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What is Coloring Reconfiguration?

The purpose of life is to prove and conjecture...
–Paul Erdős

2

1

3

2 1

3

1

3

2 1

3

2

3

2 1



What is Coloring Reconfiguration?

The purpose of life is to prove and conjecture...
–Paul Erdős
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2

1

3

2 1

3

1

3

2 1

3

2

3

2 1



What is Coloring Reconfiguration?

The purpose of life is to prove and conjecture...
–Paul Erdős
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I “Reconfiguration graphs” of 3-colorings of 5-cycle and 4-cycle.

I Is the reconfiguration graph connected? What is its diameter?
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What is List Coloring Reconfiguration?
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I list-assignment L: each vertex v gets allowable colors L(v)

I L-coloring ϕ: ϕ is proper and ϕ(v) ∈ L(v) for all v

Main Questions:

I Given L-colorings α and β, can we change α to β by
recoloring single vertices, keeping L-coloring at each step?

I If so, how many steps are needed?

I Given list-assignment L, can we transform every L-coloring α
into every L-coloring β?

I If so, how many steps are needed in the worst case?
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Lists of Size d(v) + 2

Prop: For every G and every f , with f (v) ≥ 2 for all v , there is
list assignment L with |L(v)| = f (v) for all v and L-colorings α
and β where changing α to β needs n(G ) + µ(G ) moves.

Pf: Every vert needs recolored; every edge of M needs extra step.

1234 3456 3456 1256 1456

12462345235613451235

146123

Thm:[Cambie–Cames van Batenburg–C.] arXiv:2204.07928

(a) If |L(v)| ≥ 2d(v) + 1, then n(G ) + µ(G ) steps suffice.
(b) If |L(v)| ≥ d(v) + 2, then n(G ) + 2µ(G ) steps suffice.

Conj:[Cambie–Cames van Batenburg–C.] For list assignment L
with |L(v)| ≥ d(v) + 2 for all v and L-colorings α and β, can
always change α to β in at most n(G ) + µ(G ) steps.

Correspondence Coloring: µ(G )→ τ(G ). Conj. and Theorems

https://arxiv.org/abs/2204.07928
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Lists of Size d(v) + 1

Cambie–Cames van Batenburg–C.–Kang–van den Heuvel:
Let G be connected with n verts and lists L. Let C(G , L) be the
reconfig. graph, and Ĉ(G , L) be with all frozen colorings deleted.

Main Thm: If L|(v)| ≥ d(v) + 1 for all v and G has ∆ ≥ 3, then
Ĉ(G , L) is connected with diameter O(n2). arXiv:2505.08020

Key Lem: If |L(v)| ≥ d(v) + 1 for all v and |L(w)| ≥ d(w) + 2 for
at least one w , then C(G , L) is connected with diameter O(n2).

Shattering Obs: If |L(w)| = d(w) for some w and
|L(v)| ≥ d(v) + 1 for all other v , then the number
of components in Ĉ(G , L) can be exponential in n.

Conj: If δ(G ) ≥ 3, then we can improve to diameter O(n) in (a)
the Key Lem and (b) the Main Thm. What about correspondence?

https://arxiv.org/abs/2505.08020
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Lists of Size d(v) + 1: Ideas to Prove Main Thm
Thm: Let a graph G be 3-connected and regular. If α and β are
unfrozen (∆ + 1)-colorings of G , then α can reach β.

Bonus Lem: Say G is 3-connected with |L(v)| ≥ d(v) + 1 for
all v . Let x1, x2 be at distance 2. If α and β are L-colorings
with α(x1) = α(x2) = β(x1) = β(x2), then α can reach β.

Pf: Now a common neighbor y of x1, x2 effectively
has an extra color. So we finish by Key Lem.

Pf of Thm: Find distinct w1,w2, x1, x2 with:
(i) w1,w2 at distance 2 and α(w1) = α(w2) and
(ii) x1, x2 at distance 2 and β(x1) = β(x2).
Using the Bonus Lem 4 times gives:
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∼ ∼ ∼ ∼
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Planar Graphs and other Sparse Graphs
Thm: If G is planar and |L(v)| = 10 for all v , then C(G , L) is
connected with diameter O(n). arXiv:2411.00679

Thm: If G is planar and triangle-free and |L(v)| = 7 for all v , then
C(G , L) is connected with diameter O(n). arXiv:2201.05133

Rem: Both results confirm conjectures of Dvorak and Feghali, who
proved the cases when L(v) = {1, . . . , 10} and L(v) = {1, . . . , 7}.

Conj: Fix integers k , d with k ≥ d + 3. If G is d-degenerate and
|L(v)| = k for all v , then C(G , L) is connected with diameter O(n).

Conj: For every “natural” graph class G, positive integer k, and
G ∈ G, if C(G , k) always has diam O(n), then also C(G , L) always
has diam O(n) when |L(v)| = k for all v . This holds when:

I G is graphs with mad(G ) < a, for some a; or

I G is planar graphs with girth at least g , for some g .

https://arxiv.org/abs/2411.00679
https://arxiv.org/abs/2201.05133
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Main Tool for Sparse Graphs

Obs: Fix G and L. If ∃v s.t. |L(v)| ≥ d(v) + 2, then CL(G ) is
connected iff CL(G − v) is connected. So CL(G ) is connected if G is
d-degenerate and L is (d + 2)-assignment. Pf: Induction on |G |.

1 2 d − 1 d

· · ·

d + 1

c1, c2, c3, c4, c5, c6, c7, c8, . . .
↓ ↓

Key Lem: Fix G , L, v , and L-colorings α and β. Let G ′ := G − v ,
α′ := α�G ′ , β′ := β�G ′ . If we can transform α′ to β′ only recoloring
N(v) at most s times, then we can tranform α to β only recoloring
v at most d s

|L(v)|−d(v)−1e+ 1 times. Pf: Above, more carefully.
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Summary

Thm: If |L(v)| ≥ d(v) + 2, then diam C(G , L) ≤ n + 2µ(G ).

Thm: If |L(v)| ≥ 2d(v) + 1, then diam C(G , L) ≤ n + µ(G ).
Conj: If |L(v)| ≥ d(v) + 2, then diam C(G , L) ≤ n + µ(G ).
Correspondence: µ(G )→ τ(G ).

Thm: If |L(v)| ≥ d(v) + 1 and ∆ ≥ 3, then diam Ĉ(G , L) ≤ O(n2).
Conj: If also δ(G ) ≥ 3, then diam Ĉ(G , L) ≤ O(n).
Correspondence: Analogue is false (as shown by cliques).

Thm: If planar and |L(v)| = 10, then diam C(G , L) = O(n).
Thm: If planar, ∇-free and |L(v)| = 7, then diam C(G , L) = O(n).
Conj: If d-degen and |L(v)| ≥ d + 3, then diam C(G , L) = O(n).
Correspondence: Analogues of theorems are true.
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