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» “Reconfiguration graphs” of 3-colorings of 5-cycle and 4-cycle.

» Is the reconfiguration graph connected? What is its diameter?
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» list-assignment L: each vertex v gets allowable colors L(v)
» [-coloring ¢: ¢ is proper and ¢(v) € L(v) for all v
Main Questions:

» Given L-colorings o and 3, can we change « to [ by
recoloring single vertices, keeping L-coloring at each step?

» If so, how many steps are needed?

» Given list-assignment L, can we transform every L-coloring «
into every L-coloring 37

» If so, how many steps are needed in the worst case?
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Conj: For every “natural” graph class G, positive integer k, and
G € G, if C(G, k) always has diam O(n), then also C(G, L) always
has diam O(n) when |L(v)| = k for all v. This holds when:
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