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list assignment L: L(v) is the set of colors available at vertex v

L-coloring: proper coloring where each vertex gets a color from its
assigned list

k-choosable: there exists an L-coloring whenever all |L(v)| > k

x/(G): minimum k such that G is k-choosable

1,2 1,3 2,3

1,2 1,3 2,3

G? (square of G): formed from G by adding edges between
vertices at distance 2.
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Conjecture [Wegner 1977]

If G is planar and A(G) = 3, then x(G?) < 7.
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Conjecture [Wegner 1977]

If G is planar and A(G) = 3, then x(G?) <7

Theorem [Thomassen 2007]

Wegner's conjecture for A(G) = 3 is true.
Conjecture [Kostochka & Woodall 2001]

x1(G?) = x(G?) for every graph G.

— x/(G?) < 7if G is planar and A(G) =3
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Theorem 1:
If G is planar, A(G) = 3, and girth > 7, then x,(G?) < 7.

Theorem 2:
If G is planar, A(G) = 3, and girth > 9, then x,(G?) < 6.

Plan
> get an upper bound on d(G)

» consider a minimimal counterexample G

» list forbidden subgraphs

> use discharging to show that if G does not contain any
forbidden subgraph, then the bound on d(G) does not hold
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Lemma 4

If G is planar and has girth g, then

4(G) < 2g2
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Lemma b:

If G is a minimal counterexample to Theorem 1,

then G does not contain any of the following 5 subgraphs:
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Lemma 5:
If G is a minimal counterexample to Theorem 1,
then G does not contain any of the following 5 subgraphs:
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Corollary 6:
Let My(v) and M(v) denote
the number of 2-vertices at ®.
distance 1 and 2 from v.

o ® ®

If visa: o o ®

2-vertex, then My(v) = My(v) = 0.
3-vertex, then 2M;(v) + Ma(v) < 2.
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Lemma 4:
If G is planar and has girth > g, then d(G) < %.

Proof of Theorem 1:
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We will show d(G) > 2%, which gives a contradiction.

We use a discharging argument with p(v) = d(v).
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If G is planar, A(G) = 3, girth > 7, then x,(G?) < 7.
Corollary 6:
If v is a 2-vertex, then Mi(v) = M,(v) = 0.
3-vertex, then 2My(v) + Ma(v) < 2.

Proof of Theorem 1:
We use a discharging argument with p(v) = d(v).
> Each 3-vertex gives L to each 2-vertex at distance 1.
» Each 3-vertex gives E to each 2-vertex at distance 2.
Show that p*(v) > 2% for each vertex v.
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Theorem 1:
If G is planar, A(G) = 3, girth > 7, then x,(G?) < 7.
Corollary 6:
If v is a 2-vertex, then Mi(v) = M,(v) = 0.
3-vertex, then 2My(v) + Ma(v) < 2.

Proof of Theorem 1:
We use a discharging argument with pu(v) = d(v).
» Each 3-vertex gives % to each 2-vertex at distance 1.
» Each 3-vertex gives % to each 2-vertex at distance 2.
Show that p*(v) > 2% for each vertex v.
2-vertex: 2 + 2(%) + 4(1—10) = 2%
3-vertex: 3 — LMy (v) — & Ma(v)
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Theorem 1:
If G is planar, A(G) = 3, girth > 7, then x,(G?) < 7.
Corollary 6:
If v is a 2-vertex, then Mi(v) = M,(v) = 0.
3-vertex, then 2My(v) + Ma(v) < 2.

Proof of Theorem 1:
We use a discharging argument with p(v) = d(v).

» Each 3-vertex gives % to each 2-vertex at distance 1.

» Each 3-vertex gives % to each 2-vertex at distance 2.

Show that p*(v) > 2% for each vertex v.
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Theorem 2:
If G is planar, A(G) = 3, girth > 9, then x,(G?) < 6.

Proof of Theorem 2:

By Lemma 4, we know that d(G) < g =21,
We will use discharging to show that d(G) > 23.

Def: a 3-vertex is class i if it is adjacent to i 2-vertices.
We use discharging with an initial charge p(v) = d(v).

We have three discharging rules.

R1) Each 3-vertex gives % to each adjacent 2-vertex.

R2) Each class 0 vertex gives % to each adjacent 3-vertex.

R3) Each class 1 vertex gives % to each class 2 vertex at dist. 1.
gives % to each class 3 vertex at dist. 2.
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Theorem 2:
If G is planar, A(G) = 3, girth > 9, then x,(G?) < 6.

Proof of Theorem 2:

By Lemma 4, we know that d(G) < Q =24,

2
9
We will use discharging to show that d(G) > 23.

Def: a 3-vertex is class i if it is adjacent to i 2-vertices.
We use discharging with an initial charge p(v) = d(v).

We have three discharging rules.

R1) Each 3-vertex gives % to each adjacent 2-vertex.

R2) Each class 0 vertex gives % to each adjacent 3-vertex.

R3) Each class 1 vertex gives % to each class 2 vertex at dist. 1.
gives % to each class 3 vertex at dist. 2.

We need to show that zi*(v) > 23 for each vertex v.
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Proof of Theorem 2:
We use discharging with an initial charge p(v) = d(v).
R1) Each 3-vertex gives % to each adjacent 2-vertex.
R2) Each class 0 vertex gives % to each adjacent 3-vertex.
R3) Each class 1 vertex gives % to each class 2 vertex at dist. 1.

gives % to each class 3 vertex at dist. 2.
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Theorem 2:
If G is planar, A(G) = 3, girth > 9, then x,(G?) < 6.

Proof of Theorem 2:
We use discharging with an initial charge p(v) = d(v).
R1) Each 3-vertex gives % to each adjacent 2-vertex.
R2) Each class 0 vertex gives % to each adjacent 3-vertex.
R3) Each class 1 vertex gives % to each class 2 vertex at dist. 1.

gives % to each class 3 vertex at dist. 2.

We need to show that z*(v) > 23 for each vertex v.
2-vertex:
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Theorem 2:
If G is planar, A(G) = 3, girth > 9, then x,(G?) < 6.

Proof of Theorem 2:
We use discharging with an initial charge p(v) = d(v).
R1) Each 3-vertex gives % to each adjacent 2-vertex.
R2) Each class 0 vertex gives % to each adjacent 3-vertex.
R3) Each class 1 vertex gives % to each class 2 vertex at dist. 1.

gives % to each class 3 vertex at dist. 2.

We need to show that z*(v) > 23 for each vertex v.
2-vertex: 242 (%) = 2%
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class 1:

u]
L)
1
u
!



Theorem 2:
If G is planar, A(G) = 3, girth > 9, then x,(G?) < 6.

Proof of Theorem 2:
We use discharging with an initial charge p(v) = d(v).
R1) Each 3-vertex gives % to each adjacent 2-vertex.
R2) Each class 0 vertex gives % to each adjacent 3-vertex.
R3) Each class 1 vertex gives % to each class 2 vertex at dist. 1.

gives % to each class 3 vertex at dist. 2.

We need to show that z*(v) > 23 for each vertex v.
2-vertex: v
3-vertex:
class 0: 3 -3 (%) =2
class 2:
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Theorem 2:
If G is planar, A(G) = 3, girth > 9, then x,(G?) < 6.

Proof of Theorem 2:
We use discharging with an initial charge p(v) = d(v).
R1) Each 3-vertex gives % to each adjacent 2-vertex.
R2) Each class 0 vertex gives % to each adjacent 3-vertex.
R3) Each class 1 vertex gives % to each class 2 vertex at dist. 1.

gives % to each class 3 vertex at dist. 2.

We need to show that z*(v) > 23 for each vertex v.
2-vertex: v
3-vertex:

class 0: v

class2: 3-2(3)+31 =21
class 3:

class 1:
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If G is planar, A(G) = 3, girth > 9, then x,(G?) < 6.

Proof of Theorem 2:
We use discharging with an initial charge p(v) = d(v).
R1) Each 3-vertex gives % to each adjacent 2-vertex.
R2) Each class 0 vertex gives % to each adjacent 3-vertex.
R3) Each class 1 vertex gives % to each class 2 vertex at dist. 1.
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Theorem 2:
If G is planar, A(G) = 3, girth > 9, then x,(G?) < 6.

Proof of Theorem 2:
We use discharging with an initial charge p(v) = d(v).
R1) Each 3-vertex gives % to each adjacent 2-vertex.
R2) Each class 0 vertex gives % to each adjacent 3-vertex.
R3) Each class 1 vertex gives % to each class 2 vertex at dist. 1.
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Theorem 2:
If G is planar, A(G) = 3, girth > 9, then x,(G?) < 6.

Proof of Theorem 2:
We use discharging with an initial charge p(v) = d(v).
R1) Each 3-vertex gives % to each adjacent 2-vertex.
R2) Each class 0 vertex gives % to each adjacent 3-vertex.
R3) Each class 1 vertex gives % to each class 2 vertex at dist. 1.

gives % to each class 3 vertex at dist. 2.
We need to show that z*(v) > 23 for each vertex v.
2-vertex: v
3-vertex:
class 0:

class 2:

ANENEN

class 3:

class1: 33—

~IN
|
~[=
I
N
ENIIS

u]
L)
1
u
!
V)
P
i)



Theorem 2:
If G is planar, A(G) = 3, girth > 9, then x,(G?) < 6.

Proof of Theorem 2:
We use discharging with an initial charge p(v) = d(v).
R1) Each 3-vertex gives % to each adjacent 2-vertex.
R2) Each class 0 vertex gives % to each adjacent 3-vertex.
R3) Each class 1 vertex gives % to each class 2 vertex at dist. 1.

gives % to each class 3 vertex at dist. 2.

We need to show that z*(v) > 23 for each vertex v.
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3-vertex:
class O: v
class 2: v
class 3: v
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Theorem 2:
If G is planar, A(G) = 3, girth > 9, then x,(G?) < 6.

Proof of Theorem 2:
We use discharging with an initial charge p(v) = d(v).
R1) Each 3-vertex gives % to each adjacent 2-vertex.
R2) Each class 0 vertex gives % to each adjacent 3-vertex.
R3) Each class 1 vertex gives % to each class 2 vertex at dist. 1.

gives % to each class 3 vertex at dist. 2.

We need to show that z*(v) > 23 for each vertex v.
2-vertex: v

3-vertex:
class 0: v
class 2: v
class 3: v
class 1: v
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Open QuestiOns
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Open Questions

1. What is the smallest girth g such that each planar graph G
with A(G) = 3 and girth g satisfies x;(G2) < 67
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Open Questions

1. What is the smallest girth g such that each planar graph G
with A(G) = 3 and girth g satisfies x;(G2) < 67

2. What is the smallest girth g such that each planar graph G
with A(G) = 3 and girth g satisfies x;(G2) < 77



Open Questions

1. What is the smallest girth g such that each planar graph G
with A(G) = 3 and girth g satisfies x;(G2) < 67

2. What is the smallest girth g such that each planar graph G
with A(G) = 3 and girth g satisfies x;(G2) < 77

3. Is it true that every graph G satisfies x;(G?) = x(G?)?



Thank you!

Any Questions?
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