In Most 6-regular Toroidal Graphs
All 5-colorings are Kempe Equivalent

Daniel W. Cranston
Virginia Commonwealth University
dcranston@vcu.edu

Joint with Reem Mahmoud

ISU Discrete Math Seminar (virtual)
11 March 2021



Kempe Swaps

Defn: Given k-coloring ¢, i,j € {1,... k}, and v with p(v) =/,

an (/,j)-swap at v recolors v's component of subgraph induced by
color classes i and j, swapping those colors on that component.



Kempe Swaps

Defn: Given k-coloring ¢, i,j € {1,... k}, and v with p(v) =/,

an (/,j)-swap at v recolors v's component of subgraph induced by
color classes i and j, swapping those colors on that component.

AN

-

Nl



Kempe Swaps

Defn: Given k-coloring ¢, i.j € {1,..., k}, and v with ¢(v) =1,

an (/,j)-swap at v recolors v's component of subgraph induced by
color classes i and j, swapping those colors on that component.

AN

-

Nl
S

£%



Kempe Swaps

Defn: Given k-coloring ¢, i,j € {1,... k}, and v with p(v) =/,
an (/,j)-swap at v recolors v's component of subgraph induced by
color classes i and j, swapping those colors on that component.

>

~

S
N

@ ~I%



Kempe Swaps

Defn: Given k-coloring ¢, i,j € {1,... k}, and v with p(v) =/,
an (/,j)-swap at v recolors v's component of subgraph induced by
color classes i and j, swapping those colors on that component.

/

>

S
N

N

@ -I%



Triumphs of Kempe Swaps

Every planar graph is 5-colorable.



Triumphs of Kempe Swaps

Every planar graph is 5-colorable.

Pf: Induction on |G|. Choose v with
d(v) < 5.



Triumphs of Kempe Swaps

Every planar graph is 5-colorable.
Pf: Induction on |G|. Choose v with
d(v) < 5. By hypothesis, G — v @

has a b5-coloring .
" ()

w2 w3



Triumphs of Kempe Swaps

Every planar graph is 5-colorable.

Pf: Induction on |G|. Choose v with
d(v) < 5. By hypothesis, G — v @
has a 5-coloring ¢. If d(v) < 4,

then extend ¢ to G. & a @

w2 w3



Triumphs of Kempe Swaps

Every planar graph is 5-colorable.
Pf: Induction on |G|. Choose v with

d(v) < 5. By hypothesis, G — v @

has a 5-coloring ¢. If d(v) < 4,

then extend  to G. So let N(v) = M @
{wi,...,ws} and assume o(w;) = I. 0

w2 w3



Triumphs of Kempe Swaps

Every planar graph is 5-colorable.

Pf: Induction on |G|. Choose v with
d(v) < 5. By hypothesis, G — v

has a 5-coloring ¢. If d(v) < 4,

then extend ¢ to G. So let N(v) = M
{wi,...,ws} and assume o(w;) = I. Pty

Use (1,3)-swap at wi. If doesn't re- / \

color ws, then color v 1; W2 w3



Triumphs of Kempe Swaps

Every planar graph is 5-colorable.

Pf: Induction on |G|. Choose v with
d(v) < 5. By hypothesis, G — v @

has a 5-coloring ¢. If d(v) < 4,

then extend © to G. So let N(v) = M @
{wi,...,ws} and assume o(w;) = I.
Use (1,3)-swap at wi. If doesn't re-
color ws, then color v 1; so assume it
does.

w2 w3



Triumphs of Kempe Swaps

Every planar graph is 5-colorable.

Pf: Induction on |G|. Choose v with
d(v) < 5. By hypothesis, G — v
has a 5-coloring ¢. If d(v) < 4,
then extend ¢ to G. So let N(v) =
{wi,...,ws} and assume o(w;) = I.
Use (1,3)-swap at wi. If doesn't re-
color ws, then color v 1; so assume it
does. Now use (2,4)-swap at w,. By
planarity, can't recolor wy. Color v 2.



Triumphs of Kempe Swaps

Every planar graph is 5-colorable.

Pf: Induction on |G|. Choose v with
d(v) < 5. By hypothesis, G — v

has a 5-coloring ¢. If d(v) < 4,

then extend © to G. So let N(v) = M \
{wi,...,ws} and assume o(w;) = I. Pty

Use (1,3)-swap at wy. If doesn't re- \

color ws, then color v 1; so assume it w3

does. Now use (2,4)-swap at w,. By
planarity, can't recolor wy. Color v 2.

Note: Kempe swaps also give a short proof of Brooks’ Theorem.



Triumphs of Kempe Swaps

Every planar graph is 5-colorable.

Pf: Induction on |G|. Choose v with
d(v) < 5. By hypothesis, G — v

has a 5-coloring ¢. If d(v) < 4,

then extend © to G. So let N(v) = M \
{wi,...,ws} and assume o(w;) = I. P

Use (1,3)-swap at wy. If doesn't re- \

color ws, then color v 1; so assume it w3

does. Now use (2,4)-swap at w,. By
planarity, can't recolor wy. Color v 2.

Note: Kempe swaps also give a short proof of Brooks’ Theorem.
For edge-coloring, Kempe swaps are extremely useful, since each
Kempe component is a path or a cycle.
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Kempe Equivalence

Defn: k-colorings 1 and > are k-equivalent
if we can form ¢, from ¢1 by a sequence of
Kempe swaps, never using more than k colors.
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Ex: All 3-colorings of Petersen are 3-equivalent.

Ex: Not all 3-colorings of K3[JK, are 3-equivalent.

AN

Q: Why study k-equivalence of colorings?

A (practice): Can help sample a “typical” k-coloring.

A (theory): If all k-colorings of G — v are k-equivalent,
Kempe swaps in G — v reach a coloring that extends to G.
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Planar Graphs that are Not 4-ergodic
Ex: Some Planar Graphs are Not 4-ergodic.

Obs: Every Kempe swap preserves the color classes.

Obs: Gluing along triangles creates 4-chromatic planar graphs
with arbitrarily many 4-equivalence classes.
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What else is known?

» Mohar conjectured that if G
is k-regular, then k-ergodic.

> Proved for k = 3 by Feghali,
Johnson, Paulusma,
except K3 K.

» Proved for k > 4 by Bonamy,
Bousquet, Feghali, Johnson.
» Asked about triangulated
toroidal grid T[a x b].
(From antiferromagnetic
Potts model in physics.)
» They proved 6-ergodic.
» Mohar-Salas: not 4-ergodic.
» Are they always 5-ergodic?

Thm: [C-Mahmoud '21] If a, b > 6, then T|[a x b] is 5-ergodic.
Thm: [C-Mahmoud '21] If G is 6-regular toroidal graph and each
non-contractible cycle has length at least 7, then G is 5-ergodic.
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Proof Outline

Defn: A good 4-template in G is an independent set of size 4 such
that identifying its vertices gives a 4-degenerate graph. A good
4-template appears in a coloring ¢ if o(v) = p(w) forall v,w € T.

Thm: [C-Mahmoud '21] If G is 6-regular toroidal graph and each
non-contractible cycle has length at least 7, then G is 5-ergodic.
Proof Sketch:
1. All 5-colorings of G containing good 4-template T are 4-equiv.
2. Given good 4-templates 77 and T», there are 5-colorings ©1,
o where each ; contains T; and 1 and > are 4-equivalent.

3. Every 5-coloring of G is 5-equivalent to a 5-coloring
containing a good 4-template.
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then ¢ is 5-equivalent to a coloring with a good 4-template.




Finding a Good 4-Template: Another Pretty Picture

Lem: If © has a parallel pair (such as vertices 1, 2, 3, 4 below),
then ¢ is 5-equivalent to a coloring with a good 4-template.
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if we can form ©, from 1 by a sequence of
Kempe swaps, always using < k colors. G is
k-ergodic if all k-colorings are k-equivalent.
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Defn: k-colorings 1 and ¢, are k-equivalent
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non-contractible cycle has length at least 7, then G is 5-ergodic.



Summary

Defn: k-colorings 1 and ¢, are k-equivalent
if we can form ©, from 1 by a sequence of
Kempe swaps, always using < k colors. G is D2
k-ergodic if all k-colorings are k-equivalent.

Ques: s triangulated toroidal grid 5-ergodic?

Defn: A good 4-template in G is an ind. set of
size 4 such that identifying its vertices gives a 4- 3
degenerate graph. A good 4-template appears -2
in a coloring ¢ if p(v) = @(w) forall v.w & T.

Thm: [C-Mahmoud "21] If G is 6-regular toroidal graph and each
non-contractible cycle has length at least 7, then G is 5-ergodic.
1. All 5-colorings with good 4-template T are 4-equiv. Pf: Easy.



Summary

Defn: k-colorings 1 and ¢, are k-equivalent
if we can form ©, from 1 by a sequence of
Kempe swaps, always using < k colors. G is D2
k-ergodic if all k-colorings are k-equivalent.

Ques: s triangulated toroidal grid 5-ergodic?

Defn: A good 4-template in G is an ind. set of
size 4 such that identifying its vertices gives a 4- 3
degenerate graph. A good 4-template appears -2
in a coloring ¢ if p(v) = @(w) forall v.w & T.

Thm: [C-Mahmoud "21] If G is 6-regular toroidal graph and each
non-contractible cycle has length at least 7, then G is 5-ergodic.
1. All 5-colorings with good 4-template T are 4-equiv. Pf: Easy.
2. For good 4-templates T and T», there are 5-colorings 1, ¢
s.t. each ¢; has T; and 1 and > are 4-equiv. Pf: Easy.



Summary

Defn: k-colorings 1 and ¢, are k-equivalent
if we can form ©, from 1 by a sequence of 3
Kempe swaps, always using < k colors. G is D2
k-ergodic if all k-colorings are k-equivalent.

Ques: s triangulated toroidal grid 5-ergodic?

Defn: A good 4-template in G is an ind. set of
size 4 such that identifying its vertices gives a 4- 3
degenerate graph. A good 4-template appears -2
in a coloring ¢ if p(v) = @(w) forall v.w & T.

Thm: [C-Mahmoud "21] If G is 6-regular toroidal graph and each
non-contractible cycle has length at least 7, then G is 5-ergodic.
1. All 5-colorings with good 4-template T are 4-equiv. Pf: Easy.
2. For good 4-templates T and T», there are 5-colorings 1, ¢
s.t. each ¢; has T; and 1 and > are 4-equiv. Pf: Easy.
3. Every 5-coloring of G is 5-equivalent to a 5-coloring
containing a good 4-template. Pf: Hard.
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