending on whether there exist $i \neq j$ s.t. $|i - j| \leq 2$ and $L(u_i) \cap L(u_j) \neq \emptyset$ or there exists *i* s.t. $L(u_{i-1}) \cup L(u_i) \cup L(u_{i+1}) \not\subseteq L(v_i)$

1) Suppose so:

Obs. If girth(G) \geq 7 and C is a shortest cycle in G, then any two vertices that are each adjacent to the cycle are nonadjacent.

Pf. Let *H* be a shortest cycle and neighbors. Color $G^2 \setminus V(H)$. Two cases depending on whether there exist $i \neq j$ s.t. $|i - j| \leq 2$ and $L(u_i) \cap L(u_j) \neq \emptyset$ or there exists *i* s.t. $L(u_{i-1}) \cup L(u_i) \cup L(u_{i+1}) \not\subseteq L(v_i)$

1) Suppose so: We can color more vertices so that for some *i*, $ex(v_i) \ge 1$ and $ex(v_{i+1}) \ge 2$. Then use our main lemma.

Large girth

Lem. If girth(G) \geq 7, then $\chi_I(G^2) \leq 8$.

Pf. Let *H* be a shortest cycle and neighbors. Color $G^2 \setminus V(H)$. Two cases depending on whether there exist $i \neq j$ s.t. $|i - j| \leq 2$ and $L(u_i) \cap L(u_j) \neq \emptyset$ or there exists *i* s.t. $L(u_{i-1}) \cup L(u_i) \cup L(u_{i+1}) \not\subseteq L(v_i)$

1) Suppose so: We can color more vertices so that for some *i*, $ex(v_i) \ge 1$ and $ex(v_{i+1}) \ge 2$. Then use our main lemma.

2) Suppose not:

Large girth

Lem. If girth(G) \geq 7, then $\chi_I(G^2) \leq 8$.

Pf. Let *H* be a shortest cycle and neighbors. Color $G^2 \setminus V(H)$. Two cases depending on whether there exist $i \neq j$ s.t. $|i - j| \leq 2$ and $L(u_i) \cap L(u_j) \neq \emptyset$ or there exists *i* s.t. $L(u_{i-1}) \cup L(u_i) \cup L(u_{i+1}) \not\subseteq L(v_i)$

1) Suppose so: We can color more vertices so that for some *i*, $ex(v_i) \ge 1$ and $ex(v_{i+1}) \ge 2$. Then use our main lemma.

2) Suppose not: Choose $c(u_i)$ arbitarily from $L(u_i)$. Choose $c(v_i)$ from $L(u_i) - c(u_i)$.

Thank you! Any Questions?