List-coloring the Square of a Subcubic Graph

Daniel Cranston and Seog-Jin Kim dcransto@dimacs.rutgers.edu DIMACS, Rutgers University and Bell Labs

イロト イ押ト イヨト イヨト

 \mathbb{B}^{n-1} $2Q$

K ロ > K 레 > K 코 > K 코 > - 코 - Y Q Q O

Def. *L*-coloring: proper coloring where each vertex gets a color from its assigned list

K ロ > K @ > K 할 > K 할 > → 할 → ⊙ Q (^

Def. *L*-coloring: proper coloring where each vertex gets a color from its assigned list

Def. *k*-choosable: there exists an *L*-coloring whenever all $|L(v)| \geq k$

K ロ X (日) X 모 X X B X D 및 X YO Q Q

Def. L-coloring: proper coloring where each vertex gets a color from its assigned list

Def. *k*-choosable: there exists an *L*-coloring whenever all $|L(v)| \geq k$

イロト イ押ト イヨト イヨト

 \mathbb{B}^{n-1} 299

Def. L-coloring: proper coloring where each vertex gets a color from its assigned list

Def. *k*-choosable: there exists an *L*-coloring whenever all $|L(v)| \geq k$

イロト イ押ト イヨト イヨト

 \mathbb{B}^{n-1} 299

Def. L-coloring: proper coloring where each vertex gets a color from its assigned list

Def. *k*-choosable: there exists an *L*-coloring whenever all $|L(v)| \geq k$

イロト イ押ト イヨト イヨト

 \mathbb{B}^{n-1} 299

Def. L-coloring: proper coloring where each vertex gets a color from its assigned list

Def. *k*-choosable: there exists an *L*-coloring whenever all $|L(v)| \geq k$

Def. L-coloring: proper coloring where each vertex gets a color from its assigned list

Def. *k*-choosable: there exists an *L*-coloring whenever all $|L(v)| \geq k$

 \mathbb{B}^{n-1} 299

イロト イ押 トイラ トイラト

Def. L-coloring: proper coloring where each vertex gets a color from its assigned list

Def. *k*-choosable: there exists an *L*-coloring whenever all $|L(v)| \geq k$

 \mathbb{B}^{n-1} 299

イロト イ押 トイラ トイラト

Def. L-coloring: proper coloring where each vertex gets a color from its assigned list

Def. *k*-choosable: there exists an *L*-coloring whenever all $|L(v)| \geq k$

Def. L-coloring: proper coloring where each vertex gets a color from its assigned list

Def. *k*-choosable: there exists an *L*-coloring whenever all $|L(v)| \geq k$

Def. $\chi_1(G)$: minimum k such that G is k-choosable

 Ω

Def. L-coloring: proper coloring where each vertex gets a color from its assigned list

Def. *k*-choosable: there exists an *L*-coloring whenever all $|L(v)| \geq k$

Def. $\chi_1(G)$: minimum k such that G is k-choosable

Def. G^2 (square of G): formed from G by adding edges between vertices at distance 2.

(ロ) (母) (ヨ) (ヨ) - ヨ)

 299

Thm. [Thomassen '08?] $\chi(G^2) \le 7$ if G is planar and $\Delta(G) = 3$.

Thm. [Thomassen '08?] $\chi(G^2) \le 7$ if G is planar and $\Delta(G) = 3$.

K ロ X (日) X 모 X X B X D 및 X YO Q Q

Conj. [Kostochka & Woodall '01] $\chi_l(G^2) = \chi(G^2)$ for all G.

Thm. [Thomassen '08?] $\chi(G^2) \le 7$ if G is planar and $\Delta(G) = 3$.

- **Conj.** [Kostochka & Woodall '01] $\chi_l(G^2) = \chi(G^2)$ for all G.
- **Cor.** $\chi_l(G^2) \leq 7$ if G is planar and $\Delta(G) = 3$.

- **Thm.** [Thomassen '08?] $\chi(G^2) \le 7$ if G is planar and $\Delta(G) = 3$.
- **Conj.** [Kostochka & Woodall '01] $\chi_l(G^2) = \chi(G^2)$ for all G.
- **Cor.** $\chi_l(G^2) \leq 7$ if G is planar and $\Delta(G) = 3$.
- **Thm.** If $\Delta(G) = 3$ and G is Petersen-free, then $\chi_I(G^2) \leq 8$.

- **Thm.** [Thomassen '08?] $\chi(G^2) \le 7$ if G is planar and $\Delta(G) = 3$.
- **Conj.** [Kostochka & Woodall '01] $\chi_l(G^2) = \chi(G^2)$ for all G.
- **Cor.** $\chi_l(G^2) \leq 7$ if G is planar and $\Delta(G) = 3$.
- **Thm.** If $\Delta(G) = 3$ and G is Petersen-free, then $\chi_I(G^2) \leq 8$.

KORKARA CERTA DE VOLCA

- **Thm.** [Thomassen '08?] $\chi(G^2) \le 7$ if G is planar and $\Delta(G) = 3$.
- **Conj.** [Kostochka & Woodall '01] $\chi_l(G^2) = \chi(G^2)$ for all G.
- **Cor.** $\chi_l(G^2) \leq 7$ if G is planar and $\Delta(G) = 3$.
- **Thm.** If $\Delta(G) = 3$ and G is Petersen-free, then $\chi_I(G^2) \leq 8$.

イロト イ押ト イヨト イヨト

 299

- **Thm.** [Thomassen '08?] $\chi(G^2) \le 7$ if G is planar and $\Delta(G) = 3$.
- **Conj.** [Kostochka & Woodall '01] $\chi_l(G^2) = \chi(G^2)$ for all G.
- **Cor.** $\chi_l(G^2) \leq 7$ if G is planar and $\Delta(G) = 3$.
- **Thm.** If $\Delta(G) = 3$ and G is Petersen-free, then $\chi_I(G^2) \leq 8$.

Thm. If $\Delta(G) = 3$, G is planar, and girth ≥ 7 , then $\chi_I(G^2) \leq 7$.

イロト イ押ト イヨト イヨト

- **Thm.** [Thomassen '08?] $\chi(G^2) \le 7$ if G is planar and $\Delta(G) = 3$.
- **Conj.** [Kostochka & Woodall '01] $\chi_l(G^2) = \chi(G^2)$ for all G.
- **Cor.** $\chi_l(G^2) \leq 7$ if G is planar and $\Delta(G) = 3$.
- **Thm.** If $\Delta(G) = 3$ and G is Petersen-free, then $\chi_I(G^2) \leq 8$.

Thm. If $\Delta(G) = 3$, G is planar, and girth ≥ 7 , then $\chi_I(G^2) \leq 7$. **Thm.** If $\Delta(G) = 3$, G is planar, and girth ≥ 9 , then $\chi_{I}(G^{2}) \leq 6$.

Lem. For any edge uv in G, we have $\chi_l(G^2 \setminus \{u, v\}) \leq 8$.

K ロ > K 레 > K 회 > K 환 > 1 환 : ⊙ Q Q <

Lem. For any edge uv in G, we have $\chi_l(G^2 \setminus \{u, v\}) \leq 8$.

Pf. Color the vertices greedily in order of decreasing distance from edge uv.

K ロ > K 레 > K 회 > K 회 > 1 회 > 1 이익어

Lem. For any edge uv in G, we have $\chi_l(G^2 \setminus \{u, v\}) \leq 8$.

Pf. Color the vertices greedily in order of decreasing distance from edge uv.

4日)

 200

Lem. For any edge uv in G, we have $\chi_l(G^2 \setminus \{u, v\}) \leq 8$.

Pf. Color the vertices greedily in order of decreasing distance from edge uv.

4日)

 200

Def. ex(v) = 1 + (# colors free at v) – (# uncolored nbrs in G^2)

Def. ex(v) = 1 + (# colors free at v) – (# uncolored nbrs in G^2) $ex(v) \ge 1 + 8 - 9 = 0$

Def. ex(v) = 1 + (# colors free at v) – (# uncolored nbrs in G^2) $ex(v) > 1 + 8 - 9 = 0$

Lem. Suppose that G has a partial coloring from its lists. Let H be the subgraph induced by uncolored vertices. Suppose that H is connected. If H contains adjacent vertices \boldsymbol{u} and \boldsymbol{v} such that $ex(u) \ge 1$ and $ex(v) \ge 2$, then we can complete the coloring.

 $\langle \; \Box \; \rangle \; \; \langle \; \bar{H} \; \rangle \; \; \langle \; \Xi \; \rangle \; \; \langle \; \Xi \; \rangle \; \; \; \; \Xi \; \; \rangle \; \; \; \; \Xi \; \; .$

 299

Def. ex(v) = 1 + (# colors free at v) – (# uncolored nbrs in G^2) $ex(v) > 1 + 8 - 9 = 0$

Lem. Suppose that G has a partial coloring from its lists. Let H be the subgraph induced by uncolored vertices. Suppose that H is connected. If H contains adjacent vertices u and v such that $ex(u) \ge 1$ and $ex(v) \ge 2$, then we can complete the coloring.

KORKARA CERTA DE VOLCA

Pf. Color greedily toward uv.

Def. ex(v) = 1 + (# colors free at v) – (# uncolored nbrs in G^2) $ex(v) > 1 + 8 - 9 = 0$

Lem. Suppose that G has a partial coloring from its lists. Let H be the subgraph induced by uncolored vertices. Suppose that H is connected. If H contains adjacent vertices \boldsymbol{u} and \boldsymbol{v} such that $ex(u) > 1$ and $ex(v) \ge 2$, then we can complete the coloring.

KORKARA CERTA DE VOLCA

Pf. Color greedily toward uv.

Cor. If G is Petersen-free and $\delta(G) < 3$, then $\chi_1(G^2) \leq 8$.

Def. ex(v) = 1 + (# colors free at v) – (# uncolored nbrs in G^2) $ex(v) > 1 + 8 - 9 = 0$

Lem. Suppose that G has a partial coloring from its lists. Let H be the subgraph induced by uncolored vertices. Suppose that H is connected. If H contains adjacent vertices \boldsymbol{u} and \boldsymbol{v} such that $ex(u) > 1$ and $ex(v) \ge 2$, then we can complete the coloring.

イロト イタト イチャンキャー キー

Pf. Color greedily toward uv.

Cor. If G is Petersen-free and $\delta(G) < 3$, then $\chi_1(G^2) \leq 8$.

Def. ex(v) = 1 + (# colors free at v) – (# uncolored nbrs in G^2) $ex(v) > 1 + 8 - 9 = 0$

Lem. Suppose that G has a partial coloring from its lists. Let H be the subgraph induced by uncolored vertices. Suppose that H is connected. If H contains adjacent vertices \boldsymbol{u} and \boldsymbol{v} such that $ex(u) > 1$ and $ex(v) \ge 2$, then we can complete the coloring.

Pf. Color greedily toward uv.

Cor. If G is Petersen-free and $\delta(G) < 3$, then $\chi_1(G^2) \leq 8$.

Cor. If G is Petersen-free and girth(G)=3, then $\chi_I(G^2) \leq 8$.

イロト イ押ト イヨト イヨト

Lem. If G is Petersen-free and girth $(G)=4$, then $\chi_I(G^2) \leq 8$.

Lem. If G is Petersen-free and girth $(G)=4$, then $\chi_I(G^2) \leq 8$. **Pf.** Easy application of main lemma.

Lem. If G is Petersen-free and girth $(G)=4$, then $\chi_I(G^2) \leq 8$. Pf. Easy application of main lemma.

Lem. If G is Petersen-free and girth $(G)=5$, then $\chi_I(G^2) \leq 8$.

K ロ > K 레 > K 회 > K 회 > 1 회 > 1 이익어

Lem. If G is Petersen-free and girth $(G)=4$, then $\chi_I(G^2) \leq 8$. **Pf.** Easy application of main lemma.

Lem. If G is Petersen-free and girth $(G)=5$, then $\chi_I(G^2) \leq 8$. **Pf.** Harder application of main lemma.

KORKAR KERKER DE KORO

Lem. If G is Petersen-free and girth $(G)=4$, then $\chi_I(G^2) \leq 8$. Pf. Easy application of main lemma.

Lem. If G is Petersen-free and girth $(G)=5$, then $\chi_I(G^2) \leq 8$. **Pf.** Harder application of main lemma.

Lem. If G is Petersen-free and girth $(G)=6$, then $\chi_I(G^2) \leq 8$.

KORKAR KERKER DE KORO

Lem. If G is Petersen-free and girth $(G)=4$, then $\chi_I(G^2) \leq 8$. **Pf.** Easy application of main lemma.

Lem. If G is Petersen-free and girth $(G)=5$, then $\chi_I(G^2) \leq 8$. Pf. Harder application of main lemma.

Lem. If G is Petersen-free and girth $(G)=6$, then $\chi_I(G^2) \leq 8$. **Pf.** Color all but a 6-cycle.

KORKAR KERKER DE KORO

Lem. If G is Petersen-free and girth $(G)=4$, then $\chi_I(G^2) \leq 8$. Pf. Easy application of main lemma.

Lem. If G is Petersen-free and girth $(G)=5$, then $\chi_I(G^2) \leq 8$. **Pf.** Harder application of main lemma.

Lem. If G is Petersen-free and girth $(G)=6$, then $\chi_I(G^2) \leq 8$. **Pf.** Color all but a 6-cycle.

Lem. If G is Petersen-free and girth $(G)=4$, then $\chi_I(G^2) \leq 8$. **Pf.** Easy application of main lemma.

Lem. If G is Petersen-free and girth $(G)=5$, then $\chi_I(G^2) \leq 8$. **Pf.** Harder application of main lemma.

Lem. If G is Petersen-free and girth $(G)=6$, then $\chi_I(G^2) \leq 8$. **Pf.** Color all but a 6-cycle.

Lem. If G is Petersen-free and girth $(G)=4$, then $\chi_I(G^2) \leq 8$. **Pf.** Easy application of main lemma.

Lem. If G is Petersen-free and girth $(G)=5$, then $\chi_I(G^2) \leq 8$. Pf. Harder application of main lemma.

Lem. If G is Petersen-free and girth $(G)=6$, then $\chi_I(G^2) \leq 8$. **Pf.** Color all but a 6-cycle.

 $\chi_I(H^2) = 3$

Lem. If G is Petersen-free and girth $(G)=4$, then $\chi_I(G^2) \leq 8$. **Pf.** Easy application of main lemma.

Lem. If G is Petersen-free and girth $(G)=5$, then $\chi_I(G^2) \leq 8$. Pf. Harder application of main lemma.

Lem. If G is Petersen-free and girth $(G)=6$, then $\chi_I(G^2) \leq 8$. **Pf.** Color all but a 6-cycle.

$$
\chi_I(H^2)=3
$$

 $Cycle + Triangle Thm$ [Fleischner, Steibitz '92]

Lem. If G is Petersen-free and girth $(G)=4$, then $\chi_I(G^2) \leq 8$. **Pf.** Easy application of main lemma.

Lem. If G is Petersen-free and girth $(G)=5$, then $\chi_I(G^2) \leq 8$. **Pf.** Harder application of main lemma.

Lem. If G is Petersen-free and girth $(G)=6$, then $\chi_I(G^2) \leq 8$. **Pf.** Color all but a 6-cycle.

$$
\chi_I(H^2)=3
$$

 $Cycle + Triangle Thm$ [Fleischner, Steibitz '92]

 $\chi_l(C_{6k}^2) = 3$ [Juvan, Mohar, Skrekovski '98]

Obs. If girth(G) ≥ 7 and C is a shortest cycle in G, then any two vertices that are each adjacent to the cycle are nonadjacent.

Obs. If girth(G) ≥ 7 and C is a shortest cycle in G, then any two vertices that are each adjacent to the cycle are nonadjacent.

 \Box

 200

Obs. If girth(G) ≥ 7 and C is a shortest cycle in G, then any two vertices that are each adjacent to the cycle are nonadjacent.

4日)

 200

Lem. If girth(G) \geq 7, then χ / $(G^2) \leq 8$.

Obs. If girth(G) ≥ 7 and C is a shortest cycle in G, then any two vertices that are each adjacent to the cycle are nonadjacent.

Pf. Let H be a shortest cycle and neighbors. Color $G^2 \setminus V(H)$.

Obs. If girth(G) > 7 and C is a shortest cycle in G, then any two vertices that are each adjacent to the cycle are nonadjacent.

Pf. Let H be a shortest cycle and neighbors. Color $G^2 \setminus V(H)$. Two cases depending on whether there exist $i \neq j$ s.t. $|i - j| < 2$ and $L(u_i) \cap L(u_i) \neq \emptyset$ or there exists *i* s.t. $L(u_{i-1}) \cup L(u_i) \cup L(u_{i+1}) \nsubseteq L(v_i)$

Obs. If girth(G) > 7 and C is a shortest cycle in G, then any two vertices that are each adjacent to the cycle are nonadjacent.

Pf. Let H be a shortest cycle and neighbors. Color $G^2 \setminus V(H)$. Two cases depending on whether there exist $i \neq j$ s.t. $|i - j| < 2$ and $L(u_i) \cap L(u_i) \neq \emptyset$ or there exists *i* s.t. $L(u_{i-1}) \cup L(u_i) \cup L(u_{i+1}) \nsubseteq L(v_i)$

1) Suppose so:

Obs. If girth(G) ≥ 7 and C is a shortest cycle in G, then any two vertices that are each adjacent to the cycle are nonadjacent.

Pf. Let H be a shortest cycle and neighbors. Color $G^2 \setminus V(H)$. Two cases depending on whether there exist $i \neq j$ s.t. $|i - j| \leq 2$ and $L(u_i) \cap L(u_i) \neq \emptyset$ or there exists *i* s.t. $L(u_{i-1}) \cup L(u_i) \cup L(u_{i+1}) \nsubseteq L(v_i)$

1) Suppose so: We can color more vertices so that for some i, $ex(v_i) \geq 1$ and $ex(v_{i+1}) \geq 2$. Then use our main lemma.

Large girth

Lem. If girth(G) \geq 7, then χ / $(G^2) \leq 8$.

Pf. Let H be a shortest cycle and neighbors. Color $G^2 \setminus V(H)$. Two cases depending on whether there exist $i \neq j$ s.t. $|i - j| \leq 2$ and $L(u_i) \cap L(u_i) \neq \emptyset$ or there exists *i* s.t. $L(u_{i-1}) \cup L(u_i) \cup L(u_{i+1}) \nsubseteq L(v_i)$

1) Suppose so: We can color more vertices so that for some i, $ex(v_i) \geq 1$ and $ex(v_{i+1}) \geq 2$. Then use our main lemma.

2) Suppose not:

Large girth

Lem. If girth(G) \geq 7, then χ / $(G^2) \leq 8$.

Pf. Let H be a shortest cycle and neighbors. Color $G^2 \setminus V(H)$. Two cases depending on whether there exist $i \neq j$ s.t. $|i - j| \leq 2$ and $L(u_i) \cap L(u_i) \neq \emptyset$ or there exists *i* s.t. $L(u_{i-1}) \cup L(u_i) \cup L(u_{i+1}) \nsubseteq L(v_i)$

1) Suppose so: We can color more vertices so that for some i, $ex(v_i) \geq 1$ and $ex(v_{i+1}) \geq 2$. Then use our main lemma.

2) Suppose not: Choose $c(u_i)$ arbitarily from $L(u_i)$. Choose $c(v_i)$ from $L(u_i) - c(u_i)$. イロト イ押ト イヨト イヨト Ω

Thank you! Any Questions?

イロン イ部ン イモン イモン

 \equiv 990