Vertex Partitions into an Independent Set and a Forest with Each Component Small

> Daniel W. Cranston Virginia Commonwealth University dcranston@vcu.edu

> > Joint with Matthew Yancey

Graphs and Optimisation Seminar (Virtual) LaBRI, France 24 July 2020

Q: How do we measure a graph's sparsity?

Q: How do we measure a graph's sparsity?

$$\mathsf{mad}(G) := \max_{H \subseteq G} \frac{2|E(H)|}{|V(H)|}.$$

Q: How do we measure a graph's sparsity?

A: Maximum average degree of G, denoted mad(G), is defined as

$$\operatorname{mad}(G) := \max_{H \subseteq G} \frac{2|E(H)|}{|V(H)|}.$$

▶ mad(G) < 1 iff G is edgeless

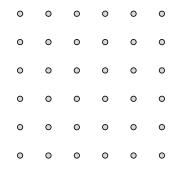
Q: How do we measure a graph's sparsity?

$$\operatorname{mad}(G) := \max_{H \subseteq G} \frac{2|E(H)|}{|V(H)|}.$$

Q: How do we measure a graph's sparsity?

$$\operatorname{mad}(G) := \max_{H \subseteq G} \frac{2|E(H)|}{|V(H)|}.$$

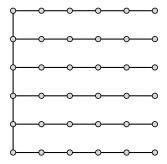
- ▶ mad(G) < 1 iff G is edgeless</p>
- ▶ mad(G) < 2 iff G is a forest</p>



Q: How do we measure a graph's sparsity?

$$\operatorname{mad}(G) := \max_{H \subseteq G} \frac{2|E(H)|}{|V(H)|}.$$

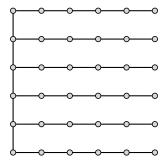
- ▶ mad(G) < 1 iff G is edgeless</p>
- ▶ mad(G) < 2 iff G is a forest</p>



Q: How do we measure a graph's sparsity?

$$\operatorname{mad}(G) := \max_{H \subseteq G} \frac{2|E(H)|}{|V(H)|}.$$

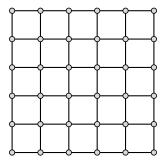
- ▶ mad(G) < 1 iff G is edgeless</p>
- ▶ mad(G) < 2 iff G is a forest</p>
- mad(G) < 4 if G is planar bip.



Q: How do we measure a graph's sparsity?

$$\operatorname{mad}(G) := \max_{H \subseteq G} \frac{2|E(H)|}{|V(H)|}.$$

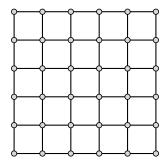
- ▶ mad(G) < 1 iff G is edgeless</p>
- ▶ mad(G) < 2 iff G is a forest</p>
- mad(G) < 4 if G is planar bip.



Q: How do we measure a graph's sparsity?

$$\operatorname{mad}(G) := \max_{H \subseteq G} \frac{2|E(H)|}{|V(H)|}.$$

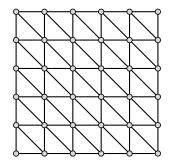
- ▶ mad(G) < 1 iff G is edgeless</p>
- ▶ mad(G) < 2 iff G is a forest</p>
- mad(G) < 4 if G is planar bip.
- mad(G) < 6 if G is planar



Q: How do we measure a graph's sparsity?

$$\operatorname{mad}(G) := \max_{H \subseteq G} \frac{2|E(H)|}{|V(H)|}.$$

- ▶ mad(G) < 1 iff G is edgeless</p>
- ▶ mad(G) < 2 iff G is a forest</p>
- mad(G) < 4 if G is planar bip.
- mad(G) < 6 if G is planar

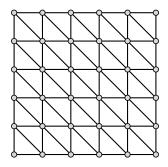


Q: How do we measure a graph's sparsity?

$$\operatorname{mad}(G) := \max_{H \subseteq G} \frac{2|E(H)|}{|V(H)|}$$

- ▶ mad(G) < 1 iff G is edgeless</p>
- ▶ mad(G) < 2 iff G is a forest</p>
- mad(G) < 4 if G is planar bip.
- ▶ mad(G) < 6 if G is planar</p>

•
$$mad(G) < \frac{2g}{g-2}$$
 if G is planar
with girth $\geq g$

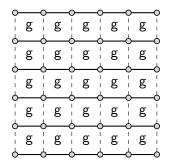


Q: How do we measure a graph's sparsity?

$$\operatorname{mad}(G) := \max_{H \subseteq G} \frac{2|E(H)|}{|V(H)|}.$$

- ▶ mad(G) < 1 iff G is edgeless</p>
- ▶ mad(G) < 2 iff G is a forest</p>
- mad(G) < 4 if G is planar bip.
- ▶ mad(G) < 6 if G is planar</p>

•
$$mad(G) < \frac{2g}{g-2}$$
 if G is planar
with girth $\geq g$

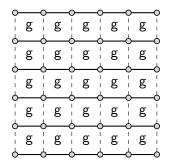


Q: How do we measure a graph's sparsity?

$$\operatorname{mad}(G) := \max_{H \subseteq G} \frac{2|E(H)|}{|V(H)|}.$$

- ▶ mad(G) < 1 iff G is edgeless</p>
- ▶ mad(G) < 2 iff G is a forest</p>
- mad(G) < 4 if G is planar bip.
- ▶ mad(G) < 6 if G is planar</p>

•
$$mad(G) < \frac{2g}{g-2}$$
 if G is planar
with girth $\geq g$



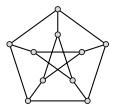
Obs: *k*-coloring is partitioning V(G) into sets V_1, \ldots, V_k with $mad(G[V_i]) < 1$.

Obs: *k*-coloring is partitioning V(G) into sets V_1, \ldots, V_k with $mad(G[V_i]) < 1$.

Q: What if we *k*-color with $k < \chi(G)$?

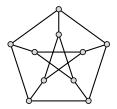
Obs: *k*-coloring is partitioning V(G) into sets V_1, \ldots, V_k with $mad(G[V_i]) < 1$.

Q: What if we *k*-color with $k < \chi(G)$?



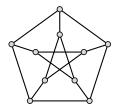
Obs: *k*-coloring is partitioning V(G) into sets V_1, \ldots, V_k with $mad(G[V_i]) < 1$.

Q: What if we *k*-color with $k < \chi(G)$? **A**: Can't get mad $(G[V_i]) < 1$



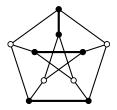
Obs: *k*-coloring is partitioning V(G) into sets V_1, \ldots, V_k with $mad(G[V_i]) < 1$.

Q: What if we *k*-color with $k < \chi(G)$? **A**: Can't get mad $(G[V_i]) < 1$; maybe mad $(G[V_i]) < r_i$ for given r_i .



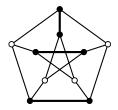
Obs: *k*-coloring is partitioning V(G) into sets V_1, \ldots, V_k with $mad(G[V_i]) < 1$.

Q: What if we *k*-color with $k < \chi(G)$? **A**: Can't get mad $(G[V_i]) < 1$; maybe mad $(G[V_i]) < r_i$ for given r_i .



Obs: *k*-coloring is partitioning V(G) into sets V_1, \ldots, V_k with $mad(G[V_i]) < 1$.

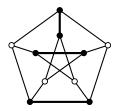
Q: What if we *k*-color with $k < \chi(G)$? **A:** Can't get mad $(G[V_i]) < 1$; maybe mad $(G[V_i]) < r_i$ for given r_i .



Q [Hendrey-Norin-Wood '19]: Given $a, b \in \mathbb{Q}^+$, what is max g(a, b) so mad(G) < g(a, b) implies V(G) has partition A, B with mad(G[A]) < a and mad(G[B]) < b?

Obs: *k*-coloring is partitioning V(G) into sets V_1, \ldots, V_k with $mad(G[V_i]) < 1$.

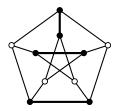
Q: What if we *k*-color with $k < \chi(G)$? **A**: Can't get mad $(G[V_i]) < 1$; maybe mad $(G[V_i]) < r_i$ for given r_i .



Q [Hendrey-Norin-Wood '19]: Given $a, b \in \mathbb{Q}^+$, what is max g(a, b) so mad(G) < g(a, b) implies V(G) has partition A, B with mad(G[A]) < a and mad(G[B]) < b? What is g(1, b)? (Now A must be independent set.)

Obs: *k*-coloring is partitioning V(G) into sets V_1, \ldots, V_k with $mad(G[V_i]) < 1$.

Q: What if we *k*-color with $k < \chi(G)$? **A:** Can't get mad $(G[V_i]) < 1$; maybe mad $(G[V_i]) < r_i$ for given r_i .

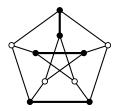


Q [Hendrey-Norin-Wood '19]: Given $a, b \in \mathbb{Q}^+$, what is max g(a, b) so mad(G) < g(a, b) implies V(G) has partition A, B with mad(G[A]) < a and mad(G[B]) < b? What is g(1, b)? (Now A must be independent set.)

Obs: When b < 2, G[B] must be a forest. Tree T with k vertices has $mad(T) = \frac{2|E(T)|}{|V(T)|} = \frac{2(k-1)}{k} = 2 - \frac{2}{k}$.

Obs: *k*-coloring is partitioning V(G) into sets V_1, \ldots, V_k with $mad(G[V_i]) < 1$.

Q: What if we *k*-color with $k < \chi(G)$? **A**: Can't get mad $(G[V_i]) < 1$; maybe mad $(G[V_i]) < r_i$ for given r_i .



Q [Hendrey-Norin-Wood '19]: Given $a, b \in \mathbb{Q}^+$, what is max g(a, b) so mad(G) < g(a, b) implies V(G) has partition A, B with mad(G[A]) < a and mad(G[B]) < b? What is g(1, b)? (Now A must be independent set.)

Obs: When b < 2, G[B] must be a forest. Tree T with k vertices has $mad(T) = \frac{2|E(T)|}{|V(T)|} = \frac{2(k-1)}{k} = 2 - \frac{2}{k}$.

Defn: An (I, F_k) -coloring of G is partition of V(G) into I, F_k where I is ind. set and $G[F_k]$ is forest with each tree of order $\leq k$.

Main Theorem:

For each integer $k \ge 2$, let

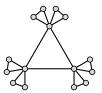
$$f(k) := \begin{cases} 3 - \frac{3}{3k-1} & k \text{ even} \\ 3 - \frac{3}{3k-2} & k \text{ odd} \end{cases}$$

If $mad(G) \leq f(k)$, then G has an (I, F_k) -coloring.

Main Theorem:

For each integer $k \ge 2$, let

$$f(k) := \begin{cases} 3 - \frac{3}{3k-1} & k \text{ even} \\ 3 - \frac{3}{3k-2} & k \text{ odd} \end{cases}$$

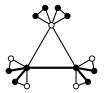


If $mad(G) \leq f(k)$, then G has an (I, F_k) -coloring.

Main Theorem:

For each integer $k \ge 2$, let

$$f(k) := \begin{cases} 3 - \frac{3}{3k-1} & k \text{ even} \\ 3 - \frac{3}{3k-2} & k \text{ odd} \end{cases}$$

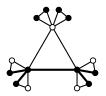


If $mad(G) \leq f(k)$, then G has an (I, F_k) -coloring.

Main Theorem:

For each integer $k \ge 2$, let

$$f(k) := \begin{cases} 3 - \frac{3}{3k-1} & k \text{ even} \\ 3 - \frac{3}{3k-2} & k \text{ odd} \end{cases}$$

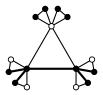


If $mad(G) \le f(k)$, then G has an (I, F_k) -coloring. This theorem is sharp infinitely often for each k.

Main Theorem:

For each integer $k \ge 2$, let

$$f(k) := \begin{cases} 3 - \frac{3}{3k-1} & k \text{ even} \\ 3 - \frac{3}{3k-2} & k \text{ odd} \end{cases}$$



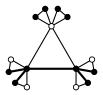
If $mad(G) \le f(k)$, then G has an (I, F_k) -coloring. This theorem is sharp infinitely often for each k.

Cor: If G is planar with girth at least 9 (resp. 8, 7), then G has partition into ind. set and forest with each component of order at most 3 (resp. 4, 6).

Main Theorem:

For each integer $k \ge 2$, let

$$f(k) := \begin{cases} 3 - \frac{3}{3k-1} & k \text{ even} \\ 3 - \frac{3}{3k-2} & k \text{ odd} \end{cases}$$



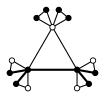
If $mad(G) \le f(k)$, then G has an (I, F_k) -coloring. This theorem is sharp infinitely often for each k.

Cor: If *G* is planar with girth at least 9 (resp. 8, 7), then *G* has partition into ind. set and forest with each component of order at most 3 (resp. 4, 6). **Pf:** $f(3) = \frac{18}{7}$

Main Theorem:

For each integer $k \ge 2$, let

$$f(k) := \begin{cases} 3 - \frac{3}{3k-1} & k \text{ even} \\ 3 - \frac{3}{3k-2} & k \text{ odd} \end{cases}$$



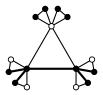
If $mad(G) \le f(k)$, then G has an (I, F_k) -coloring. This theorem is sharp infinitely often for each k.

Cor: If G is planar with girth at least 9 (resp. 8, 7), then G has partition into ind. set and forest with each component of order at most 3 (resp. 4, 6). **Pf:** $f(3) = \frac{18}{7}$, $f(4) = \frac{30}{11}$, $f(6) = \frac{48}{17}$.

Main Theorem:

For each integer $k \ge 2$, let

$$f(k) := \begin{cases} 3 - \frac{3}{3k-1} & k \text{ even} \\ 3 - \frac{3}{3k-2} & k \text{ odd} \end{cases}$$



If $mad(G) \le f(k)$, then G has an (I, F_k) -coloring. This theorem is sharp infinitely often for each k.

Cor: If G is planar with girth at least 9 (resp. 8, 7), then G has partition into ind. set and forest with each component of order at most 3 (resp. 4, 6). **Pf:** $f(3) = \frac{18}{7}$, $f(4) = \frac{30}{11}$, $f(6) = \frac{48}{17}$.

Rem: Also sharp if we only require that each component of $G[F_k]$ has order at most k (but we allow cycles).

Previous Work

Nadara−Smulewicz '19+: If G has an edge, then mad(G − I) ≤ mad(G) − 1 for some independent set I.

Previous Work

Nadara−Smulewicz '19+: If G has an edge, then mad(G − I) ≤ mad(G) − 1 for some independent set I.

Previous Work

Nadara−Smulewicz '19+: If G has an edge, then mad(G − I) ≤ mad(G) − 1 for some independent set I.

Nadara-Smulewicz '19+: If G has an edge, then mad(G − I) ≤ mad(G) − 1 for some independent set I. If G has a cycle, then mad(G − V(F)) ≤ mad(G) − 2 for some induced forest F.

• Borodin-Kostochka-Yancey '13:
$$g(\frac{4}{3}, \frac{4}{3}) = \frac{14}{5}$$
.

- Borodin–Kostochka–Yancey '13: $g(\frac{4}{3}, \frac{4}{3}) = \frac{14}{5}$.
- Borodin–Kostochka '11: $g(1, \frac{4}{3}) = \frac{12}{5}$.

- Borodin–Kostochka–Yancey '13: $g(\frac{4}{3}, \frac{4}{3}) = \frac{14}{5}$.
- ▶ Borodin–Kostochka '11: $g(1, \frac{4}{3}) = \frac{12}{5}$. (k = 2 in Main Thm)

Nadara-Smulewicz '19+: If G has an edge, then mad(G − I) ≤ mad(G) − 1 for some independent set I. If G has a cycle, then mad(G − V(F)) ≤ mad(G) − 2 for some induced forest F. So, for all b ∈ Q⁺, g(1, b) ≥ b + 1 and g(2, b) ≥ b + 2.

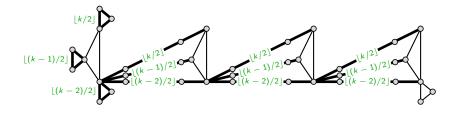
- Borodin–Kostochka–Yancey '13: $g(\frac{4}{3}, \frac{4}{3}) = \frac{14}{5}$.
- ▶ Borodin–Kostochka '11: $g(1, \frac{4}{3}) = \frac{12}{5}$. (k = 2 in Main Thm)

Various results subsumed by Main Theorem

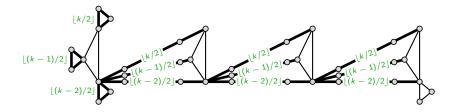
- Borodin–Ivanova–Montassier–Ochem–Raspaud '10 JGT
- Dross–Montassier–Pinlou '18 E-JC
- Choi–Dross–Ochem '20 DM

Defn: A graph G is (I, F_k) -critical if G does not have an (I, F_k) -coloring, but G - e does for every $e \in E(G)$.

Defn: A graph G is (I, F_k) -critical if G does not have an (I, F_k) -coloring, but G - e does for every $e \in E(G)$. **Prop:** The graph below is (I, F_k) -critical, and illustrates an infinite family of (I, F_k) -critical graphs (for each $k \ge 2$).

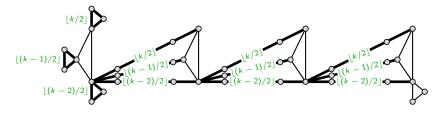


Defn: A graph G is (I, F_k) -critical if G does not have an (I, F_k) -coloring, but G - e does for every $e \in E(G)$. **Prop:** The graph below is (I, F_k) -critical, and illustrates an infinite family of (I, F_k) -critical graphs (for each $k \ge 2$).



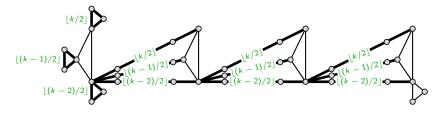
 $n := 2(\lfloor k/2 \rfloor + \lfloor (k-1)/2 \rfloor + \lfloor (k-2)/2 \rfloor) + 3$

Defn: A graph G is (I, F_k) -critical if G does not have an (I, F_k) -coloring, but G - e does for every $e \in E(G)$. **Prop:** The graph below is (I, F_k) -critical, and illustrates an infinite family of (I, F_k) -critical graphs (for each $k \ge 2$).



 $n := 2(\lfloor k/2 \rfloor + \lfloor (k-1)/2 \rfloor + \lfloor (k-2)/2 \rfloor) + 3 = \begin{cases} 3k-1 & \text{even} \\ 3k-2 & \text{odd} \end{cases}$

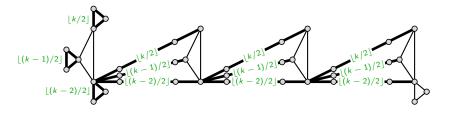
Defn: A graph G is (I, F_k) -critical if G does not have an (I, F_k) -coloring, but G - e does for every $e \in E(G)$. **Prop:** The graph below is (I, F_k) -critical, and illustrates an infinite family of (I, F_k) -critical graphs (for each $k \ge 2$).

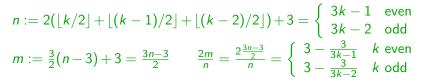


 $n := 2(\lfloor k/2 \rfloor + \lfloor (k-1)/2 \rfloor + \lfloor (k-2)/2 \rfloor) + 3 = \begin{cases} 3k-1 & \text{even} \\ 3k-2 & \text{odd} \end{cases}$

$$m := \frac{3}{2}(n-3) + 3 = \frac{3n-3}{2}$$

Defn: A graph G is (I, F_k) -critical if G does not have an (I, F_k) -coloring, but G - e does for every $e \in E(G)$. **Prop:** The graph below is (I, F_k) -critical, and illustrates an infinite family of (I, F_k) -critical graphs (for each $k \ge 2$).





Thm: Let $\rho^4(R) := 15|R| - 11|E(G[R])|$ for each $R \subseteq V(G)$. If G is (I, F_4) -critical, then $\rho^4(V(G)) \leq -3$.

Thm: Let $\rho^4(R) := 15|R| - 11|E(G[R])|$ for each $R \subseteq V(G)$. If G is (I, F_4) -critical, then $\rho^4(V(G)) \leq -3$.

Obs: $mad(G) \leq 30/11$ iff $\rho^4(R) \geq 0$ for all $R \subseteq V(G)$.

Thm: Let $\rho^4(R) := 15|R| - 11|E(G[R])|$ for each $R \subseteq V(G)$. If G is (I, F_4) -critical, then $\rho^4(V(G)) \leq -3$.

Obs: mad(G) $\leq 30/11$ iff $\rho^4(R) \geq 0$ for all $R \subseteq V(G)$.

By thm, $mad(G) \leq 30/11$ implies G has an (I, F_4) -coloring.

Thm: Let $\rho^4(R) := 15|R| - 11|E(G[R])|$ for each $R \subseteq V(G)$. If G is (I, F_4) -critical, then $\rho^4(V(G)) \leq -3$. **Obs:** mad $(G) \leq 30/11$ iff $\rho^4(R) \geq 0$ for all $R \subseteq V(G)$. By thm, mad $(G) \leq 30/11$ implies G has an (I, F_4) -coloring.

Idea: Generalize to Precoloring.

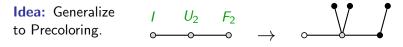
Thm: Let $\rho^4(R) := 15|R| - 11|E(G[R])|$ for each $R \subseteq V(G)$. If G is (I, F_4) -critical, then $\rho^4(V(G)) \leq -3$. **Obs:** mad $(G) \leq 30/11$ iff $\rho^4(R) \geq 0$ for all $R \subseteq V(G)$. By thm, mad $(G) \leq 30/11$ implies G has an (I, F_4) -coloring.

Idea: Generalize to Precoloring.

 $I \quad U_2 \quad F_2$

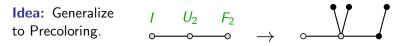
Thm: Let $\rho^4(R) := 15|R| - 11|E(G[R])|$ for each $R \subseteq V(G)$. If G is (I, F_4) -critical, then $\rho^4(V(G)) \leq -3$. **Obs:** mad $(G) \leq 30/11$ iff $\rho^4(R) \geq 0$ for all $R \subseteq V(G)$.

By thm, $mad(G) \leq 30/11$ implies G has an (I, F_4) -coloring.



Thm: Let $\rho^4(R) := 15|R| - 11|E(G[R])|$ for each $R \subseteq V(G)$. If *G* is (I, F_4) -critical, then $\rho^4(V(G)) \le -3$.

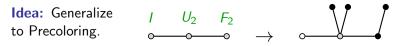
Obs: $mad(G) \le 30/11$ iff $\rho^4(R) \ge 0$ for all $R \subseteq V(G)$. By thm, $mad(G) \le 30/11$ implies G has an (I, F_4) -coloring.



Let $\rho^4(R) := 15|R_{U_0}| + 12|R_{U_1}| + 9|R_{U_2}| + 6|R_{U_3}| + 8|R_{F_1}| + 5|R_{F_2}| + 3|R_{F_3}| + 0|R_{F_4}| + 4|R_I| - 11|E(G[R])|.$

Thm: Let $\rho^4(R) := 15|R| - 11|E(G[R])|$ for each $R \subseteq V(G)$. If G is (I, F_4) -critical, then $\rho^4(V(G)) \leq -3$.

Obs: $mad(G) \le 30/11$ iff $\rho^4(R) \ge 0$ for all $R \subseteq V(G)$. By thm, $mad(G) \le 30/11$ implies G has an (I, F_4) -coloring.

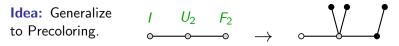


Let $\rho^4(R) := 15|R_{U_0}| + 12|R_{U_1}| + 9|R_{U_2}| + 6|R_{U_3}| + 8|R_{F_1}| + 5|R_{F_2}| + 3|R_{F_3}| + 0|R_{F_4}| + 4|R_I| - 11|E(G[R])|.$

Defn: A precolored graph G is (I, F_k) -critical if G has no (I, F_k) -coloring, but every subgraph does; and "weakening" the precoloring in any way allows an (I, F_k) -coloring.

Thm: Let $\rho^4(R) := 15|R| - 11|E(G[R])|$ for each $R \subseteq V(G)$. If G is (I, F_4) -critical, then $\rho^4(V(G)) \leq -3$.

Obs: $mad(G) \le 30/11$ iff $\rho^4(R) \ge 0$ for all $R \subseteq V(G)$. By thm, $mad(G) \le 30/11$ implies G has an (I, F_4) -coloring.



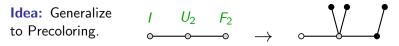
Let $\rho^4(R) := 15|R_{U_0}| + 12|R_{U_1}| + 9|R_{U_2}| + 6|R_{U_3}| + 8|R_{F_1}| + 5|R_{F_2}| + 3|R_{F_3}| + 0|R_{F_4}| + 4|R_I| - 11|E(G[R])|.$

Defn: A precolored graph *G* is (I, F_k) -critical if *G* has no (I, F_k) -coloring, but every subgraph does; and "weakening" the precoloring in any way allows an (I, F_k) -coloring.

Real Main Theorem: If G is a precolored graph and G is (I, F_4) -critical, then $\rho^4(V(G)) \leq -3$.

Thm: Let $\rho^4(R) := 15|R| - 11|E(G[R])|$ for each $R \subseteq V(G)$. If G is (I, F_4) -critical, then $\rho^4(V(G)) \leq -3$.

Obs: $mad(G) \le 30/11$ iff $\rho^4(R) \ge 0$ for all $R \subseteq V(G)$. By thm, $mad(G) \le 30/11$ implies G has an (I, F_4) -coloring.



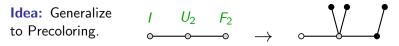
Let $\rho^4(R) := 15|R_{U_0}| + 12|R_{U_1}| + 9|R_{U_2}| + 6|R_{U_3}| + 8|R_{F_1}| + 5|R_{F_2}| + 3|R_{F_3}| + 0|R_{F_4}| + 4|R_I| - 11|E(G[R])|.$

Defn: A precolored graph *G* is (I, F_k) -critical if *G* has no (I, F_k) -coloring, but every subgraph does; and "weakening" the precoloring in any way allows an (I, F_k) -coloring. **Real Main Theorem:** If *G* is a precolored graph and *G* is (I, F_4) -critical, then $\rho^4(V(G)) \leq -3$.

Ex: ρ^4 (graph above)

Thm: Let $\rho^4(R) := 15|R| - 11|E(G[R])|$ for each $R \subseteq V(G)$. If G is (I, F_4) -critical, then $\rho^4(V(G)) \leq -3$.

Obs: $mad(G) \le 30/11$ iff $\rho^4(R) \ge 0$ for all $R \subseteq V(G)$. By thm, $mad(G) \le 30/11$ implies G has an (I, F_4) -coloring.



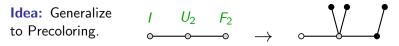
Let $\rho^4(R) := 15|R_{U_0}| + 12|R_{U_1}| + 9|R_{U_2}| + 6|R_{U_3}| + 8|R_{F_1}| + 5|R_{F_2}| + 3|R_{F_3}| + 0|R_{F_4}| + 4|R_I| - 11|E(G[R])|.$

Defn: A precolored graph *G* is (I, F_k) -critical if *G* has no (I, F_k) -coloring, but every subgraph does; and "weakening" the precoloring in any way allows an (I, F_k) -coloring.

Real Main Theorem: If G is a precolored graph and G is (I, F_4) -critical, then $\rho^4(V(G)) \le -3$. **Ex:** $\rho^4(\text{graph above}) = 4 + 9 + 5 - 2(11)$

Thm: Let $\rho^4(R) := 15|R| - 11|E(G[R])|$ for each $R \subseteq V(G)$. If G is (I, F_4) -critical, then $\rho^4(V(G)) \leq -3$.

Obs: $mad(G) \le 30/11$ iff $\rho^4(R) \ge 0$ for all $R \subseteq V(G)$. By thm, $mad(G) \le 30/11$ implies G has an (I, F_4) -coloring.



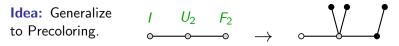
Let $\rho^4(R) := 15|R_{U_0}| + 12|R_{U_1}| + 9|R_{U_2}| + 6|R_{U_3}| + 8|R_{F_1}| + 5|R_{F_2}| + 3|R_{F_3}| + 0|R_{F_4}| + 4|R_I| - 11|E(G[R])|.$

Defn: A precolored graph *G* is (I, F_k) -critical if *G* has no (I, F_k) -coloring, but every subgraph does; and "weakening" the precoloring in any way allows an (I, F_k) -coloring. **Real Main Theorem:** If *G* is a precolored graph and *G* is (I, F_4) -critical, then $\rho^4(V(G)) \leq -3$.

Ex: $\rho^4(\text{graph above}) = 4 + 9 + 5 - 2(11) = -4$

Thm: Let $\rho^4(R) := 15|R| - 11|E(G[R])|$ for each $R \subseteq V(G)$. If G is (I, F_4) -critical, then $\rho^4(V(G)) \leq -3$.

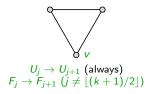
Obs: $mad(G) \le 30/11$ iff $\rho^4(R) \ge 0$ for all $R \subseteq V(G)$. By thm, $mad(G) \le 30/11$ implies G has an (I, F_4) -coloring.

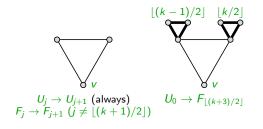


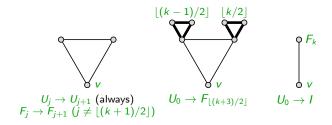
Let $\rho^4(R) := 15|R_{U_0}| + 12|R_{U_1}| + 9|R_{U_2}| + 6|R_{U_3}| + 8|R_{F_1}| + 5|R_{F_2}| + 3|R_{F_3}| + 0|R_{F_4}| + 4|R_I| - 11|E(G[R])|.$

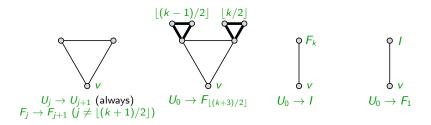
Defn: A precolored graph *G* is (I, F_k) -critical if *G* has no (I, F_k) -coloring, but every subgraph does; and "weakening" the precoloring in any way allows an (I, F_k) -coloring. **Real Main Theorem:** If *G* is a precolored graph and *G* is (I, F_4) -critical, then $\rho^4(V(G)) \le -3$.

Ex: $\rho^4(\text{graph above}) = 4 + 9 + 5 - 2(11) = -4 \le -3.$

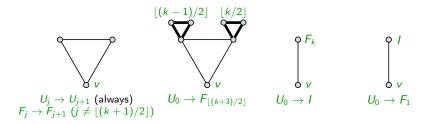






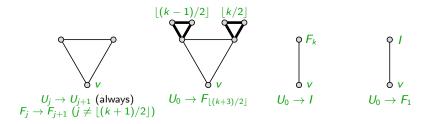


Q: Where do we get the coefficients in ρ^k ?



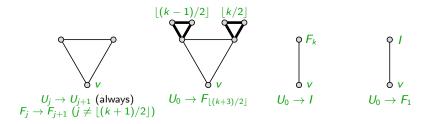
Q: Why is potential better than maximum average degree?

Q: Where do we get the coefficients in ρ^k ?



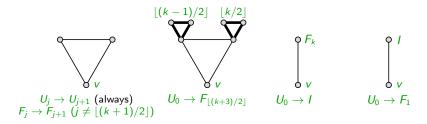
Q: Why is potential better than maximum average degree? **Gap Lem:** If $R \subsetneq V(G)$ and $E(G[R]) \neq \emptyset$, then $\rho^k(G[R]) \ge \frac{3k-5}{2}$.

Q: Where do we get the coefficients in ρ^k ?



Q: Why is potential better than maximum average degree? **Gap Lem:** If $R \subsetneq V(G)$ and $E(G[R]) \neq \emptyset$, then $\rho^k(G[R]) \ge \frac{3k-5}{2}$. **Obs:** So we can modify G[R] a lot before coloring by induction.

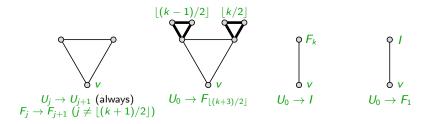
Q: Where do we get the coefficients in ρ^k ?



Q: Why is potential better than maximum average degree? **Gap Lem:** If $R \subsetneq V(G)$ and $E(G[R]) \neq \emptyset$, then $\rho^k(G[R]) \ge \frac{3k-5}{2}$. **Obs:** So we can modify G[R] a lot before coloring by induction.

Q: How do we finish the proof?

Q: Where do we get the coefficients in ρ^k ?

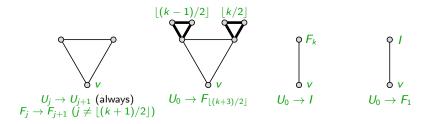


Q: Why is potential better than maximum average degree? **Gap Lem:** If $R \subsetneq V(G)$ and $E(G[R]) \neq \emptyset$, then $\rho^k(G[R]) \ge \frac{3k-5}{2}$. **Obs:** So we can modify G[R] a lot before coloring by induction.

Q: How do we finish the proof?

A: With discharging

Q: Where do we get the coefficients in ρ^k ?



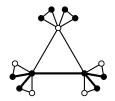
Q: Why is potential better than maximum average degree? **Gap Lem:** If $R \subsetneq V(G)$ and $E(G[R]) \neq \emptyset$, then $\rho^k(G[R]) \ge \frac{3k-5}{2}$. **Obs:** So we can modify G[R] a lot before coloring by induction.

Q: How do we finish the proof?

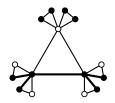
A: With discharging, as usual.

(*I*, *F_k*)-coloring partitions *V*(*G*) so *I* is independent set and *G*[*F_k*] is forest with each tree of order ≤ *k*

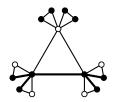
(*I*, *F_k*)-coloring partitions *V*(*G*) so *I* is independent set and *G*[*F_k*] is forest with each tree of order ≤ *k*



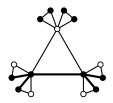
- (*I*, *F_k*)-coloring partitions *V*(*G*) so *I* is independent set and *G*[*F_k*] is forest with each tree of order ≤ *k*
- Sufficient conditions for (I, F_k) -coloring in terms of mad(G)



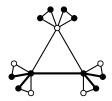
- (*I*, *F_k*)-coloring partitions *V*(*G*) so *I* is independent set and *G*[*F_k*] is forest with each tree of order ≤ *k*
- Sufficient conditions for (I, F_k) -coloring in terms of mad(G)
- Sharp infinitely often for every k



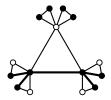
- (1, F_k)-coloring partitions V(G) so 1 is independent set and G[F_k] is forest with each tree of order ≤ k
- Sufficient conditions for (I, F_k) -coloring in terms of mad(G)
- Sharp infinitely often for every k
- Still sharp if we only require each component of order $\leq k$



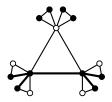
- (1, F_k)-coloring partitions V(G) so 1 is independent set and G[F_k] is forest with each tree of order ≤ k
- Sufficient conditions for (I, F_k) -coloring in terms of mad(G)
- Sharp infinitely often for every k
- Still sharp if we only require each component of order $\leq k$
- Partially answers question of Hendrey–Norine–Wood



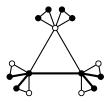
- (1, F_k)-coloring partitions V(G) so 1 is independent set and G[F_k] is forest with each tree of order ≤ k
- Sufficient conditions for (I, F_k) -coloring in terms of mad(G)
- Sharp infinitely often for every k
- Still sharp if we only require each component of order $\leq k$
- Partially answers question of Hendrey–Norine–Wood
- Improves on many previous results



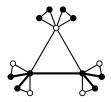
- (*I*, *F_k*)-coloring partitions *V*(*G*) so *I* is independent set and *G*[*F_k*] is forest with each tree of order ≤ *k*
- ▶ Sufficient conditions for (*I*, *F_k*)-coloring in terms of mad(*G*)
- Sharp infinitely often for every k
- Still sharp if we only require each component of order $\leq k$
- Partially answers question of Hendrey–Norine–Wood
- Improves on many previous results
- Potential method, p (not mad(G))



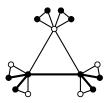
- (*I*, *F_k*)-coloring partitions *V*(*G*) so *I* is independent set and *G*[*F_k*] is forest with each tree of order ≤ *k*
- Sufficient conditions for (I, F_k) -coloring in terms of mad(G)
- Sharp infinitely often for every k
- Still sharp if we only require each component of order $\leq k$
- Partially answers question of Hendrey–Norine–Wood
- Improves on many previous results
- Potential method, p (not mad(G))
- Generalize to precoloring: I, U_j , F_ℓ



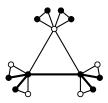
- (*I*, *F_k*)-coloring partitions *V*(*G*) so *I* is independent set and *G*[*F_k*] is forest with each tree of order ≤ *k*
- Sufficient conditions for (I, F_k) -coloring in terms of mad(G)
- Sharp infinitely often for every k
- Still sharp if we only require each component of order $\leq k$
- Partially answers question of Hendrey–Norine–Wood
- Improves on many previous results
- Potential method, p (not mad(G))
- Generalize to precoloring: I, U_j , F_ℓ
- Gadgets tell us coefficients in ρ



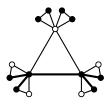
- (*I*, *F_k*)-coloring partitions *V*(*G*) so *I* is independent set and *G*[*F_k*] is forest with each tree of order ≤ *k*
- ▶ Sufficient conditions for (*I*, *F_k*)-coloring in terms of mad(*G*)
- Sharp infinitely often for every k
- Still sharp if we only require each component of order $\leq k$
- Partially answers question of Hendrey–Norine–Wood
- Improves on many previous results
- Potential method, p (not mad(G))
- Generalize to precoloring: I, U_j , F_ℓ
- Gadgets tell us coefficients in ρ
- ► Gap Lem gives power for reducibility



- (1, F_k)-coloring partitions V(G) so 1 is independent set and G[F_k] is forest with each tree of order ≤ k
- ▶ Sufficient conditions for (*I*, *F_k*)-coloring in terms of mad(*G*)
- Sharp infinitely often for every k
- Still sharp if we only require each component of order $\leq k$
- Partially answers question of Hendrey–Norine–Wood
- Improves on many previous results
- Potential method, p (not mad(G))
- Generalize to precoloring: I, U_j , F_ℓ
- Gadgets tell us coefficients in ρ
- ► Gap Lem gives power for reducibility
- Finish with discharging

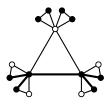


- (*I*, *F_k*)-coloring partitions *V*(*G*) so *I* is independent set and *G*[*F_k*] is forest with each tree of order ≤ *k*
- ▶ Sufficient conditions for (*I*, *F_k*)-coloring in terms of mad(*G*)
- Sharp infinitely often for every k
- Still sharp if we only require each component of order $\leq k$
- Partially answers question of Hendrey–Norine–Wood
- Improves on many previous results
- Potential method, p (not mad(G))
- Generalize to precoloring: I, U_j , F_ℓ
- Gadgets tell us coefficients in ρ
- Gap Lem gives power for reducibility
- Finish with discharging



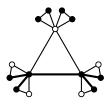
Read more at: https://arxiv.org/abs/2006.11445

- (*I*, *F_k*)-coloring partitions *V*(*G*) so *I* is independent set and *G*[*F_k*] is forest with each tree of order ≤ *k*
- ▶ Sufficient conditions for (*I*, *F_k*)-coloring in terms of mad(*G*)
- Sharp infinitely often for every k
- Still sharp if we only require each component of order $\leq k$
- Partially answers question of Hendrey–Norine–Wood
- Improves on many previous results
- Potential method, p (not mad(G))
- Generalize to precoloring: I, U_j , F_ℓ
- Gadgets tell us coefficients in ρ
- Gap Lem gives power for reducibility
- Finish with discharging



Read more at: https://arxiv.org/abs/2006.11445

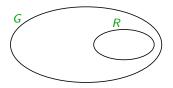
- (*I*, *F_k*)-coloring partitions *V*(*G*) so *I* is independent set and *G*[*F_k*] is forest with each tree of order ≤ *k*
- ▶ Sufficient conditions for (*I*, *F_k*)-coloring in terms of mad(*G*)
- Sharp infinitely often for every k
- Still sharp if we only require each component of order $\leq k$
- Partially answers question of Hendrey–Norine–Wood
- Improves on many previous results
- Potential method, p (not mad(G))
- Generalize to precoloring: I, U_j , F_ℓ
- Gadgets tell us coefficients in ρ
- Gap Lem gives power for reducibility
- Finish with discharging



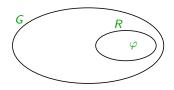
Read more at: https://arxiv.org/abs/2006.11445

Bonus: Weak Gap Lemma Weak Gap Lemma: If $R \subsetneq V(G)$ and $R \neq \emptyset$, then $\rho^k(R) \ge 1$.

Weak Gap Lemma: If $R \subseteq V(G)$ and $R \neq \emptyset$, then $\rho^k(R) \ge 1$. Pf: Choose *R* minimizing $\rho^k(R)$; further, maximize |R|.

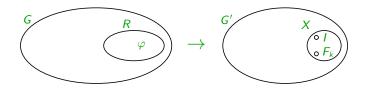


Weak Gap Lemma: If $R \subsetneq V(G)$ and $R \neq \emptyset$, then $\rho^k(R) \ge 1$. Pf: Choose R minimizing $\rho^k(R)$; further, maximize |R|.



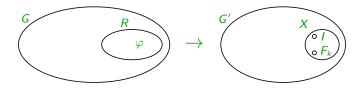
G[R] has coloring φ by criticality.

Weak Gap Lemma: If $R \subsetneq V(G)$ and $R \neq \emptyset$, then $\rho^k(R) \ge 1$. Pf: Choose R minimizing $\rho^k(R)$; further, maximize |R|.



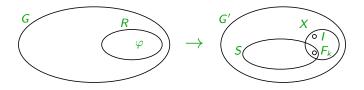
G[R] has coloring φ by criticality.

Weak Gap Lemma: If $R \subsetneq V(G)$ and $R \neq \emptyset$, then $\rho^k(R) \ge 1$. Pf: Choose R minimizing $\rho^k(R)$; further, maximize |R|.



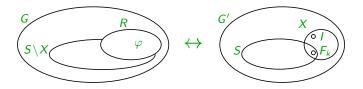
G[R] has coloring φ by criticality. If G' has coloring φ' , then $\varphi' \cup \varphi$ is coloring of G, contradiction.

Weak Gap Lemma: If $R \subsetneq V(G)$ and $R \neq \emptyset$, then $\rho^k(R) \ge 1$. Pf: Choose R minimizing $\rho^k(R)$; further, maximize |R|.



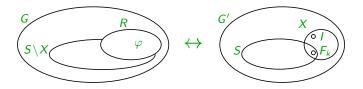
G[R] has coloring φ by criticality. If G' has coloring φ' , then $\varphi' \cup \varphi$ is coloring of G, contradiction. So G' has critical subgraph G''; let S = V(G'').

Weak Gap Lemma: If $R \subsetneq V(G)$ and $R \neq \emptyset$, then $\rho^k(R) \ge 1$. Pf: Choose R minimizing $\rho^k(R)$; further, maximize |R|.



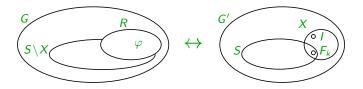
G[R] has coloring φ by criticality. If G' has coloring φ' , then $\varphi' \cup \varphi$ is coloring of G, contradiction. So G' has critical subgraph G''; let S = V(G''). Let $S' = (S \setminus X) \cup R$.

Weak Gap Lemma: If $R \subsetneq V(G)$ and $R \neq \emptyset$, then $\rho^k(R) \ge 1$. Pf: Choose R minimizing $\rho^k(R)$; further, maximize |R|.



G[R] has coloring φ by criticality. If G' has coloring φ' , then $\varphi' \cup \varphi$ is coloring of G, contradiction. So G' has critical subgraph G''; let S = V(G''). Let $S' = (S \setminus X) \cup R$. Note that $S \cap X \neq \emptyset$.

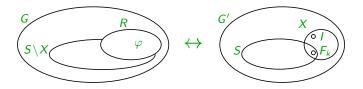
Weak Gap Lemma: If $R \subsetneq V(G)$ and $R \neq \emptyset$, then $\rho^k(R) \ge 1$. Pf: Choose R minimizing $\rho^k(R)$; further, maximize |R|.



G[R] has coloring φ by criticality. If G' has coloring φ' , then $\varphi' \cup \varphi$ is coloring of G, contradiction. So G' has critical subgraph G''; let S = V(G''). Let $S' = (S \setminus X) \cup R$. Note that $S \cap X \neq \emptyset$. Now

$$\begin{split} \rho_G^k(S') &\leq \rho_{G'}^k(S) - \rho_{G'}^k(S \cap X) + \rho_G^k(R) \\ &\leq -3 + \rho_G^k(R) < \rho_G^k(R). \end{split}$$

Weak Gap Lemma: If $R \subsetneq V(G)$ and $R \neq \emptyset$, then $\rho^k(R) \ge 1$. Pf: Choose R minimizing $\rho^k(R)$; further, maximize |R|.

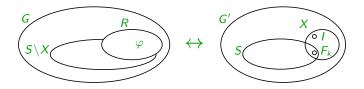


G[R] has coloring φ by criticality. If G' has coloring φ' , then $\varphi' \cup \varphi$ is coloring of G, contradiction. So G' has critical subgraph G''; let S = V(G''). Let $S' = (S \setminus X) \cup R$. Note that $S \cap X \neq \emptyset$. Now

$$egin{aligned} &
ho_G^k(S') \leq
ho_{G'}^k(S) -
ho_{G'}^k(S \cap X) +
ho_G^k(R) \ &\leq -3 +
ho_G^k(R) <
ho_G^k(R). \end{aligned}$$

If $S' \neq V(G)$, then S' contradicts our choice of R.

Weak Gap Lemma: If $R \subsetneq V(G)$ and $R \neq \emptyset$, then $\rho^k(R) \ge 1$. Pf: Choose R minimizing $\rho^k(R)$; further, maximize |R|.



G[R] has coloring φ by criticality. If G' has coloring φ' , then $\varphi' \cup \varphi$ is coloring of G, contradiction. So G' has critical subgraph G''; let S = V(G''). Let $S' = (S \setminus X) \cup R$. Note that $S \cap X \neq \emptyset$. Now

$$egin{aligned} &
ho_G^k(S') \leq
ho_{G'}^k(S) -
ho_{G'}^k(S \cap X) +
ho_G^k(R) \ &\leq -3 +
ho_G^k(R) <
ho_G^k(R). \end{aligned}$$

If $S' \neq V(G)$, then S' contradicts our choice of R. If S' = V(G), then $\rho^k(V(G)) \leq -3$, contradiction.