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G 2 (square of G ): formed from G by adding edges between
vertices at distance 2.
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If G is planar and ∆(G ) = 3, then χ(G 2) ≤ 7.

Theorem [Thomassen 2007]

Wegner’s conjecture for ∆(G ) = 3 is true.

Conjecture [Kostochka & Woodall 2001]

χl(G
2) = χ(G 2) for every graph G .

=⇒ χl (G
2) ≤ 7 if G is planar and ∆(G ) = 3.
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If G is planar, ∆(G ) = 3, and girth ≥ 7, then χl(G

2) ≤ 7.

Theorem 2:
If G is planar, ∆(G ) = 3, and girth ≥ 9, then χl(G

2) ≤ 6.

Theorem 3:
If ∆(G ) = 3 and G is not the Petersen graph, then χl(G

2) ≤ 8.

Plan

◮ get an upper bound on d(G )

◮ consider a minimimal counterexample G

◮ list forbidden subgraphs

◮ use discharging to show that if G does not contain any
forbidden subgraph, then the bound on d(G ) does not hold
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If G is a minimal counterexample to Theorem 1,
then G does not contain any of the following 5 subgraphs:

Corollary 6:
Let M1(v) and M2(v) denote
the number of 2-vertices at
distance 1 and 2 from v .

If v is a:
2-vertex, then M1(v) = M2(v) = 0.
3-vertex, then 2M1(v) + M2(v) ≤ 2.
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We use discharging with an initial charge µ(v) = d(v).

R1) Each 3-vertex gives 2
7 to each adjacent 2-vertex.

R2) Each class 0 vertex gives 1
7 to each adjacent 3-vertex.

R3) Each class 1 vertex gives 1
7 to each class 2 vertex at dist. 1.

gives 1
7 to each class 3 vertex at dist. 2.

We need to show that µ∗(v) ≥ 24
7 for each vertex v .
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2
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class 3:

class 1:



Theorem 2:
If G is planar, ∆(G ) = 3, girth ≥ 9, then χl(G

2) ≤ 6.

Proof of Theorem 2:
We use discharging with an initial charge µ(v) = d(v).

R1) Each 3-vertex gives 2
7 to each adjacent 2-vertex.

R2) Each class 0 vertex gives 1
7 to each adjacent 3-vertex.

R3) Each class 1 vertex gives 1
7 to each class 2 vertex at dist. 1.

gives 1
7 to each class 3 vertex at dist. 2.

We need to show that µ∗(v) ≥ 24
7 for each vertex v .

2-vertex: X

3-vertex:
class 0: 3 − 3

(

1
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)

= 24
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class 3:

class 1:



Theorem 2:
If G is planar, ∆(G ) = 3, girth ≥ 9, then χl(G

2) ≤ 6.

Proof of Theorem 2:
We use discharging with an initial charge µ(v) = d(v).

R1) Each 3-vertex gives 2
7 to each adjacent 2-vertex.

R2) Each class 0 vertex gives 1
7 to each adjacent 3-vertex.

R3) Each class 1 vertex gives 1
7 to each class 2 vertex at dist. 1.

gives 1
7 to each class 3 vertex at dist. 2.

We need to show that µ∗(v) ≥ 24
7 for each vertex v .

2-vertex: X

3-vertex:
class 0: X

class 2: 3 − 2
(

2
7

)

+ 1
7 = 24

7

class 3:

class 1:



Theorem 2:
If G is planar, ∆(G ) = 3, girth ≥ 9, then χl(G

2) ≤ 6.

Proof of Theorem 2:
We use discharging with an initial charge µ(v) = d(v).

R1) Each 3-vertex gives 2
7 to each adjacent 2-vertex.

R2) Each class 0 vertex gives 1
7 to each adjacent 3-vertex.

R3) Each class 1 vertex gives 1
7 to each class 2 vertex at dist. 1.

gives 1
7 to each class 3 vertex at dist. 2.

We need to show that µ∗(v) ≥ 24
7 for each vertex v .

2-vertex: X

3-vertex:
class 0: X

class 2: X

class 3: 3 − 3
(

2
7

)

+ 3
(

1
7

)

= 24
7

class 1:



Theorem 2:
If G is planar, ∆(G ) = 3, girth ≥ 9, then χl(G

2) ≤ 6.

Proof of Theorem 2:
We use discharging with an initial charge µ(v) = d(v).

R1) Each 3-vertex gives 2
7 to each adjacent 2-vertex.

R2) Each class 0 vertex gives 1
7 to each adjacent 3-vertex.

R3) Each class 1 vertex gives 1
7 to each class 2 vertex at dist. 1.

gives 1
7 to each class 3 vertex at dist. 2.

We need to show that µ∗(v) ≥ 24
7 for each vertex v .

2-vertex: X

3-vertex:
class 0: X

class 2: X

class 3: X

class 1: 3 − 2
7 − 1

7 = 24
7



Theorem 2:
If G is planar, ∆(G ) = 3, girth ≥ 9, then χl(G

2) ≤ 6.

Proof of Theorem 2:
We use discharging with an initial charge µ(v) = d(v).

R1) Each 3-vertex gives 2
7 to each adjacent 2-vertex.

R2) Each class 0 vertex gives 1
7 to each adjacent 3-vertex.

R3) Each class 1 vertex gives 1
7 to each class 2 vertex at dist. 1.

gives 1
7 to each class 3 vertex at dist. 2.

We need to show that µ∗(v) ≥ 24
7 for each vertex v .

2-vertex: X

3-vertex:
class 0: X

class 2: X

class 3: X

class 1: 3 − 2
7 − 1

7 = 24
7



Theorem 2:
If G is planar, ∆(G ) = 3, girth ≥ 9, then χl(G

2) ≤ 6.

Proof of Theorem 2:
We use discharging with an initial charge µ(v) = d(v).

R1) Each 3-vertex gives 2
7 to each adjacent 2-vertex.

R2) Each class 0 vertex gives 1
7 to each adjacent 3-vertex.

R3) Each class 1 vertex gives 1
7 to each class 2 vertex at dist. 1.

gives 1
7 to each class 3 vertex at dist. 2.

We need to show that µ∗(v) ≥ 24
7 for each vertex v .

2-vertex: X

3-vertex:
class 0: X

class 2: X

class 3: X

class 1: 3 − 2
7 − 2(1

7 ) + 1
7 = 24

7



Theorem 2:
If G is planar, ∆(G ) = 3, girth ≥ 9, then χl(G

2) ≤ 6.

Proof of Theorem 2:
We use discharging with an initial charge µ(v) = d(v).

R1) Each 3-vertex gives 2
7 to each adjacent 2-vertex.

R2) Each class 0 vertex gives 1
7 to each adjacent 3-vertex.

R3) Each class 1 vertex gives 1
7 to each class 2 vertex at dist. 1.

gives 1
7 to each class 3 vertex at dist. 2.

We need to show that µ∗(v) ≥ 24
7 for each vertex v .

2-vertex: X

3-vertex:
class 0: X

class 2: X

class 3: X

class 1: X
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1. What is the smallest girth g such that each planar graph G

with ∆(G ) = 3 and girth g satisfies χl(G
2) ≤ 6?



Open Questions

1. What is the smallest girth g such that each planar graph G

with ∆(G ) = 3 and girth g satisfies χl(G
2) ≤ 6?

2. What is the smallest girth g such that each planar graph G

with ∆(G ) = 3 and girth g satisfies χl(G
2) ≤ 7?



Open Questions

1. What is the smallest girth g such that each planar graph G

with ∆(G ) = 3 and girth g satisfies χl(G
2) ≤ 6?

2. What is the smallest girth g such that each planar graph G

with ∆(G ) = 3 and girth g satisfies χl(G
2) ≤ 7?

3. Is it true that every graph G satisfies χl(G
2) = χ(G 2)?



Thank you!

Any Questions?


