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Plan: We will generalize this to list-coloring.
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» [-coloring ¢: ¢ is proper and p(v) € L(v) for all v
> k-assignment: |L(v)| = k for all v
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Main Theorem [C-Mahmoud '23+]: If G is k-regular with k > 3
and G is connected, then G is k-swappable if G # K3[K>.
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» L is a degree-assignment if |L(v)| = d(v) for all v.
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connected graph G, then G is degree-choosable.
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of a connected graph G, then G is degree-swappable.

Pf Outline for Main Theorem:
1. Compile a big family of degree-swappable graphs 7.
2. Every k-regular connected graph has induced subgraph in 7.
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Q: How to prove a graph is degree-swappable?
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A: (1) Partition set of L-colorings into parts, where in each part
all are L-equivalent, i.e., mix. (2) Find paths among all parts.

Q: How to prove all L-colorings in a part mix?

Al: Find v, w such that viw € E(G) and G — v
is connected. If 3« € L(v)\ L(w), then
all L-colorings o with p(v) = a mix.

A2: Find vi,v> € N(w) such that viv, ¢ E(G)
and G — v; — v is connected. If
dov € L(vi) N L(v), then all L-colorings ¢
with o(vi) = ¢(v2) = o mix.



Hunting Degree-Swappable Graphs in k-Regular Graphs



Hunting Degree-Swappable Graphs in k-Regular Graphs
Degree-Swappable:



Hunting Degree-Swappable Graphs in k-Regular Graphs
Degree-Swappable: (Chorded) Barbells w/ even cycles

&P
S GO



Hunting Degree-Swappable Graphs in k-Regular Graphs
Degree-Swappable: (Chorded) Barbells w/ even cycles; 4-wheel

o X
S GO



Hunting Degree-Swappable Graphs in k-Regular Graphs
Degree-Swappable: (Chorded) Barbells w/ even cycles; 4-wheel

o X
S GO

Main Theorem [C-Mahmoud '23+]: If G is k-regular with k > 3
and G is connected, then G is k-swappable if G # K3[K>.



Hunting Degree-Swappable Graphs in k-Regular Graphs
Degree-Swappable: (Chorded) Barbells w/ even cycles; 4-wheel

o X
S GO

Main Theorem [C-Mahmoud '23+]: If G is k-regular with k > 3

and G is connected, then G is k-swappable if G # K3[K>.
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Main Theorem [C-Mahmoud '23+]: If G is k-regular with k > 3
and G is connected, then G is k-swappable if G # K3[K>.

1. If G has small vertex cut S, then each component of G — S is
“nearly” a Gallai tree (or get good barbell or chorded barbell).

2. If G has 4-wheel, then we are done.

3. If G is 4-connected and has no 4-wheel, then G is
k-swappable (find explicit path between L-colorings).
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