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Kempe Swaps

Defn: Given k-coloring ϕ, i , j ∈ {1, . . . , k}, and v with ϕ(v) = i ,
an (i , j)-swap at v recolors v ’s component of subgraph induced by
color classes i and j , swapping those colors on that component.
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What is Known about Kempe Equivalence?

Defn: k-colorings ϕ1 and ϕ2 are k-equivalent if we
can form ϕ2 from ϕ1 by a sequence of Kempe swaps,
never using more than k colors.

If all k-colorings of
G are k-equivalent, then G is k-ergodic.

Ex: Petersen is 3-ergodic.

Lem: If d(v) < k and all k-colorings of G − v are k-equiv,
then all k-colorings of G are k-equiv., i.e., G is k-ergodic. [LV–M]
I Cor: If G is d-degenerate and d < k, then G is k-ergodic.

Q: Which graphs “barely” not (k − 1)-degenerate? A: k-regular.

Conj: Every k-regular graph is k-ergodic. [Mohar]

Thm: If G is connected and 3-regular,
then G is 3-ergodic unless G is K3�K2. [FJP]

Thm: If G is connected and k-regular,
with k ≥ 4, then G is k-ergodic. [BBFJ]

Plan: We will generalize this to list-coloring.
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Definitions and Examples
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6 1

I list-assignment L: each vertex v gets allowable colors L(v)

I L-coloring ϕ: ϕ is proper and ϕ(v) ∈ L(v) for all v

I k-assignment: |L(v)| = k for all v

I L-colorings ϕ1 and ϕ2 are L-equivalent: can turn ϕ1 into ϕ2

via Kempe swaps, keeping an L-coloring at each step

I G is L-swappable: all L-colorings are L-equivalent

I G is k-swappable: G is L-swappable when L is a k-assignment

Main Theorem [C-Mahmoud ’23+]: If G is k-regular with k ≥ 3
and G is connected, then G is k-swappable if G 6= K3�K2.
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A Roadmap to a Proof, Inspired by Choosability
Degeneracy Lem: (extends [LV–M]) If G has a vertex v with
d(v) < k , then G is k-swappable iff G − v is k-swappable.

I L is a degree-assignment if |L(v)| = d(v) for all v .

I degree-choosable: any degree-assignment L allows L-coloring.

Thm[ERT;V]: 2-connected and /∈ {C2`+1,K∆+1} ⇒ degree-choosable.

1. If H is degree-choosable and H is an induced subgraph of a
connected graph G , then G is degree-choosable.

2. If G satisfies hypotheses, then G has an induced
degree-choosable subgraph.

Key Lem: If H is degree-swappable and H is an induced subgraph
of a connected graph G , then G is degree-swappable.

Pf Outline for Main Theorem:

1. Compile a big family of degree-swappable graphs H.

2. Every k-regular connected graph has induced subgraph in H.
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Proving a Graph is Degree-Swappable

Q: How to prove a graph is degree-swappable?

L1 L2 · · · Ls

A: (1) Partition set of L-colorings into parts, where in each part
all are L-equivalent, i.e., mix. (2) Find paths among all parts.

Q: How to prove all L-colorings in a part mix?

A1: Find v ,w such that vw ∈ E (G ) and G − v
is connected.

If ∃ α ∈ L(v) \ L(w), then
all L-colorings ϕ with ϕ(v) = α mix.

A2: Find v1, v2 ∈ N(w) such that v1v2 /∈ E (G )
and G − v1 − v2 is connected. If
∃α ∈ L(v1) ∩ L(v2), then all L-colorings ϕ
with ϕ(v1) = ϕ(v2) = α mix.

v

α

w

α

α α

v1 v2

w
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Hunting Degree-Swappable Graphs in k-Regular Graphs

Degree-Swappable: (Chorded) Barbells w/ even cycles

; 4-wheel

Main Theorem [C-Mahmoud ’23+]: If G is k-regular with k ≥ 3
and G is connected, then G is k-swappable if G 6= K3�K2.

1. If G has small vertex cut S , then each component of G − S is
“nearly” a Gallai tree (or get good barbell or chorded barbell).

2. If G has 4-wheel, then we are done.

3. If G is 4-connected and has no 4-wheel, then G is
k-swappable (find explicit path between L-colorings).
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Summary
I Mohar conjectured that all k-colorings of a

k-regular connected graph are k-equivalent.

I True except K2�K3. Extend to list-coloring.

I G is L-swappable if we can turn any L-coloring into any other
by sequence of Kempe swaps, keeping L-coloring at each step.

I Key Lemma: If H is degree-swappable and a connected G
has H as induced subgraph, then G is also degree-swappable.

I Also useful for list-edge-swappability of planar graphs (∆ big).

I Thm: [C-Mahmoud] If G is k-regular with k ≥ 3 and
G is connected, then G is k-swappable if G 6= K3�K2.

I If G has small vertex cut S , then G − S looks “almost” like
Gallai forest. So we find induced degree-swappable subgraph.

I If G contains 4-wheel, then done.
I If G contains no 4-wheel, but is 4-connected, then

explicitly find paths between any two L-colorings.

I Read more at arXiv:2112.07439

https://arxiv.org/abs/2112.07439
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