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Kempe Swaps

Defn: Given k-coloring ϕ, i , j ∈ {1, . . . , k}, and v with ϕ(v) = i ,
an (i , j)-swap at v recolors v ’s component of subgraph induced by
color classes i and j , swapping those colors on that component.
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Triumphs of Kempe Swaps

Every planar graph is 5-colorable.

Pf: Induction on |G |. Choose v with
d(v) ≤ 5. By hypothesis, G − v
has a 5-coloring ϕ.

If d(v) ≤ 4,
then extend ϕ to G . So let N(v) =
{w1, . . . ,w5} and assume ϕ(wi ) = i .
Use (1,3)-swap at w1. If doesn’t re-
color w3, then color v 1;

so assume it
does.

Now use (2,4)-swap at w2. By
planarity, can’t recolor w4. Color v 2.

v
w1

w2 w3

w4

w5

w1

v

w2

v

Note: Kempe swaps also give a short proof of Brooks’ Theorem.
For edge-coloring, Kempe swaps are extremely useful, since each
Kempe component is a path or a cycle.
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Kempe Equivalence

Defn: k-colorings ϕ1 and ϕ2 are k-equivalent
if we can form ϕ2 from ϕ1 by a sequence of
Kempe swaps, never using more than k colors.

Ex: All 3-colorings of Petersen are 3-equivalent.

Ex: Not all 3-colorings of K3�K2 are 3-equivalent.

Q: Why study k-equivalence of colorings?
A (practice): Can help sample a “typical” k-coloring.
A (theory): If all k-colorings of G − v are k-equivalent,
Kempe swaps in G − v reach a coloring that extends to G .
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What is Known?

I Lem: If all k-colorings of G − v are k-equiv. and d(v) < k ,
then all k-colorings of G are k-equiv. (G is k-ergodic). [LV-M]

I Cor: If G is d-degenerate and d < k, then G is k-ergodic.
I Cor: If G is planar and k > 5, then G is k-ergodic.

I Thm: If G is planar then G is 5-ergodic. [Meyniel]
Pf: Induction on |G |. Assume δ = 5. Given ϕ0 and v with
d(v) = 5, there are w , x ∈ N(v) with ϕ0(w) = ϕ0(x).
Easy: Get to ϕ1 with ϕ1(w) = ϕ1(x), by induction.
Hard: ϕ2 with ϕ2(y) = ϕ2(z). Harder: ϕ3 with ϕ3(w) = ϕ3(y).
Ideas: From 5CT and finding “in-between” 5-coloring.

I Some planar G are not 4-ergodic. [Mohar]

I All planar G are (χ(G ) + 1)-ergodic. [Mohar]
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with arbitrarily many 4-equivalence classes.
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What else is known?

I Mohar conjectured that if G
is k-regular, then k-ergodic.

I Proved for k = 3 by Feghali,
Johnson, Paulusma,
except K3 K2.

I Proved for k ≥ 4 by Bonamy,
Bousquet, Feghali, Johnson.

I Asked about triangulated
toroidal grid T [a× b].
(From antiferromagnetic
Potts model in physics.)

I They proved 6-ergodic.
I Mohar-Salas: not 4-ergodic.
I Are they always 5-ergodic?

Thm: [C-Mahmoud ’21] If a, b ≥ 6, then T [a× b] is 5-ergodic.
Thm: [C-Mahmoud ’21] If G is 6-regular toroidal graph and each
non-contractible cycle has length at least 7, then G is 5-ergodic.
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Proof Outline
Defn: A good 4-template in G is an independent set of size 4 such
that identifying its vertices gives a 4-degenerate graph.

A good
4-template appears in a coloring ϕ if ϕ(v) = ϕ(w) for all v ,w ∈ T .
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3

Thm: [C-Mahmoud ’21] If G is 6-regular toroidal graph and each
non-contractible cycle has length at least 7, then G is 5-ergodic.
Proof Sketch:

1. All 5-colorings of G containing good 4-template T are 4-equiv.

2. Given good 4-templates T1 and T2, there are 5-colorings ϕ1,
ϕ2 where each ϕi contains Ti and ϕ1 and ϕ2 are 4-equivalent.

3. Every 5-coloring of G is 5-equivalent to a 5-coloring
containing a good 4-template.
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Finding a Good 4-Template: A Pretty Picture
Lem: If ϕ has a triple (such as vertices 1, 2, 3 below),
then ϕ is 5-equivalent to a coloring with a good 4-template.

1

2

3

4 25

26

23 24

27

28 29

3031

32

5

11

17

66 77

88 99

1010

1212

13131414

15151616

1818

1919

2020

2121

2222



Finding a Good 4-Template: Another Pretty Picture

Lem: If ϕ has a parallel pair (such as vertices 1, 2, 3, 4 below),
then ϕ is 5-equivalent to a coloring with a good 4-template.
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Summary

Defn: k-colorings ϕ1 and ϕ2 are k-equivalent
if we can form ϕ2 from ϕ1 by a sequence of
Kempe swaps, always using ≤ k colors. G is
k-ergodic if all k-colorings are k-equivalent.

Ques: Is triangulated toroidal grid 5-ergodic?

Defn: A good 4-template in G is an ind. set of
size 4 such that identifying its vertices gives a 4-
degenerate graph. A good 4-template appears
in a coloring ϕ if ϕ(v) = ϕ(w) for all v ,w ∈ T .
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Thm: [C-Mahmoud ’21] If G is 6-regular toroidal graph and each
non-contractible cycle has length at least 7, then G is 5-ergodic.

1. All 5-colorings with good 4-template T are 4-equiv. Pf: Easy.
2. For good 4-templates T1 and T2, there are 5-colorings ϕ1, ϕ2

s.t. each ϕi has Ti and ϕ1 and ϕ2 are 4-equiv. Pf: Easy.
3. Every 5-coloring of G is 5-equivalent to a 5-coloring

containing a good 4-template. Pf: Hard.



Summary

Defn: k-colorings ϕ1 and ϕ2 are k-equivalent
if we can form ϕ2 from ϕ1 by a sequence of
Kempe swaps, always using ≤ k colors. G is
k-ergodic if all k-colorings are k-equivalent.

Ques: Is triangulated toroidal grid 5-ergodic?

Defn: A good 4-template in G is an ind. set of
size 4 such that identifying its vertices gives a 4-
degenerate graph. A good 4-template appears
in a coloring ϕ if ϕ(v) = ϕ(w) for all v ,w ∈ T .
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