Reconfiguration of Colorings and List Colorings: Proofs and Conjectures

> Daniel W. Cranston dcransto@gmail.com

> > CanaDAM 21 May 2025

And another isomorphic component.

And another isomorphic component.

"Reconfiguration graphs" of 3-colorings of 5-cycle and 4-cycle.

"Reconfiguration graphs" of 3-colorings of 5-cycle and 4-cycle.
Is the reconfiguration graph connected?

"Reconfiguration graphs" of 3-colorings of 5-cycle and 4-cycle.Is the reconfiguration graph connected? What is its diameter?

1 20-01 3

list-assignment L: each vertex v gets allowable colors L(v)

- 1 <u>2</u>0—0<u>1</u> 3
- 1 <u>2</u>0—01 <u>3</u>
- <u>1</u>20—01<u>3</u>
- list-assignment L: each vertex v gets allowable colors L(v)
- L-coloring φ : φ is proper and $\varphi(v) \in L(v)$ for all v

<u>1</u> 20—01 <u>3</u>

- list-assignment L: each vertex v gets allowable colors L(v)
- L-coloring φ : φ is proper and $\varphi(v) \in L(v)$ for all v

Main Questions:

$$1 \underline{2} \circ - \circ \underline{1} 3$$

$$\uparrow$$

$$1 \underline{2} \circ - \circ 1 \underline{3}$$

$$\uparrow$$

$$1 \underline{2} \circ - \circ 1 \underline{3}$$

$$\uparrow$$

- ▶ list-assignment L: each vertex v gets allowable colors L(v)
- L-coloring φ : φ is proper and $\varphi(v) \in L(v)$ for all v

Main Questions:

- ▶ list-assignment L: each vertex v gets allowable colors L(v)
- L-coloring φ : φ is proper and $\varphi(v) \in L(v)$ for all v

Main Questions:

- ▶ list-assignment L: each vertex v gets allowable colors L(v)
- L-coloring φ : φ is proper and $\varphi(v) \in L(v)$ for all v

Main Questions:

- ▶ list-assignment L: each vertex v gets allowable colors L(v)
- L-coloring φ : φ is proper and $\varphi(v) \in L(v)$ for all v

Main Questions:

- Given L-colorings α and β, can we change α to β by recoloring single vertices, keeping L-coloring at each step?
- If so, how many steps are needed?

- ▶ list-assignment L: each vertex v gets allowable colors L(v)
- L-coloring φ : φ is proper and $\varphi(v) \in L(v)$ for all v

Main Questions:

- Given L-colorings α and β, can we change α to β by recoloring single vertices, keeping L-coloring at each step?
- If so, how many steps are needed?
- Given list-assignment L, can we transform every L-coloring α into every L-coloring β?

- ▶ list-assignment L: each vertex v gets allowable colors L(v)
- L-coloring φ : φ is proper and $\varphi(v) \in L(v)$ for all v

Main Questions:

- Given L-colorings α and β, can we change α to β by recoloring single vertices, keeping L-coloring at each step?
- If so, how many steps are needed?
- Given list-assignment L, can we transform every L-coloring α into every L-coloring β?
- If so, how many steps are needed in the worst case?

Prop: For every G and every f, with $f(v) \ge 2$ for all v, there is list assignment L with |L(v)| = f(v) for all v and L-colorings α and β where changing α to β needs $n(G) + \mu(G)$ moves.

Prop: For every G and every f, with $f(v) \ge 2$ for all v, there is list assignment L with |L(v)| = f(v) for all v and L-colorings α and β where changing α to β needs $n(G) + \mu(G)$ moves.

Pf: Every vert needs recolored; every edge of *M* needs extra step.

Prop: For every G and every f, with $f(v) \ge 2$ for all v, there is list assignment L with |L(v)| = f(v) for all v and L-colorings α and β where changing α to β needs $n(G) + \mu(G)$ moves.

Pf: Every vert needs recolored; every edge of *M* needs extra step.

Thm:[Cambie-Cames van Batenburg-C.] arXiv:2204.07928

Prop: For every G and every f, with $f(v) \ge 2$ for all v, there is list assignment L with |L(v)| = f(v) for all v and L-colorings α and β where changing α to β needs $n(G) + \mu(G)$ moves.

Pf: Every vert needs recolored; every edge of *M* needs extra step.

Thm:[Cambie-Cames van Batenburg-C.] arXiv:2204.07928 (a) If $|L(v)| \ge 2d(v) + 1$, then $n(G) + \mu(G)$ steps suffice.

Prop: For every G and every f, with $f(v) \ge 2$ for all v, there is list assignment L with |L(v)| = f(v) for all v and L-colorings α and β where changing α to β needs $n(G) + \mu(G)$ moves.

Pf: Every vert needs recolored; every edge of *M* needs extra step.

Thm: [Cambie-Cames van Batenburg-C.] arXiv:2204.07928 (a) If $|L(v)| \ge 2d(v) + 1$, then $n(G) + \mu(G)$ steps suffice. (b) If $|L(v)| \ge d(v) + 2$, then $n(G) + 2\mu(G)$ steps suffice.

Prop: For every G and every f, with $f(v) \ge 2$ for all v, there is list assignment L with |L(v)| = f(v) for all v and L-colorings α and β where changing α to β needs $n(G) + \mu(G)$ moves.

Pf: Every vert needs recolored; every edge of *M* needs extra step.

Thm:[Cambie-Cames van Batenburg-C.] arXiv:2204.07928 (a) If $|L(v)| \ge 2d(v) + 1$, then $n(G) + \mu(G)$ steps suffice. (b) If $|L(v)| \ge d(v) + 2$, then $n(G) + 2\mu(G)$ steps suffice. **Conj:**[Cambie-Cames van Batenburg-C.] For list assignment L with $|L(v)| \ge d(v) + 2$ for all v and L-colorings α and β , can always change α to β in at most $n(G) + \mu(G)$ steps.

Prop: For every G and every f, with $f(v) \ge 2$ for all v, there is list assignment L with |L(v)| = f(v) for all v and L-colorings α and β where changing α to β needs $n(G) + \mu(G)$ moves.

Pf: Every vert needs recolored; every edge of *M* needs extra step.

Thm:[Cambie-Cames van Batenburg-C.] arXiv:2204.07928 (a) If $|L(v)| \ge 2d(v) + 1$, then $n(G) + \mu(G)$ steps suffice. (b) If $|L(v)| \ge d(v) + 2$, then $n(G) + 2\mu(G)$ steps suffice. **Conj:**[Cambie-Cames van Batenburg-C.] For list assignment L with $|L(v)| \ge d(v) + 2$ for all v and L-colorings α and β , can always change α to β in at most $n(G) + \mu(G)$ steps. **Correspondence Coloring:** $\mu(G) \rightarrow \tau(G)$.

Prop: For every G and every f, with $f(v) \ge 2$ for all v, there is list assignment L with |L(v)| = f(v) for all v and L-colorings α and β where changing α to β needs $n(G) + \mu(G)$ moves.

Pf: Every vert needs recolored; every edge of *M* needs extra step.

Thm:[Cambie-Cames van Batenburg-C.] arXiv:2204.07928 (a) If $|L(v)| \ge 2d(v) + 1$, then $n(G) + \mu(G)$ steps suffice. (b) If $|L(v)| \ge d(v) + 2$, then $n(G) + 2\mu(G)$ steps suffice. **Conj:**[Cambie-Cames van Batenburg-C.] For list assignment L with $|L(v)| \ge d(v) + 2$ for all v and L-colorings α and β , can always change α to β in at most $n(G) + \mu(G)$ steps. **Correspondence Coloring:** $\mu(G) \rightarrow \tau(G)$. Conj. and Theorems

Cambie–Cames van Batenburg–C.–Kang–van den Heuvel: Let *G* be connected with *n* verts and lists *L*. Let C(G, L) be the reconfig. graph, and $\widehat{C}(G, L)$ be with all frozen colorings deleted.

Cambie–Cames van Batenburg–C.–Kang–van den Heuvel: Let *G* be connected with *n* verts and lists *L*. Let C(G, L) be the reconfig. graph, and $\widehat{C}(G, L)$ be with all frozen colorings deleted.

Main Thm: If $L|(v)| \ge d(v) + 1$ for all v and G has $\Delta \ge 3$, then $\widehat{C}(G, L)$ is connected with diameter $O(n^2)$. arXiv:2505.08020

Cambie–Cames van Batenburg–C.–Kang–van den Heuvel: Let *G* be connected with *n* verts and lists *L*. Let C(G, L) be the reconfig. graph, and $\widehat{C}(G, L)$ be with all frozen colorings deleted.

Main Thm: If $L|(v)| \ge d(v) + 1$ for all v and G has $\Delta \ge 3$, then $\widehat{C}(G, L)$ is connected with diameter $O(n^2)$. arXiv:2505.08020

Key Lem: If $|L(v)| \ge d(v) + 1$ for all v and $|L(w)| \ge d(w) + 2$ for at least one w, then C(G, L) is connected with diameter $O(n^2)$.

Cambie–Cames van Batenburg–C.–Kang–van den Heuvel: Let *G* be connected with *n* verts and lists *L*. Let C(G, L) be the reconfig. graph, and $\widehat{C}(G, L)$ be with all frozen colorings deleted.

Main Thm: If $L|(v)| \ge d(v) + 1$ for all v and G has $\Delta \ge 3$, then $\widehat{C}(G, L)$ is connected with diameter $O(n^2)$. arXiv:2505.08020

Key Lem: If $|L(v)| \ge d(v) + 1$ for all v and $|L(w)| \ge d(w) + 2$ for at least one w, then C(G, L) is connected with diameter $O(n^2)$.

Shattering Obs: If |L(w)| = d(w) for some w and $|L(v)| \ge d(v) + 1$ for all other v, then the number of components in $\widehat{C}(G, L)$ can be exponential in n.

Cambie–Cames van Batenburg–C.–Kang–van den Heuvel: Let *G* be connected with *n* verts and lists *L*. Let C(G, L) be the reconfig. graph, and $\widehat{C}(G, L)$ be with all frozen colorings deleted.

Main Thm: If $L|(v)| \ge d(v) + 1$ for all v and G has $\Delta \ge 3$, then $\widehat{C}(G, L)$ is connected with diameter $O(n^2)$. arXiv:2505.08020

Key Lem: If $|L(v)| \ge d(v) + 1$ for all v and $|L(w)| \ge d(w) + 2$ for at least one w, then C(G, L) is connected with diameter $O(n^2)$.

Shattering Obs: If |L(w)| = d(w) for some w and $|L(v)| \ge d(v) + 1$ for all other v, then the number of components in $\widehat{C}(G, L)$ can be exponential in n.

Conj: If $\delta(G) \ge 3$, then we can improve to diameter O(n) in (a) the Key Lem

Cambie–Cames van Batenburg–C.–Kang–van den Heuvel: Let *G* be connected with *n* verts and lists *L*. Let C(G, L) be the reconfig. graph, and $\widehat{C}(G, L)$ be with all frozen colorings deleted.

Main Thm: If $L|(v)| \ge d(v) + 1$ for all v and G has $\Delta \ge 3$, then $\widehat{C}(G, L)$ is connected with diameter $O(n^2)$. arXiv:2505.08020

Key Lem: If $|L(v)| \ge d(v) + 1$ for all v and $|L(w)| \ge d(w) + 2$ for at least one w, then C(G, L) is connected with diameter $O(n^2)$.

Shattering Obs: If |L(w)| = d(w) for some w and $|L(v)| \ge d(v) + 1$ for all other v, then the number of components in $\widehat{C}(G, L)$ can be exponential in n.

Conj: If $\delta(G) \ge 3$, then we can improve to diameter O(n) in (a) the Key Lem and (b) the Main Thm.
Lists of Size d(v) + 1

Cambie–Cames van Batenburg–C.–Kang–van den Heuvel: Let *G* be connected with *n* verts and lists *L*. Let C(G, L) be the reconfig. graph, and $\widehat{C}(G, L)$ be with all frozen colorings deleted.

Main Thm: If $L|(v)| \ge d(v) + 1$ for all v and G has $\Delta \ge 3$, then $\widehat{C}(G, L)$ is connected with diameter $O(n^2)$. arXiv:2505.08020

Key Lem: If $|L(v)| \ge d(v) + 1$ for all v and $|L(w)| \ge d(w) + 2$ for at least one w, then C(G, L) is connected with diameter $O(n^2)$.

Shattering Obs: If |L(w)| = d(w) for some w and $|L(v)| \ge d(v) + 1$ for all other v, then the number of components in $\widehat{C}(G, L)$ can be exponential in n.

Conj: If $\delta(G) \ge 3$, then we can improve to diameter O(n) in (a) the Key Lem and (b) the Main Thm. What about correspondence?

Thm: Let a graph G be 3-connected and regular. If α and β are unfrozen $(\Delta + 1)$ -colorings of G, then α can reach β .

Thm: Let a graph G be 3-connected and regular. If α and β are unfrozen $(\Delta + 1)$ -colorings of G, then α can reach β .

Bonus Lem: Say G is 3-connected with $|L(v)| \ge d(v) + 1$ for all v. Let x_1, x_2 be at distance 2. If α and β are L-colorings with $\alpha(x_1) = \alpha(x_2) = \beta(x_1) = \beta(x_2)$, then α can reach β .

Thm: Let a graph G be 3-connected and regular. If α and β are unfrozen $(\Delta + 1)$ -colorings of G, then α can reach β .

Bonus Lem: Say *G* is 3-connected with $|L(v)| \ge d(v) + 1$ for all *v*. Let x_1, x_2 be at distance 2. If α and β are *L*-colorings with $\alpha(x_1) = \alpha(x_2) = \beta(x_1) = \beta(x_2)$, then α can reach β . **Pf:** Now a common neighbor *y* of x_1, x_2 effectively has an extra color.

Thm: Let a graph G be 3-connected and regular. If α and β are unfrozen $(\Delta + 1)$ -colorings of G, then α can reach β .

Bonus Lem: Say *G* is 3-connected with $|L(v)| \ge d(v) + 1$ for all *v*. Let x_1, x_2 be at distance 2. If α and β are *L*-colorings with $\alpha(x_1) = \alpha(x_2) = \beta(x_1) = \beta(x_2)$, then α can reach β . **Pf:** Now a common neighbor *y* of x_1, x_2 effectively has an extra color. So we finish by Key Lem.

Thm: Let a graph G be 3-connected and regular. If α and β are unfrozen $(\Delta + 1)$ -colorings of G, then α can reach β .

Bonus Lem: Say *G* is 3-connected with $|L(v)| \ge d(v) + 1$ for all *v*. Let x_1, x_2 be at distance 2. If α and β are *L*-colorings with $\alpha(x_1) = \alpha(x_2) = \beta(x_1) = \beta(x_2)$, then α can reach β . **Pf:** Now a common neighbor *y* of x_1, x_2 effectively has an extra color. So we finish by Key Lem.

Thm: Let a graph G be 3-connected and regular. If α and β are unfrozen $(\Delta + 1)$ -colorings of G, then α can reach β .

Bonus Lem: Say G is 3-connected with $|L(v)| \ge d(v) + 1$ for all v. Let x_1, x_2 be at distance 2. If α and β are L-colorings with $\alpha(x_1) = \alpha(x_2) = \beta(x_1) = \beta(x_2)$, then α can reach β . **Pf:** Now a common neighbor y of x_1, x_2 effectively has an extra color. So we finish by Key Lem.

Pf of Thm: Find distinct w_1, w_2, x_1, x_2 with: (i) w_1, w_2 at distance 2 and $\alpha(w_1) = \alpha(w_2)$ and (ii) x_1, x_2 at distance 2 and $\beta(x_1) = \beta(x_2)$. Using the Bonus Lem 4 times gives:

$$\begin{array}{c} w_1 x_1 \\ \circ \circ \\ \vdots \\ \circ \circ \\ w_2 x_2 \end{array} \qquad \begin{array}{c} 1 \\ \circ \circ \\ \vdots \\ \circ \circ \\ 1 \end{array}$$

 $\begin{smallmatrix} & 1 \\ \circ & \circ \\ \vdots & \circ \\ & 1 \\ \beta \end{smallmatrix}$

Thm: Let a graph G be 3-connected and regular. If α and β are unfrozen $(\Delta + 1)$ -colorings of G, then α can reach β .

Bonus Lem: Say *G* is 3-connected with $|L(v)| \ge d(v) + 1$ for all *v*. Let x_1, x_2 be at distance 2. If α and β are *L*-colorings with $\alpha(x_1) = \alpha(x_2) = \beta(x_1) = \beta(x_2)$, then α can reach β . **Pf:** Now a common neighbor *y* of x_1, x_2 effectively has an extra color. So we finish by Key Lem.

Thm: Let a graph G be 3-connected and regular. If α and β are unfrozen $(\Delta + 1)$ -colorings of G, then α can reach β .

Bonus Lem: Say G is 3-connected with $|L(v)| \ge d(v) + 1$ for all v. Let x_1, x_2 be at distance 2. If α and β are L-colorings with $\alpha(x_1) = \alpha(x_2) = \beta(x_1) = \beta(x_2)$, then α can reach β . **Pf:** Now a common neighbor y of x_1, x_2 effectively has an extra color. So we finish by Key Lem.

$$\begin{array}{c} \overset{W_1 \times_1}{\circ \circ} \\ \vdots \vdots \\ \circ \circ \\ \overset{W_2 \times_2}{\circ \circ} \end{array} \qquad \begin{array}{c} 1 & 0 \\ \circ \circ \\ \vdots \vdots \\ \circ \circ \circ \\ 1 \end{array} \qquad \begin{array}{c} 1 & 2 \\ \circ \circ \\ \vdots \vdots \\ \circ \circ \circ \\ 1 \end{array} \qquad \begin{array}{c} 3 & 2 \\ \circ \circ \\ \vdots \vdots \\ \circ \circ \circ \\ 3 & 2 \end{array} \qquad \begin{array}{c} 3 & 1 \\ \circ \circ \\ \vdots \vdots \\ \circ \circ \circ \\ 3 & 2 \end{array} \qquad \begin{array}{c} 1 \\ \circ \circ \\ \vdots \vdots \\ \circ \circ \circ \\ 0 & \circ \\ 1 \end{array} \qquad \begin{array}{c} 0 \\ \circ \circ \\ \vdots \vdots \\ \circ \circ \circ \\ 0 \\ 1 \end{array} \qquad \begin{array}{c} 1 \\ \circ \circ \\ \vdots \vdots \\ \circ \circ \circ \\ 0 \\ 1 \end{array} \qquad \begin{array}{c} 0 \\ \circ \circ \\ \vdots \vdots \\ \circ \circ \circ \\ 0 \\ 1 \end{array} \qquad \begin{array}{c} 0 \\ \circ \circ \\ \vdots \vdots \\ \circ \circ \circ \\ 0 \\ 1 \end{array} \qquad \begin{array}{c} 0 \\ \circ \circ \\ \vdots \vdots \\ \circ \circ \circ \\ 0 \\ 1 \end{array} \qquad \begin{array}{c} 1 \\ \circ \circ \\ 0 \\ 0 \\ 1 \end{array} \qquad \begin{array}{c} 0 \\ \circ \circ \\ 0 \\ 0 \\ 0 \end{array} \qquad \begin{array}{c} 0 \\ \vdots \vdots \\ 0 \\ 0 \\ 0 \end{array} \qquad \begin{array}{c} 0 \\ \vdots \\ 0 \\ 0 \\ 0 \end{array} \qquad \begin{array}{c} 0 \\ \vdots \\ 0 \\ 0 \\ 0 \end{array} \qquad \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array} \qquad \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array} \qquad \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array} \qquad \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array} \qquad \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array} \qquad \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array} \qquad \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array} \qquad \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array} \qquad \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array} \qquad \begin{array}{c} 0 \\ 0 \end{array} \qquad \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \qquad \begin{array}{c} 0 \end{array} \qquad \begin{array}{c} 0 \\ 0 \end{array} \qquad \begin{array}{c} 0 \end{array} \qquad \begin{array}{c} 0 \\ 0 \end{array} \qquad \begin{array}{c} 0 \\ 0 \end{array} \qquad \begin{array}{c} 0 \end{array} \qquad \begin{array}{c} 0 \\ 0 \end{array} \qquad \begin{array}{c} 0 \end{array} \end{array} \qquad \begin{array}{c} 0 \end{array} \qquad \begin{array}{c} 0 \end{array} \end{array} \qquad \begin{array}{c} 0 \end{array} \qquad \begin{array}{c} 0 \end{array} \end{array} \qquad \begin{array}{c} 0 \end{array} \qquad \begin{array}{c} 0 \end{array} \end{array} \end{array} \end{array} \qquad \begin{array}{c} 0 \end{array} \end{array} \qquad \begin{array}{c} 0 \end{array} \end{array} \qquad \begin{array}{c} 0 \end{array} \end{array} \end{array} \end{array} \qquad \begin{array}{c} 0 \end{array} \end{array} \qquad \begin{array}{c} 0 \end{array} \end{array} \end{array} \end{array} \end{array}$$

Thm: Let a graph G be 3-connected and regular. If α and β are unfrozen $(\Delta + 1)$ -colorings of G, then α can reach β .

Bonus Lem: Say G is 3-connected with $|L(v)| \ge d(v) + 1$ for all v. Let x_1, x_2 be at distance 2. If α and β are L-colorings with $\alpha(x_1) = \alpha(x_2) = \beta(x_1) = \beta(x_2)$, then α can reach β . **Pf:** Now a common neighbor y of x_1, x_2 effectively has an extra color. So we finish by Key Lem.

Thm: Let a graph G be 3-connected and regular. If α and β are unfrozen $(\Delta + 1)$ -colorings of G, then α can reach β .

Bonus Lem: Say G is 3-connected with $|L(v)| \ge d(v) + 1$ for all v. Let x_1, x_2 be at distance 2. If α and β are L-colorings with $\alpha(x_1) = \alpha(x_2) = \beta(x_1) = \beta(x_2)$, then α can reach β . **Pf:** Now a common neighbor y of x_1, x_2 effectively has an extra color. So we finish by Key Lem.

Thm: Let a graph G be 3-connected and regular. If α and β are unfrozen $(\Delta + 1)$ -colorings of G, then α can reach β .

Bonus Lem: Say G is 3-connected with $|L(v)| \ge d(v) + 1$ for all v. Let x_1, x_2 be at distance 2. If α and β are L-colorings with $\alpha(x_1) = \alpha(x_2) = \beta(x_1) = \beta(x_2)$, then α can reach β . **Pf:** Now a common neighbor y of x_1, x_2 effectively has an extra color. So we finish by Key Lem.

$$\begin{array}{c} \underbrace{ \begin{matrix} w_1 \, x_1 \\ \circ \ \circ \\ \vdots \ \vdots \\ \circ \ \circ \\ w_2 \, x_2 \end{matrix}} \\ \alpha & \gamma_{1,2} \end{matrix} \sim \begin{array}{c} \begin{matrix} 3 \ 2 \\ \circ \ \circ \\ \circ \\ \circ \\ 3 \ 2 \end{matrix} \sim \begin{array}{c} \begin{matrix} 3 \ 1 \\ \circ \ \circ \\ \circ \\ \circ \\ 3 \ 2 \end{matrix} \sim \begin{array}{c} \begin{matrix} 3 \ 1 \\ \circ \ \circ \\ \circ \\ \circ \\ 3 \ 1 \end{matrix} \qquad \left(\begin{matrix} 1 \\ \circ \ \circ \\ \circ \\ \circ \\ \circ \\ 3 \ 1 \end{matrix} \right) } \\ \beta \end{array}$$

Thm: Let a graph G be 3-connected and regular. If α and β are unfrozen $(\Delta + 1)$ -colorings of G, then α can reach β .

Bonus Lem: Say *G* is 3-connected with $|L(v)| \ge d(v) + 1$ for all *v*. Let x_1, x_2 be at distance 2. If α and β are *L*-colorings with $\alpha(x_1) = \alpha(x_2) = \beta(x_1) = \beta(x_2)$, then α can reach β . **Pf:** Now a common neighbor *y* of x_1, x_2 effectively has an extra color. So we finish by Key Lem.

$$\begin{array}{c} \underbrace{ \begin{matrix} w_1 \, x_1 \\ \circ \ \circ \\ \vdots \ \vdots \\ \circ \ \circ \\ w_2 \, x_2 \end{matrix}} \\ \alpha & \gamma_{1,2} \end{matrix} \sim \begin{array}{c} \begin{matrix} 3 \ 2 \\ \circ \ \circ \\ \circ \\ 3 \ 2 \end{matrix} \sim \begin{array}{c} \begin{matrix} 3 \ 1 \\ \circ \ \circ \\ \circ \\ \circ \\ 3 \ 2 \end{matrix} \sim \begin{array}{c} \begin{matrix} 3 \ 1 \\ \circ \ \circ \\ \circ \\ \circ \\ 3 \ 1 \end{matrix} \sim \begin{array}{c} \begin{matrix} 1 \\ \circ \ \circ \\ \circ \\ \circ \\ \circ \\ 1 \end{matrix} } \\ \beta \end{matrix}$$

Thm: If G is planar and |L(v)| = 10 for all v, then C(G, L) is connected with diameter O(n). arXiv:2411.00679

Thm: If G is planar and |L(v)| = 10 for all v, then C(G, L) is connected with diameter O(n). arXiv:2411.00679

Thm: If G is planar and triangle-free and |L(v)| = 7 for all v, then C(G, L) is connected with diameter O(n). arXiv:2201.05133

Thm: If G is planar and |L(v)| = 10 for all v, then C(G, L) is connected with diameter O(n). arXiv:2411.00679

Thm: If G is planar and triangle-free and |L(v)| = 7 for all v, then C(G, L) is connected with diameter O(n). arXiv:2201.05133

Rem: Both results confirm conjectures of Dvorak and Feghali, who proved the cases when $L(v) = \{1, ..., 10\}$ and $L(v) = \{1, ..., 7\}$.

Thm: If G is planar and |L(v)| = 10 for all v, then C(G, L) is connected with diameter O(n). arXiv:2411.00679

Thm: If G is planar and triangle-free and |L(v)| = 7 for all v, then C(G, L) is connected with diameter O(n). arXiv:2201.05133

Rem: Both results confirm conjectures of Dvorak and Feghali, who proved the cases when $L(v) = \{1, ..., 10\}$ and $L(v) = \{1, ..., 7\}$.

Conj: Fix integers k, d with $k \ge d + 3$. If G is d-degenerate and |L(v)| = k for all v, then C(G, L) is connected with diameter O(n).

Thm: If G is planar and |L(v)| = 10 for all v, then C(G, L) is connected with diameter O(n). arXiv:2411.00679

Thm: If G is planar and triangle-free and |L(v)| = 7 for all v, then C(G, L) is connected with diameter O(n). arXiv:2201.05133

Rem: Both results confirm conjectures of Dvorak and Feghali, who proved the cases when $L(v) = \{1, ..., 10\}$ and $L(v) = \{1, ..., 7\}$.

Conj: Fix integers k, d with $k \ge d + 3$. If G is d-degenerate and |L(v)| = k for all v, then C(G, L) is connected with diameter O(n).

Conj: For every "natural" graph class \mathcal{G} , positive integer k, and $G \in \mathcal{G}$, if $\mathcal{C}(G, k)$ always has diam O(n), then also $\mathcal{C}(G, L)$ always has diam O(n) when |L(v)| = k for all v.

Thm: If G is planar and |L(v)| = 10 for all v, then C(G, L) is connected with diameter O(n). arXiv:2411.00679

Thm: If G is planar and triangle-free and |L(v)| = 7 for all v, then C(G, L) is connected with diameter O(n). arXiv:2201.05133

Rem: Both results confirm conjectures of Dvorak and Feghali, who proved the cases when $L(v) = \{1, ..., 10\}$ and $L(v) = \{1, ..., 7\}$.

Conj: Fix integers k, d with $k \ge d + 3$. If G is d-degenerate and |L(v)| = k for all v, then C(G, L) is connected with diameter O(n).

Conj: For every "natural" graph class \mathcal{G} , positive integer k, and $G \in \mathcal{G}$, if $\mathcal{C}(G, k)$ always has diam O(n), then also $\mathcal{C}(G, L)$ always has diam O(n) when |L(v)| = k for all v. This holds when:

- \mathcal{G} is graphs with mad(G) < a, for some a; or
- \mathcal{G} is planar graphs with girth at least g, for some g.

Obs: Fix G and L. If $\exists v \text{ s.t. } |L(v)| \geq d(v) + 2$, then $C_L(G)$ is connected iff $C_L(G-v)$ is connected. So $C_L(G)$ is connected if G is d-degenerate and L is (d+2)-assignment. **Pf:** Induction on |G|.

Obs: Fix G and L. If $\exists v \text{ s.t. } |L(v)| \geq d(v) + 2$, then $C_L(G)$ is connected iff $C_L(G-v)$ is connected. So $C_L(G)$ is connected if G is d-degenerate and L is (d+2)-assignment. **Pf:** Induction on |G|.

Obs: Fix G and L. If $\exists v \text{ s.t. } |L(v)| \geq d(v) + 2$, then $C_L(G)$ is connected iff $C_L(G-v)$ is connected. So $C_L(G)$ is connected if G is d-degenerate and L is (d+2)-assignment. **Pf:** Induction on |G|.

Obs: Fix G and L. If $\exists v \text{ s.t. } |L(v)| \geq d(v) + 2$, then $C_L(G)$ is connected iff $C_L(G-v)$ is connected. So $C_L(G)$ is connected if G is d-degenerate and L is (d+2)-assignment. **Pf:** Induction on |G|.

Obs: Fix G and L. If $\exists v \text{ s.t. } |L(v)| \geq d(v) + 2$, then $C_L(G)$ is connected iff $C_L(G-v)$ is connected. So $C_L(G)$ is connected if G is d-degenerate and L is (d+2)-assignment. **Pf:** Induction on |G|.

Obs: Fix G and L. If $\exists v \text{ s.t. } |L(v)| \geq d(v) + 2$, then $C_L(G)$ is connected iff $C_L(G-v)$ is connected. So $C_L(G)$ is connected if G is d-degenerate and L is (d+2)-assignment. **Pf:** Induction on |G|.

Obs: Fix G and L. If $\exists v \text{ s.t. } |L(v)| \geq d(v) + 2$, then $C_L(G)$ is connected iff $C_L(G-v)$ is connected. So $C_L(G)$ is connected if G is d-degenerate and L is (d+2)-assignment. **Pf:** Induction on |G|.

Obs: Fix G and L. If $\exists v \text{ s.t. } |L(v)| \geq d(v) + 2$, then $C_L(G)$ is connected iff $C_L(G-v)$ is connected. So $C_L(G)$ is connected if G is d-degenerate and L is (d+2)-assignment. **Pf:** Induction on |G|.

 $c_1, c_2, c_3, c_4, c_5, c_6, c_7, c_8, \ldots$

Obs: Fix G and L. If $\exists v \text{ s.t. } |L(v)| \geq d(v) + 2$, then $C_L(G)$ is connected iff $C_L(G-v)$ is connected. So $C_L(G)$ is connected if G is d-degenerate and L is (d+2)-assignment. **Pf:** Induction on |G|.

Obs: Fix G and L. If $\exists v \text{ s.t. } |L(v)| \ge d(v) + 2$, then $C_L(G)$ is connected iff $C_L(G-v)$ is connected. So $C_L(G)$ is connected if G is d-degenerate and L is (d+2)-assignment. **Pf:** Induction on |G|.

Thm: If $|L(v)| \ge d(v) + 2$, then diam $\mathcal{C}(G, L) \le n + 2\mu(G)$.

Thm: If $|L(v)| \ge d(v) + 2$, then diam $C(G, L) \le n + 2\mu(G)$. **Thm:** If $|L(v)| \ge 2d(v) + 1$, then diam $C(G, L) \le n + \mu(G)$.

Thm: If $|L(v)| \ge d(v) + 2$, then diam $C(G, L) \le n + 2\mu(G)$. **Thm:** If $|L(v)| \ge 2d(v) + 1$, then diam $C(G, L) \le n + \mu(G)$. **Conj:** If $|L(v)| \ge d(v) + 2$, then diam $C(G, L) \le n + \mu(G)$.

Thm: If $|L(v)| \ge d(v) + 2$, then diam $C(G, L) \le n + 2\mu(G)$. **Thm:** If $|L(v)| \ge 2d(v) + 1$, then diam $C(G, L) \le n + \mu(G)$. **Conj:** If $|L(v)| \ge d(v) + 2$, then diam $C(G, L) \le n + \mu(G)$. **Correspondence:** $\mu(G) \to \tau(G)$.

Thm: If $|L(v)| \ge d(v) + 2$, then diam $C(G, L) \le n + 2\mu(G)$. **Thm:** If $|L(v)| \ge 2d(v) + 1$, then diam $C(G, L) \le n + \mu(G)$. **Conj:** If $|L(v)| \ge d(v) + 2$, then diam $C(G, L) \le n + \mu(G)$. **Correspondence:** $\mu(G) \to \tau(G)$.

Thm: If $|L(v)| \ge d(v) + 1$ and $\Delta \ge 3$, then diam $\widehat{\mathcal{C}}(G, L) \le O(n^2)$.

Thm: If $|L(v)| \ge d(v) + 2$, then diam $C(G, L) \le n + 2\mu(G)$. **Thm:** If $|L(v)| \ge 2d(v) + 1$, then diam $C(G, L) \le n + \mu(G)$. **Conj:** If $|L(v)| \ge d(v) + 2$, then diam $C(G, L) \le n + \mu(G)$. **Correspondence:** $\mu(G) \to \tau(G)$.

Thm: If $|L(v)| \ge d(v) + 1$ and $\Delta \ge 3$, then diam $\widehat{\mathcal{C}}(G, L) \le O(n^2)$. **Conj:** If also $\delta(G) \ge 3$, then diam $\widehat{\mathcal{C}}(G, L) \le O(n)$.

Thm: If $|L(v)| \ge d(v) + 2$, then diam $C(G, L) \le n + 2\mu(G)$. **Thm:** If $|L(v)| \ge 2d(v) + 1$, then diam $C(G, L) \le n + \mu(G)$. **Conj:** If $|L(v)| \ge d(v) + 2$, then diam $C(G, L) \le n + \mu(G)$. **Correspondence:** $\mu(G) \to \tau(G)$.

Thm: If $|L(v)| \ge d(v) + 1$ and $\Delta \ge 3$, then diam $\widehat{C}(G, L) \le O(n^2)$. **Conj:** If also $\delta(G) \ge 3$, then diam $\widehat{C}(G, L) \le O(n)$. **Correspondence:** Analogue is false (as shown by cliques).
Thm: If $|L(v)| \ge d(v) + 2$, then diam $C(G, L) \le n + 2\mu(G)$. **Thm:** If $|L(v)| \ge 2d(v) + 1$, then diam $C(G, L) \le n + \mu(G)$. **Conj:** If $|L(v)| \ge d(v) + 2$, then diam $C(G, L) \le n + \mu(G)$. **Correspondence:** $\mu(G) \to \tau(G)$.

Thm: If $|L(v)| \ge d(v) + 1$ and $\Delta \ge 3$, then diam $\widehat{C}(G, L) \le O(n^2)$. **Conj:** If also $\delta(G) \ge 3$, then diam $\widehat{C}(G, L) \le O(n)$. **Correspondence:** Analogue is false (as shown by cliques).

Thm: If planar and |L(v)| = 10, then diam C(G, L) = O(n).

Thm: If $|L(v)| \ge d(v) + 2$, then diam $C(G, L) \le n + 2\mu(G)$. **Thm:** If $|L(v)| \ge 2d(v) + 1$, then diam $C(G, L) \le n + \mu(G)$. **Conj:** If $|L(v)| \ge d(v) + 2$, then diam $C(G, L) \le n + \mu(G)$. **Correspondence:** $\mu(G) \to \tau(G)$.

Thm: If $|L(v)| \ge d(v) + 1$ and $\Delta \ge 3$, then diam $\widehat{C}(G, L) \le O(n^2)$. **Conj:** If also $\delta(G) \ge 3$, then diam $\widehat{C}(G, L) \le O(n)$. **Correspondence:** Analogue is false (as shown by cliques).

Thm: If planar and |L(v)| = 10, then diam C(G, L) = O(n). **Thm:** If planar, ∇ -free and |L(v)| = 7, then diam C(G, L) = O(n).

Thm: If $|L(v)| \ge d(v) + 2$, then diam $C(G, L) \le n + 2\mu(G)$. **Thm:** If $|L(v)| \ge 2d(v) + 1$, then diam $C(G, L) \le n + \mu(G)$. **Conj:** If $|L(v)| \ge d(v) + 2$, then diam $C(G, L) \le n + \mu(G)$. **Correspondence:** $\mu(G) \to \tau(G)$.

Thm: If $|L(v)| \ge d(v) + 1$ and $\Delta \ge 3$, then diam $\widehat{C}(G, L) \le O(n^2)$. **Conj:** If also $\delta(G) \ge 3$, then diam $\widehat{C}(G, L) \le O(n)$. **Correspondence:** Analogue is false (as shown by cliques).

Thm: If planar and |L(v)| = 10, then diam C(G, L) = O(n). **Thm:** If planar, ∇ -free and |L(v)| = 7, then diam C(G, L) = O(n). **Conj:** If *d*-degen and $|L(v)| \ge d + 3$, then diam C(G, L) = O(n).

Thm: If $|L(v)| \ge d(v) + 2$, then diam $C(G, L) \le n + 2\mu(G)$. **Thm:** If $|L(v)| \ge 2d(v) + 1$, then diam $C(G, L) \le n + \mu(G)$. **Conj:** If $|L(v)| \ge d(v) + 2$, then diam $C(G, L) \le n + \mu(G)$. **Correspondence:** $\mu(G) \to \tau(G)$.

Thm: If $|L(v)| \ge d(v) + 1$ and $\Delta \ge 3$, then diam $\widehat{C}(G, L) \le O(n^2)$. **Conj:** If also $\delta(G) \ge 3$, then diam $\widehat{C}(G, L) \le O(n)$. **Correspondence:** Analogue is false (as shown by cliques).

Thm: If planar and |L(v)| = 10, then diam C(G, L) = O(n). **Thm:** If planar, ∇ -free and |L(v)| = 7, then diam C(G, L) = O(n). **Conj:** If *d*-degen and $|L(v)| \ge d + 3$, then diam C(G, L) = O(n). **Correspondence:** Analogues of theorems are true.