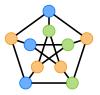
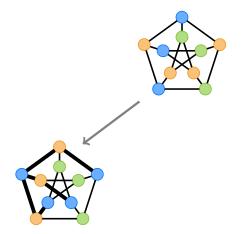
In Most 6-regular Toroidal Graphs All 5-colorings are Kempe Equivalent

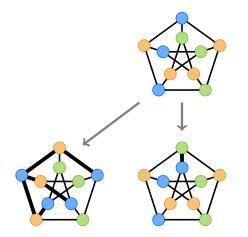
Daniel W. Cranston Virginia Commonwealth University dcranston@vcu.edu

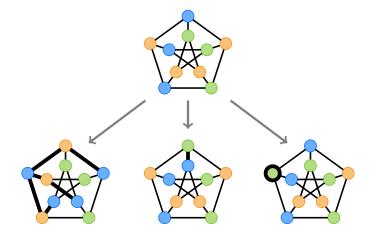
Joint with Reem Mahmoud

ISU Discrete Math Seminar (virtual) 11 March 2021







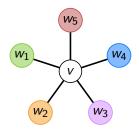


Every planar graph is 5-colorable.

Every planar graph is 5-colorable. Pf: Induction on |G|. Choose v with $d(v) \leq 5$.

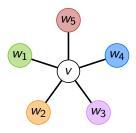
Every planar graph is 5-colorable.

Pf: Induction on |G|. Choose v with $d(v) \leq 5$. By hypothesis, G - v has a 5-coloring φ .



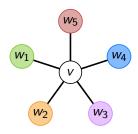
Every planar graph is 5-colorable.

Pf: Induction on |G|. Choose v with $d(v) \leq 5$. By hypothesis, G - v has a 5-coloring φ . If $d(v) \leq 4$, then extend φ to G.



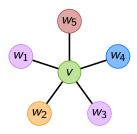
Every planar graph is 5-colorable.

Pf: Induction on |G|. Choose v with $d(v) \leq 5$. By hypothesis, G - v has a 5-coloring φ . If $d(v) \leq 4$, then extend φ to G. So let $N(v) = \{w_1, \ldots, w_5\}$ and assume $\varphi(w_i) = i$.



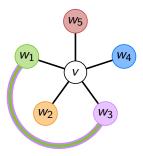
Every planar graph is 5-colorable.

Pf: Induction on |G|. Choose v with $d(v) \leq 5$. By hypothesis, G - v has a 5-coloring φ . If $d(v) \leq 4$, then extend φ to G. So let $N(v) = \{w_1, \ldots, w_5\}$ and assume $\varphi(w_i) = i$. Use (1,3)-swap at w_1 . If doesn't recolor w_3 , then color v 1;



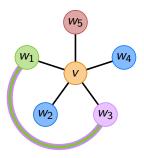
Every planar graph is 5-colorable.

Pf: Induction on |G|. Choose v with $d(v) \leq 5$. By hypothesis, G - v has a 5-coloring φ . If $d(v) \leq 4$, then extend φ to G. So let $N(v) = \{w_1, \ldots, w_5\}$ and assume $\varphi(w_i) = i$. Use (1,3)-swap at w_1 . If doesn't recolor w_3 , then color v 1; so assume it does.



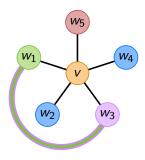
Every planar graph is 5-colorable.

Pf: Induction on |G|. Choose v with $d(v) \leq 5$. By hypothesis, G - v has a 5-coloring φ . If $d(v) \leq 4$, then extend φ to G. So let $N(v) = \{w_1, \ldots, w_5\}$ and assume $\varphi(w_i) = i$. Use (1,3)-swap at w_1 . If doesn't recolor w_3 , then color v 1; so assume it does. Now use (2,4)-swap at w_2 . By planarity, can't recolor w_4 . Color v 2.



Every planar graph is 5-colorable.

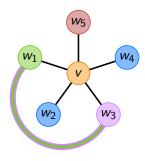
Pf: Induction on |G|. Choose v with $d(v) \leq 5$. By hypothesis, G - v has a 5-coloring φ . If $d(v) \leq 4$, then extend φ to G. So let $N(v) = \{w_1, \ldots, w_5\}$ and assume $\varphi(w_i) = i$. Use (1,3)-swap at w_1 . If doesn't recolor w_3 , then color v 1; so assume it does. Now use (2,4)-swap at w_2 . By planarity, can't recolor w_4 . Color v 2.



Note: Kempe swaps also give a short proof of Brooks' Theorem.

Every planar graph is 5-colorable.

Pf: Induction on |G|. Choose v with $d(v) \leq 5$. By hypothesis, G - v has a 5-coloring φ . If $d(v) \leq 4$, then extend φ to G. So let $N(v) = \{w_1, \ldots, w_5\}$ and assume $\varphi(w_i) = i$. Use (1,3)-swap at w_1 . If doesn't recolor w_3 , then color v 1; so assume it does. Now use (2,4)-swap at w_2 . By planarity, can't recolor w_4 . Color v 2.



Note: Kempe swaps also give a short proof of Brooks' Theorem. For edge-coloring, Kempe swaps are extremely useful, since each Kempe component is a path or a cycle.

Defn: *k*-colorings φ_1 and φ_2 are *k*-equivalent if we can form φ_2 from φ_1 by a sequence of Kempe swaps, never using more than *k* colors.

Defn: *k*-colorings φ_1 and φ_2 are *k*-equivalent if we can form φ_2 from φ_1 by a sequence of Kempe swaps, never using more than *k* colors.

Ex: All 3-colorings of Petersen are 3-equivalent.

Defn: *k*-colorings φ_1 and φ_2 are *k*-equivalent if we can form φ_2 from φ_1 by a sequence of Kempe swaps, never using more than *k* colors.

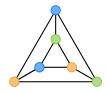
Ex: All 3-colorings of Petersen are 3-equivalent.

Ex: Not all 3-colorings of $K_3 \Box K_2$ are 3-equivalent.

Defn: *k*-colorings φ_1 and φ_2 are *k*-equivalent if we can form φ_2 from φ_1 by a sequence of Kempe swaps, never using more than *k* colors.

Ex: All 3-colorings of Petersen are 3-equivalent.

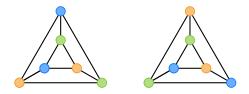
Ex: Not all 3-colorings of $K_3 \Box K_2$ are 3-equivalent.



Defn: *k*-colorings φ_1 and φ_2 are *k*-equivalent if we can form φ_2 from φ_1 by a sequence of Kempe swaps, never using more than *k* colors.

Ex: All 3-colorings of Petersen are 3-equivalent.

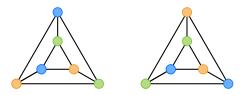
Ex: Not all 3-colorings of $K_3 \Box K_2$ are 3-equivalent.



Defn: *k*-colorings φ_1 and φ_2 are *k*-equivalent if we can form φ_2 from φ_1 by a sequence of Kempe swaps, never using more than *k* colors.

Ex: All 3-colorings of Petersen are 3-equivalent.

Ex: Not all 3-colorings of $K_3 \Box K_2$ are 3-equivalent.

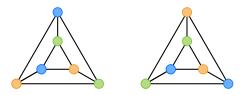


Q: Why study *k*-equivalence of colorings?

Defn: *k*-colorings φ_1 and φ_2 are *k*-equivalent if we can form φ_2 from φ_1 by a sequence of Kempe swaps, never using more than *k* colors.

Ex: All 3-colorings of Petersen are 3-equivalent.

Ex: Not all 3-colorings of $K_3 \Box K_2$ are 3-equivalent.

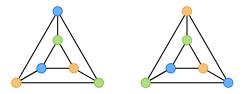


Q: Why study *k*-equivalence of colorings? **A (practice):** Can help sample a "typical" *k*-coloring.

Defn: *k*-colorings φ_1 and φ_2 are *k*-equivalent if we can form φ_2 from φ_1 by a sequence of Kempe swaps, never using more than *k* colors.

Ex: All 3-colorings of Petersen are 3-equivalent.

Ex: Not all 3-colorings of $K_3 \Box K_2$ are 3-equivalent.



Q: Why study *k*-equivalence of colorings? **A** (practice): Can help sample a "typical" *k*-coloring. **A** (theory): If all *k*-colorings of G - v are *k*-equivalent, Kempe swaps in G - v reach a coloring that extends to G.

▶ Lem: If all k-colorings of G - v are k-equiv. and d(v) < k, then all k-colorings of G are k-equiv. (G is k-ergodic). [LV-M]

▶ Lem: If all k-colorings of G - v are k-equiv. and d(v) < k, then all k-colorings of G are k-equiv. (G is k-ergodic). [LV-M]

• Cor: If G is d-degenerate and d < k, then G is k-ergodic.

- ▶ Lem: If all k-colorings of G v are k-equiv. and d(v) < k, then all k-colorings of G are k-equiv. (G is k-ergodic). [LV-M]
 - Cor: If G is d-degenerate and d < k, then G is k-ergodic.
 - Cor: If G is planar and k > 5, then G is k-ergodic.

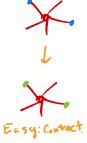
- ▶ Lem: If all k-colorings of G v are k-equiv. and d(v) < k, then all k-colorings of G are k-equiv. (G is k-ergodic). [LV-M]
 - Cor: If G is d-degenerate and d < k, then G is k-ergodic.
 - Cor: If G is planar and k > 5, then G is k-ergodic.

▶ Thm: If G is planar then G is 5-ergodic. [Meyniel]

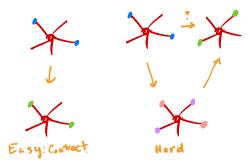
- ▶ Lem: If all k-colorings of G v are k-equiv. and d(v) < k, then all k-colorings of G are k-equiv. (G is k-ergodic). [LV-M]
 - Cor: If G is d-degenerate and d < k, then G is k-ergodic.
 - Cor: If G is planar and k > 5, then G is k-ergodic.
- Thm: If G is planar then G is 5-ergodic. [Meyniel]
 Pf: Induction on |G|. Assume δ = 5.

- ▶ Lem: If all k-colorings of G v are k-equiv. and d(v) < k, then all k-colorings of G are k-equiv. (G is k-ergodic). [LV-M]
 - Cor: If G is d-degenerate and d < k, then G is k-ergodic.
 - Cor: If G is planar and k > 5, then G is k-ergodic.
- ▶ Thm: If G is planar then G is 5-ergodic. [Meyniel] Pf: Induction on |G|. Assume $\delta = 5$. Given φ_0 and v with d(v) = 5, there are $w, x \in N(v)$ with $\varphi_0(w) = \varphi_0(x)$.

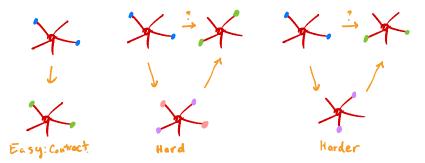
- ▶ Lem: If all k-colorings of G v are k-equiv. and d(v) < k, then all k-colorings of G are k-equiv. (G is k-ergodic). [LV-M]
 - Cor: If G is d-degenerate and d < k, then G is k-ergodic.
 - Cor: If G is planar and k > 5, then G is k-ergodic.
- ▶ Thm: If G is planar then G is 5-ergodic. [Meyniel] Pf: Induction on |G|. Assume $\delta = 5$. Given φ_0 and v with d(v) = 5, there are $w, x \in N(v)$ with $\varphi_0(w) = \varphi_0(x)$.



- ▶ Lem: If all k-colorings of G v are k-equiv. and d(v) < k, then all k-colorings of G are k-equiv. (G is k-ergodic). [LV-M]
 - Cor: If G is d-degenerate and d < k, then G is k-ergodic.
 - Cor: If G is planar and k > 5, then G is k-ergodic.
- ▶ Thm: If G is planar then G is 5-ergodic. [Meyniel] Pf: Induction on |G|. Assume $\delta = 5$. Given φ_0 and v with d(v) = 5, there are $w, x \in N(v)$ with $\varphi_0(w) = \varphi_0(x)$.



- ▶ Lem: If all k-colorings of G v are k-equiv. and d(v) < k, then all k-colorings of G are k-equiv. (G is k-ergodic). [LV-M]
 - Cor: If G is d-degenerate and d < k, then G is k-ergodic.
 - Cor: If G is planar and k > 5, then G is k-ergodic.
- ▶ Thm: If G is planar then G is 5-ergodic. [Meyniel] Pf: Induction on |G|. Assume $\delta = 5$. Given φ_0 and v with d(v) = 5, there are $w, x \in N(v)$ with $\varphi_0(w) = \varphi_0(x)$.



- ▶ Lem: If all k-colorings of G v are k-equiv. and d(v) < k, then all k-colorings of G are k-equiv. (G is k-ergodic). [LV-M]
 - Cor: If G is d-degenerate and d < k, then G is k-ergodic.
 - Cor: If G is planar and k > 5, then G is k-ergodic.
- ▶ Thm: If G is planar then G is 5-ergodic. [Meyniel] Pf: Induction on |G|. Assume $\delta = 5$. Given φ_0 and v with d(v) = 5, there are $w, x \in N(v)$ with $\varphi_0(w) = \varphi_0(x)$. Easy: Get to φ_1 with $\varphi_1(w) = \varphi_1(x)$, by induction.

- ▶ Lem: If all k-colorings of G v are k-equiv. and d(v) < k, then all k-colorings of G are k-equiv. (G is k-ergodic). [LV-M]
 - Cor: If G is d-degenerate and d < k, then G is k-ergodic.
 - Cor: If G is planar and k > 5, then G is k-ergodic.
- ▶ Thm: If G is planar then G is 5-ergodic. [Meyniel] Pf: Induction on |G|. Assume $\delta = 5$. Given φ_0 and v with d(v) = 5, there are $w, x \in N(v)$ with $\varphi_0(w) = \varphi_0(x)$. Easy: Get to φ_1 with $\varphi_1(w) = \varphi_1(x)$, by induction. Hard: φ_2 with $\varphi_2(y) = \varphi_2(z)$.

- ▶ Lem: If all k-colorings of G v are k-equiv. and d(v) < k, then all k-colorings of G are k-equiv. (G is k-ergodic). [LV-M]
 - Cor: If G is d-degenerate and d < k, then G is k-ergodic.
 - Cor: If G is planar and k > 5, then G is k-ergodic.
- Thm: If G is planar then G is 5-ergodic. [Meyniel]
 Pf: Induction on |G|. Assume δ = 5. Given φ₀ and v with d(v) = 5, there are w, x ∈ N(v) with φ₀(w) = φ₀(x).
 Easy: Get to φ₁ with φ₁(w) = φ₁(x), by induction.
 Hard: φ₂ with φ₂(y) = φ₂(z). Harder: φ₃ with φ₃(w) = φ₃(y).

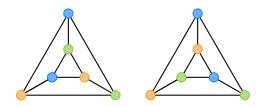
- ▶ Lem: If all k-colorings of G v are k-equiv. and d(v) < k, then all k-colorings of G are k-equiv. (G is k-ergodic). [LV-M]
 - Cor: If G is d-degenerate and d < k, then G is k-ergodic.
 - Cor: If G is planar and k > 5, then G is k-ergodic.
- Thm: If G is planar then G is 5-ergodic. [Meyniel]
 Pf: Induction on |G|. Assume δ = 5. Given φ₀ and v with d(v) = 5, there are w, x ∈ N(v) with φ₀(w) = φ₀(x).
 Easy: Get to φ₁ with φ₁(w) = φ₁(x), by induction.
 Hard: φ₂ with φ₂(y) = φ₂(z). Harder: φ₃ with φ₃(w) = φ₃(y).
 Ideas: From 5CT and finding "in-between" 5-coloring.

- ▶ Lem: If all k-colorings of G v are k-equiv. and d(v) < k, then all k-colorings of G are k-equiv. (G is k-ergodic). [LV-M]
 - Cor: If G is d-degenerate and d < k, then G is k-ergodic.
 - Cor: If G is planar and k > 5, then G is k-ergodic.
- Thm: If G is planar then G is 5-ergodic. [Meyniel]
 Pf: Induction on |G|. Assume δ = 5. Given φ₀ and v with d(v) = 5, there are w, x ∈ N(v) with φ₀(w) = φ₀(x).
 Easy: Get to φ₁ with φ₁(w) = φ₁(x), by induction.
 Hard: φ₂ with φ₂(y) = φ₂(z). Harder: φ₃ with φ₃(w) = φ₃(y).
 Ideas: From 5CT and finding "in-between" 5-coloring.
- Some planar *G* are not 4-ergodic. [Mohar]

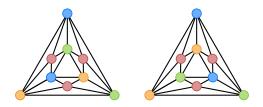
- ▶ Lem: If all k-colorings of G v are k-equiv. and d(v) < k, then all k-colorings of G are k-equiv. (G is k-ergodic). [LV-M]
 - Cor: If G is d-degenerate and d < k, then G is k-ergodic.
 - Cor: If G is planar and k > 5, then G is k-ergodic.
- Thm: If G is planar then G is 5-ergodic. [Meyniel]
 Pf: Induction on |G|. Assume δ = 5. Given φ₀ and v with d(v) = 5, there are w, x ∈ N(v) with φ₀(w) = φ₀(x).
 Easy: Get to φ₁ with φ₁(w) = φ₁(x), by induction.
 Hard: φ₂ with φ₂(y) = φ₂(z). Harder: φ₃ with φ₃(w) = φ₃(y).
 Ideas: From 5CT and finding "in-between" 5-coloring.
- Some planar *G* are not 4-ergodic. [Mohar]
- ▶ All planar *G* are $(\chi(G) + 1)$ -ergodic. [Mohar]

Ex: Some Planar Graphs are Not 4-ergodic.

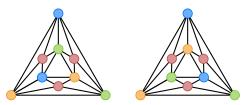
Ex: Some Planar Graphs are Not 4-ergodic.



Ex: Some Planar Graphs are Not 4-ergodic.

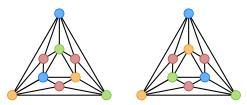


Ex: Some Planar Graphs are Not 4-ergodic.

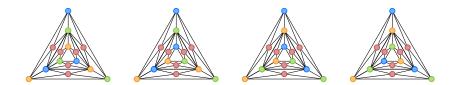


Obs: Every Kempe swap preserves the color classes.

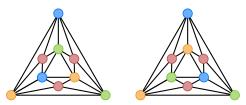
Ex: Some Planar Graphs are Not 4-ergodic.



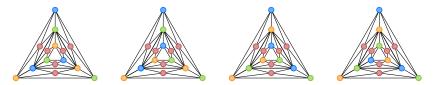
Obs: Every Kempe swap preserves the color classes.



Ex: Some Planar Graphs are Not 4-ergodic.



Obs: Every Kempe swap preserves the color classes.



Obs: Gluing along triangles creates 4-chromatic planar graphs with arbitrarily many 4-equivalence classes.

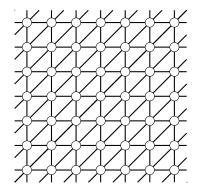
 Mohar conjectured that if G is k-regular, then k-ergodic.

- Mohar conjectured that if G is k-regular, then k-ergodic.
- Proved for k = 3 by Feghali, Johnson, Paulusma, except K₃ □K₂.

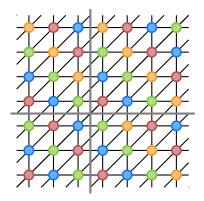


- Mohar conjectured that if G is k-regular, then k-ergodic.
- Proved for k = 3 by Feghali, Johnson, Paulusma, except K₃ □K₂.
- Proved for k ≥ 4 by Bonamy, Bousquet, Feghali, Johnson.

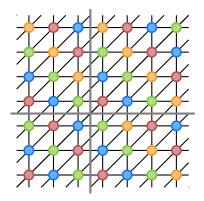
- Mohar conjectured that if G is k-regular, then k-ergodic.
- Proved for k = 3 by Feghali, Johnson, Paulusma, except K₃ □K₂.
- ▶ Proved for k ≥ 4 by Bonamy, Bousquet, Feghali, Johnson.
 - Asked about triangulated toroidal grid T[a × b]. (From antiferromagnetic Potts model in physics.)



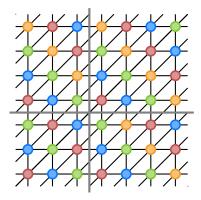
- Mohar conjectured that if G is k-regular, then k-ergodic.
- Proved for k = 3 by Feghali, Johnson, Paulusma, except K₃ □K₂.
- ▶ Proved for k ≥ 4 by Bonamy, Bousquet, Feghali, Johnson.
 - Asked about triangulated toroidal grid T[a × b]. (From antiferromagnetic Potts model in physics.)



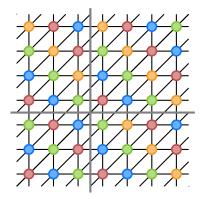
- Mohar conjectured that if G is k-regular, then k-ergodic.
- Proved for k = 3 by Feghali, Johnson, Paulusma, except K₃ □K₂.
- ▶ Proved for k ≥ 4 by Bonamy, Bousquet, Feghali, Johnson.
 - Asked about triangulated toroidal grid T[a × b]. (From antiferromagnetic Potts model in physics.)
 - ► They proved 6-ergodic.



- Mohar conjectured that if G is k-regular, then k-ergodic.
- Proved for k = 3 by Feghali, Johnson, Paulusma, except K₃ □K₂.
- ▶ Proved for k ≥ 4 by Bonamy, Bousquet, Feghali, Johnson.
 - Asked about triangulated toroidal grid T[a × b]. (From antiferromagnetic Potts model in physics.)
 - They proved 6-ergodic.
 - Mohar-Salas: not 4-ergodic.

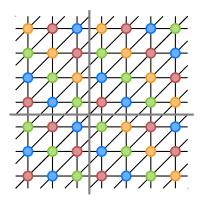


- Mohar conjectured that if G is k-regular, then k-ergodic.
- Proved for k = 3 by Feghali, Johnson, Paulusma, except K₃ □K₂.
- ▶ Proved for k ≥ 4 by Bonamy, Bousquet, Feghali, Johnson.
 - Asked about triangulated toroidal grid T[a × b]. (From antiferromagnetic Potts model in physics.)
 - They proved 6-ergodic.
 - Mohar-Salas: not 4-ergodic.
 - Are they always 5-ergodic?

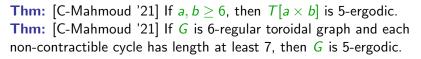


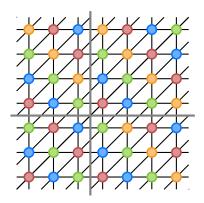
- Mohar conjectured that if G is k-regular, then k-ergodic.
- Proved for k = 3 by Feghali, Johnson, Paulusma, except K₃ □K₂.
- ▶ Proved for k ≥ 4 by Bonamy, Bousquet, Feghali, Johnson.
 - Asked about triangulated toroidal grid T[a × b]. (From antiferromagnetic Potts model in physics.)
 - ► They proved 6-ergodic.
 - Mohar-Salas: not 4-ergodic.
 - Are they always 5-ergodic?

Thm: [C-Mahmoud '21] If $a, b \ge 6$, then $T[a \times b]$ is 5-ergodic.

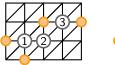


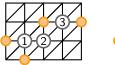
- Mohar conjectured that if G is k-regular, then k-ergodic.
- Proved for k = 3 by Feghali, Johnson, Paulusma, except K₃ □K₂.
- ▶ Proved for k ≥ 4 by Bonamy, Bousquet, Feghali, Johnson.
 - Asked about triangulated toroidal grid T[a × b]. (From antiferromagnetic Potts model in physics.)
 - They proved 6-ergodic.
 - Mohar-Salas: not 4-ergodic.
 - Are they always 5-ergodic?

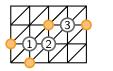


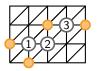


Defn: A good 4-template in *G* is an independent set of size 4 such that identifying its vertices gives a 4-degenerate graph.

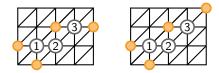




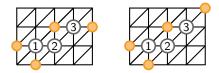




Defn: A good 4-template in G is an independent set of size 4 such that identifying its vertices gives a 4-degenerate graph. A good 4-template appears in a coloring φ if $\varphi(v) = \varphi(w)$ for all $v, w \in T$.

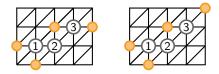


Thm: [C-Mahmoud '21] If G is 6-regular toroidal graph and each non-contractible cycle has length at least 7, then G is 5-ergodic.



- **Thm:** [C-Mahmoud '21] If G is 6-regular toroidal graph and each non-contractible cycle has length at least 7, then G is 5-ergodic. **Proof Sketch:**
 - 1. All 5-colorings of G containing good 4-template T are 4-equiv.

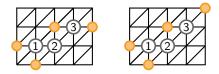
Defn: A good 4-template in G is an independent set of size 4 such that identifying its vertices gives a 4-degenerate graph. A good 4-template appears in a coloring φ if $\varphi(v) = \varphi(w)$ for all $v, w \in T$.



Thm: [C-Mahmoud '21] If G is 6-regular toroidal graph and each non-contractible cycle has length at least 7, then G is 5-ergodic. **Proof Sketch:**

- 1. All 5-colorings of G containing good 4-template T are 4-equiv.
- 2. Given good 4-templates T_1 and T_2 , there are 5-colorings φ_1 , φ_2 where each φ_i contains T_i and φ_1 and φ_2 are 4-equivalent.

Defn: A good 4-template in G is an independent set of size 4 such that identifying its vertices gives a 4-degenerate graph. A good 4-template appears in a coloring φ if $\varphi(v) = \varphi(w)$ for all $v, w \in T$.

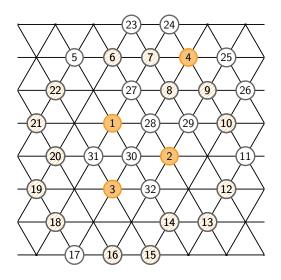


Thm: [C-Mahmoud '21] If G is 6-regular toroidal graph and each non-contractible cycle has length at least 7, then G is 5-ergodic. **Proof Sketch:**

- 1. All 5-colorings of G containing good 4-template T are 4-equiv.
- 2. Given good 4-templates T_1 and T_2 , there are 5-colorings φ_1 , φ_2 where each φ_i contains T_i and φ_1 and φ_2 are 4-equivalent.
- 3. Every 5-coloring of *G* is 5-equivalent to a 5-coloring containing a good 4-template.

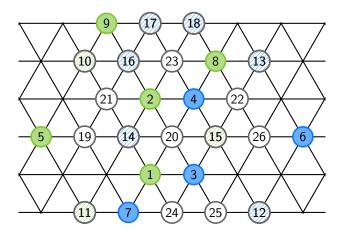
Finding a Good 4-Template: A Pretty Picture

Lem: If φ has a triple (such as vertices 1, 2, 3 below), then φ is 5-equivalent to a coloring with a good 4-template.



Finding a Good 4-Template: Another Pretty Picture

Lem: If φ has a parallel pair (such as vertices 1, 2, 3, 4 below), then φ is 5-equivalent to a coloring with a good 4-template.

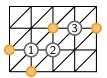


Defn: k-colorings φ_1 and φ_2 are k-equivalent if we can form φ_2 from φ_1 by a sequence of Kempe swaps, always using $\leq k$ colors. G is k-ergodic if all k-colorings are k-equivalent.

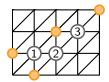
Defn: k-colorings φ_1 and φ_2 are k-equivalent if we can form φ_2 from φ_1 by a sequence of Kempe swaps, always using $\leq k$ colors. G is k-ergodic if all k-colorings are k-equivalent.

Ques: Is triangulated toroidal grid 5-ergodic?

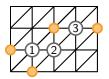
Defn: k-colorings φ_1 and φ_2 are k-equivalent if we can form φ_2 from φ_1 by a sequence of Kempe swaps, always using $\leq k$ colors. G is k-ergodic if all k-colorings are k-equivalent.



Ques: Is triangulated toroidal grid 5-ergodic?

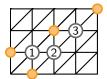


Defn: k-colorings φ_1 and φ_2 are k-equivalent if we can form φ_2 from φ_1 by a sequence of Kempe swaps, always using $\leq k$ colors. G is k-ergodic if all k-colorings are k-equivalent.



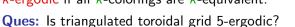
Ques: Is triangulated toroidal grid 5-ergodic?

Defn: A good 4-template in *G* is an ind. set of size 4 such that identifying its vertices gives a 4-degenerate graph. A good 4-template appears in a coloring φ if $\varphi(v) = \varphi(w)$ for all $v, w \in T$.

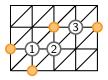


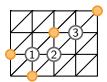
Thm: [C-Mahmoud '21] If G is 6-regular toroidal graph and each non-contractible cycle has length at least 7, then G is 5-ergodic.

Defn: k-colorings φ_1 and φ_2 are k-equivalent if we can form φ_2 from φ_1 by a sequence of Kempe swaps, always using $\leq k$ colors. G is k-ergodic if all k-colorings are k-equivalent.



Defn: A good 4-template in *G* is an ind. set of size 4 such that identifying its vertices gives a 4-degenerate graph. A good 4-template appears in a coloring φ if $\varphi(v) = \varphi(w)$ for all $v, w \in T$.

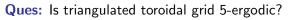




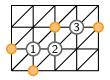
Thm: [C-Mahmoud '21] If G is 6-regular toroidal graph and each non-contractible cycle has length at least 7, then G is 5-ergodic.

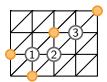
1. All 5-colorings with good 4-template T are 4-equiv. Pf: Easy.

Defn: k-colorings φ_1 and φ_2 are k-equivalent if we can form φ_2 from φ_1 by a sequence of Kempe swaps, always using $\leq k$ colors. G is k-ergodic if all k-colorings are k-equivalent.



Defn: A good 4-template in *G* is an ind. set of size 4 such that identifying its vertices gives a 4-degenerate graph. A good 4-template appears in a coloring φ if $\varphi(v) = \varphi(w)$ for all $v, w \in T$.





Thm: [C-Mahmoud '21] If G is 6-regular toroidal graph and each non-contractible cycle has length at least 7, then G is 5-ergodic.

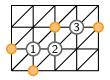
- 1. All 5-colorings with good 4-template T are 4-equiv. Pf: Easy.
- 2. For good 4-templates T_1 and T_2 , there are 5-colorings φ_1 , φ_2

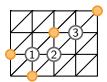
s.t. each φ_i has T_i and φ_1 and φ_2 are 4-equiv. Pf: Easy.

Defn: k-colorings φ_1 and φ_2 are k-equivalent if we can form φ_2 from φ_1 by a sequence of Kempe swaps, always using $\leq k$ colors. G is k-ergodic if all k-colorings are k-equivalent.

Ques: Is triangulated toroidal grid 5-ergodic?

Defn: A good 4-template in *G* is an ind. set of size 4 such that identifying its vertices gives a 4-degenerate graph. A good 4-template appears in a coloring φ if $\varphi(v) = \varphi(w)$ for all $v, w \in T$.





Thm: [C-Mahmoud '21] If G is 6-regular toroidal graph and each non-contractible cycle has length at least 7, then G is 5-ergodic.

- 1. All 5-colorings with good 4-template T are 4-equiv. Pf: Easy.
- 2. For good 4-templates T_1 and T_2 , there are 5-colorings φ_1 , φ_2

s.t. each φ_i has T_i and φ_1 and φ_2 are 4-equiv. **Pf:** Easy.

3. Every 5-coloring of *G* is 5-equivalent to a 5-coloring containing a good 4-template. **Pf:** Hard.